Effect of Growth Ring Width and Latewood Content on Selected Physical and Mechanical Properties of Plantation Japanese Larch Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Physical and Mechanical Properties
2.2.2. Determination of Latewood Rate and Growth Ring Width
3. Results and Discussion
3.1. Relationship between Growth Ring Width and Latewood Percentage
3.2. The Relationship between Growth Rings and Physical Properties
3.3. The Relationship between Growth Rings and Mechanical Properties
4. Conclusions
- (1)
- The LW percentage can be used to evaluate the air-drying shrinkage rate. The radial air-drying shrinkage rate (R2 = 0.99) has a linear relationship with LW percentage. The RW has more advantages in density evaluation than LW percentage. Air-dry density first decreases and then increases with RW, and the R2 of a quadratic fitting function was found to be 0.99.
- (2)
- RW is more suitable for evaluating MOR and MOE than LW percentage. However, LW percentage is more suitable for evaluating UTS. The resulting fitting models can be used for accurate evaluations of Japanese larch wood properties. The RW and LW percentage of wood do not directly affect its impact resistance.
- (3)
- The demarcation ring width between juvenile wood and mature wood would be about 4.85 mm, and the MOE and MOR of them are quite different.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matsushita, M.; Nishikawa, H.; Tamura, A. Effects of Girdling Intensity, Pruning Season and Thinning on Tree Growth, Crown Vigor and Wound Recovery in Japanese Larch. Forests 2022, 13, 449. [Google Scholar] [CrossRef]
- Pâques, L.E. Roles of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix × eurolepis Henry). Ann. For. Sci. 2004, 61, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.M.; Chu, X.L.; Zhang, S.G.; Liu, J.L. Timber Evaluation on Physical and Mechanical Properties of Species and Hybrids of Larix. Sci. Silvae Sin. 2012, 48, 153–159. [Google Scholar]
- Kurinobu, S. Forest tree breeding for Japanese larch. Eurasian J. For. Res. 2005, 8, 127–134. [Google Scholar]
- Cave, I.D.; Walker, J.C.F. Stiffness of wood in fast-grown plantation softwoods: The influence of microfibril angle. For. Prod. J. 1994, 44, 43–48. [Google Scholar]
- Meylan, B.A. The influence of microfibril angle on the longitudinal shrinkage-moisture content relationship. Wood Sci. Technol. 1972, 6, 293–301. [Google Scholar] [CrossRef]
- Anoop, E.V.; Jijeesh, C.M.; Sindhumathi, C.R.; Jayasree, C.E. Wood physical, anatomical and mechanical properties of big leaf mahogany (Swietenia macrophylla Roxb) a potential exotic for South India. Res. J. Agric. For. Sci. 2014, 2, 7–13. [Google Scholar]
- Niklas, K.J.; Spatz, H.C. Worldwide correlations of mechanical properties and green wood density. Am. J. Bot. 2010, 97, 1587–1594. [Google Scholar] [CrossRef]
- Almeida, D.H.; Mello, S.R.; Christoforo, A.L.; Varanda, L.D.; Lahr, F.A.R.; Dias, A.A.; Junior, C.C. Tenacidade Da Madeira como função da densidade aparente. Rev. Árvore 2014, 38, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Alteyrac, J.; Cloutier, A.; Ung, C.H.; Zhang, S.Y. Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fiber Sci. 2006, 38, 229–237. [Google Scholar]
- Kiaei, M.; Khademi-Eslam, H.; Hooman, H.A.; Samariha, A. Ring width, physical and mechanical properties of eldar pine (case study on marzanabad site). Cellul. Chem. Technol. 2012, 16, 125–135. [Google Scholar]
- Zhang, S.Y. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci. Technol. 1995, 29, 451–465. [Google Scholar] [CrossRef]
- Touchan, R.; Shishov, V.V.; Meko, D.M.; Nouiri, I.; Grachev, A. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences 2012, 9, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Popkova, M.I.; Shishov, V.V.; Vaganov, E.A.; Fonti, M.V.; Kirdyanov, A.V.; Babushkina, E.A.; Huang, J.G.; Rossi, S. Contribution of Xylem Anatomy to Tree-Ring Width of Two Larch Species in Permafrost and Non-Permafrost Zones of Siberia. Forests 2020, 11, 1343. [Google Scholar] [CrossRef]
- Bertaud, F.; Holmbom, B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci. Technol. 2004, 38, 245–256. [Google Scholar] [CrossRef]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef]
- Laskowska, A.; Majewska, K.; Kozakiewicz, P.; Mamiński, M.; Bryk, G. Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus orientalis (L.) Franco from South-Eastern Poland. Forests 2021, 12, 925. [Google Scholar] [CrossRef]
- Bhat, K.M.; Priya, P.B. Influence of provenance variation on wood properties of teak from the Western Ghat region in India. IAWA J. 2004, 25, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Wiemann, M.C.; Wheeler, E.A.; Manchester, S.R.; Portier, K.M. Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 139, 83–100. [Google Scholar] [CrossRef]
- Grigaliûnas, J. The method of forest stand classification by growth types. Balt. For. 1997, 3, 10–13. [Google Scholar]
- Alteyrac, J.; Zhang, S.Y.; Cloutier, A.; Ruel, J.C. Influence of stand density on ring width and wood density at different sampling heights in black spruce (Picea mariana (Mill.) BSP). Wood Fiber Sci. 2005, 37, 83–94. [Google Scholar]
- Lasserre, J.P.; Mason, E.G.; Watt, M.S.; Moore, J.R. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manag. 2009, 258, 1924–1931. [Google Scholar] [CrossRef]
- Schneider, R.; Zhang, S.Y.; Swift, D.E.; Begin, J.; Lussier, J.M. Predicting selected wood properties of jack pine following commercial thinning. Can. J. For. Res. 2008, 38, 2030–2043. [Google Scholar] [CrossRef]
- Aleinikovas, M. Effect of the mean diameter increment on the pine wood mechanical-physical properties in Lithuania. Balt. For. 2007, 13, 103–107. [Google Scholar]
- Jordan, L.; Daniels, R.F.; Clark III, A.; He, R. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle. For. Sci. 2005, 51, 357–371. [Google Scholar]
- Auty, D.; Gardiner, B.A.; Achim, A.; Moore, J.R.; Cameron, A.D. Models for predicting microfibril angle variation in Scots pine. Ann. For. Sci. 2013, 70, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Cave, I.D. The longitudinal Young’s modulus of Pinus radiata. Wood Sci. Technol. 1969, 3, 40–48. [Google Scholar] [CrossRef]
- Bendtsen, B.A.; Senft, J. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cottonwood and loblolly pine. Wood Fiber Sci. 1986, 18, 23–38. [Google Scholar]
- Romagnoli, M.; Cavalli, D.; Spina, S. Wood quality of chestnut: Relationship between ring width, specific gravity, and physical and mechanical properties. BioResources 2014, 9, 1132–1147. [Google Scholar] [CrossRef]
- Jeong, G.Y.; Zink-Sharp, A.; Hindman, D.P. Tensile properties of earlywood and latewood from loblolly pine (Pinus taeda) using digital image correlation. Wood Fiber Sci. 2009, 41, 51–63. [Google Scholar]
- Kretschmann, D.E.; Cramer, S.M.; Lakes, R.; Schmidt, T. Selected mesostructure properties in loblolly pine from Arkansas plantations. Charact. Cellul. Cell Wall 2006, 12, 149–170. [Google Scholar]
- Roszyk, E. The effect of ultrastructure and moisture content on mechanical parameters of pine wood (Pinus sylvestris L.) upon tensile stress along the grains. Turk. J. Agric. For. 2014, 38, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.W.; Juichi, T.; Jang, S.S. Mechanical behaviour of earlywood and latewood under longitudinal compression load. J. Korean Wood Sci. Technol. 2001, 29, 76–83. [Google Scholar]
- Rao, R.V.; Aebischer, D.P.; Denne, M.P. Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J. 1997, 18, 127–138. [Google Scholar] [CrossRef]
- Büyüksarı, Ü.; As, N.; Dündar, T. Mechanical properties of earlywood and latewood sections of Scots pine wood. BioResources 2017, 12, 4004–4012. [Google Scholar] [CrossRef] [Green Version]
- GB/T 1929-2009; Method of Logs Sawing and Test Specimens Selection for Physical and Mechanical Tests of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1933-2009; Method of Determination of the Density of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1932-2009; Method of Determination of the Shrinkage of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1936.2-2009; Method for Determination of the Modulus of Elasticity in Static Bending of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1936.1-2009; Method of Testing in Bending Strength of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1940-2009; Method of Testing in Tough of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- GB/T 1938-2009; Method of Testing in Tensile Strength Parallel to Grain of Wood. China Quality and Standards Publishing: Beijing, China, 2009.
- Shupe, T.F.; Hse, C.Y.; Choong, E.T.; Groom, L.H. Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly pine stands. J. Wood Fiber Sci. 1997, 29, 91–97. [Google Scholar]
- Kretschmann, D.E. The influence of juvenile wood content on shear parallel, compression, and tension perpendicular to grain strength and mode I fracture toughness of loblolly pine at various ring orientation. For. Prod. J. 2008, 58, 89–96. [Google Scholar]
- Barnett, J.R.; Bonham, V.A. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 2004, 79, 461–472. [Google Scholar] [CrossRef]
- Alteyrac, J.; Cloutier, A.; Zhang, S.Y. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) BSP) at different stand densities and sampling heights. Wood Sci. Technol. 2006, 40, 124–138. [Google Scholar] [CrossRef]
- Eder, M.; Jungnikl, K.; Burgert, I. A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees 2009, 23, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Kiaei, M. Anatomical, physical, and mechanical properties of eldar pine (Pinus eldarica Medw.) grown in the Kelardasht region. Turk. J. Agric. For. 2001, 35, 31–42. [Google Scholar]
- Eliza, K.; Kozakiewicz, P.; Buraczyk, W.; Szeligowski, H.; Lachowicz, H. The Technical Quality of Wood of Scots Pine (Pinus sylvestris L.) of Diverse Genetic Origin. Forests 2021, 12, 1–10. [Google Scholar]
- Gašparíkm, M.; Gaff, M.; Šafaříková, L.; Vallejo, C.R.; Svoboda, T. Impact Bending Strength and Brinell Hardness of Densified Hardwoods. Bioresources 2016, 11, 8638–8652. [Google Scholar]
- Pazos, G.B.; Morales, R.P.Z.; Candelaria, V.R.O.; Báez, A.G.; Salazar, J.A.H. Correlación de los resultados de impacto o tenacidad de 16 maderas mexicanas utilizando dos métodos de prueba. Madera Bosques 2003, 9, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Christoforo, A.L.; Almeida, D.H.D.; Varanda, L.D.; Panzera, T.H.; Lahr, F.A. Estimation of wood toughness in brazilian tropical tree species. Eng. Agrícola 2020, 40, 232–237. [Google Scholar] [CrossRef]
Properties | Size (R × T × L) (mm) | Quantity | National Reference Standard |
---|---|---|---|
Air-dry Density | 20 × 20 × 20 | 109 | GB/T1933-2009 |
Dry Shrinkage | 20 × 20 × 20 | 109 | GB/T 1932-2009 |
Modulus of Elasticity | 20 × 20 × 300 | 196 | GB/T 1936.2-2009 |
Modulus of Rupture | 20 × 20 × 300 | 105 | GB/T 1936.1-2009 |
Impact Bending Strength | 20 × 20 × 300 | 83 | GB/T 1940-2009 |
Longitudinal Tensile Strength | 20 × 20 × 370 | 131 | GB/T 1938-2009 |
Group | MOE | MOR | IBS | UTS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RW (mm) | Quantity | Mean (MPa) | CV (%) | RW (mm) | Quantity | Mean (Mpa) | CV(%) | RW (mm) | Quantity | Mean (kJ/m2) | CV (%) | RW (mm) | Quantity | Mean (Mpa) | CV (%) | ||
RW class | R1 | 1.80 | 49 | 12.92 | 17.18 | 1.83 | 23 | 93.85 | 14.50 | 1.83 | 26 | 57.55 | 27.28 | 1.87 | 34 | 107.58 | 23.48 |
R2 | 2.76 | 52 | 11.53 | 18.75 | 2.81 | 33 | 83.53 | 17.12 | 2.75 | 15 | 42.17 | 28.94 | 2.86 | 38 | 99.02 | 33.17 | |
R3 | 3.72 | 60 | 11.92 | 18.67 | 3.77 | 27 | 83.63 | 13.14 | 3.71 | 29 | 49.93 | 49.23 | 3.71 | 43 | 109.40 | 31.15 | |
R4 | 4.85 | 20 | 11.02 | 25.86 | 4.85 | 12 | 86.15 | 39.53 | 4.84 | 8 | 37.71 | 51.98 | 4.89 | 11 | 89.54 | 33.80 | |
R5 | 6.14 | 11 | 8.83 | 18.29 | 6.00 | 8 | 65.11 | 15.95 | 6.50 | 3 | 46.16 | 67.37 | 6.33 | 5 | 92.55 | 30.88 | |
LW Percentage class | L1 | 12.91 | 53 | 10.34 | 22.74 | 12.22 | 33 | 75.39 | 29.93 | 14.06 | 20 | 42.94 | 55.56 | 13.36 | 36 | 91.62 | 27.44 |
L2 | 19.12 | 38 | 11.91 | 17.21 | 19.19 | 22 | 86.95 | 12.85 | 19.12 | 12 | 46.75 | 36.30 | 19.20 | 38 | 98.12 | 28.22 | |
L3 | 22.96 | 59 | 12.57 | 17.20 | 22.92 | 28 | 89.99 | 16.44 | 22.99 | 31 | 51.28 | 43.31 | 22.79 | 39 | 108.42 | 30.07 | |
L4 | 26.97 | 27 | 12.50 | 17.74 | 26.53 | 13 | 89.37 | 17.97 | 27.37 | 14 | 56.45 | 23.59 | 26.64 | 13 | 120.74 | 24.42 | |
L5 | 32.91 | 19 | 12.27 | 22.24 | 32.06 | 9 | 92.29 | 6.76 | 31.90 | 6 | 52.72 | 26.53 | 32.29 | 5 | 149.42 | 23.37 |
Properties | Linear Fitting Equation | R2 |
---|---|---|
MOE | 0.88 | |
0.56 | ||
MOR | 0.90 | |
0.80 | ||
UTS | 0.59 | |
0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, D.; Chu, J.; Jiang, J. Effect of Growth Ring Width and Latewood Content on Selected Physical and Mechanical Properties of Plantation Japanese Larch Wood. Forests 2022, 13, 797. https://doi.org/10.3390/f13050797
Wang S, Chen D, Chu J, Jiang J. Effect of Growth Ring Width and Latewood Content on Selected Physical and Mechanical Properties of Plantation Japanese Larch Wood. Forests. 2022; 13(5):797. https://doi.org/10.3390/f13050797
Chicago/Turabian StyleWang, Sidong, Dongsheng Chen, Jiangyi Chu, and Jinghui Jiang. 2022. "Effect of Growth Ring Width and Latewood Content on Selected Physical and Mechanical Properties of Plantation Japanese Larch Wood" Forests 13, no. 5: 797. https://doi.org/10.3390/f13050797
APA StyleWang, S., Chen, D., Chu, J., & Jiang, J. (2022). Effect of Growth Ring Width and Latewood Content on Selected Physical and Mechanical Properties of Plantation Japanese Larch Wood. Forests, 13(5), 797. https://doi.org/10.3390/f13050797