Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Treatment
2.2. Physical Tests
2.2.1. Colour Analysis
2.2.2. Contact Angle Measurements
2.2.3. Dynamic Vapour Sorption (DVS) Analysis
2.3. Mechanical Tests
2.3.1. Mechanical Performance Tests
2.3.2. High Energy Multiple Impact (HEMI) Test
2.4. Chemical Tests
2.4.1. Volatile Organic Compound (VOC) Analysis
2.4.2. Infrared Spectroscopy
2.5. Effects against Biological Deterioration Tests
2.5.1. Resistance to Fungal Decay
2.5.2. Efficacy against Subterranean Termites
2.6. Statistical Analysis
3. Results and Discussion
3.1. Weight Uptakes
3.2. Results from Physical Tests
3.2.1. Colour Changes
3.2.2. Contact Angle Measurements
3.2.3. Dynamic Vapour Sorption (DVS)
3.3. Mechanical Testing
3.3.1. Mechanical Performance Testing
3.3.2. HEMI Tests
3.4. Chemical Tests
3.4.1. VOC Analysis
3.4.2. Infrared Spectrometry
3.5. Biological Efficacy
3.5.1. Effects against Fungal Decay
3.5.2. Termite Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, M.G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingleye, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Hill, C.; Curling, S.; Ormondroyd, G.; Xie, Y. The water vapour sorption behaviour of acetylated birch wood: How acetylation affects the sorption isotherm and accessible hydroxyl content. J. Mater. Sci. 2014, 49, 2362–2371. [Google Scholar] [CrossRef]
- Hauptmann, M.; Gindl-Altmutter, W.; Hansmann, C.; Bacher, M.; Rosenau, T.; Liebner, F.; D’Amico, S.; Schwanninger, M. Wood modification with tricine. Holzforschung 2015, 69, 985–991. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications; Firenze University Press: Florence, Italy, 2019; ISBN 978-88-6453-970-6. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies. Principles, Sustainability, and the Need for Innovation; CRC Press: Cambridge, UK, 2021; ISBN 9781138491779. [Google Scholar]
- Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R.A. Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine. Dry. Technol. 2017, 36, 537–544. [Google Scholar] [CrossRef]
- Korkut, S.; Korkut, D.S.; Kocaefe, D.; Elustondo, D.; Bajraktari, A.; Ҫakıcıer, N. Effect of thermal modification on the properties of narrow-leaved ash and chestnut. Ind. Crops Prod. 2012, 35, 287–294. [Google Scholar] [CrossRef]
- González-Penã, M.M.; Curling, S.F.; Hale, M.D.C. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degrad. Stab. 2009, 94, 2184–2193. [Google Scholar] [CrossRef]
- González-Peña, M.M.; Hale, M.D.C. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 2009, 63, 385–393. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Jones, D. The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. Holzforschung 1996, 50, 457–462. [Google Scholar] [CrossRef]
- Jebrane, M.; Harper, D.; Labbe, N.; Sebe, G. Comparative determination of the grafting distribution and viscoelastic properties of wood blocks acetylated by vinyl acetate or acetic anhydride. Carbohydr. Polym. 2011, 84, 1314–1320. [Google Scholar] [CrossRef]
- Marfo, E.D.; Wereko, E.Y.; Larbi, K.O. Chemical modification of the tropical hardwood species, Celtis mildbraedii (ESA FUFUO), to improve its durability. J. Wood Chem. Technol. 2017, 38, 51–56. [Google Scholar] [CrossRef]
- Kumar, A.; Richter, J.; Tywoniak, J.; Hajek, P.; Adamopoulos, S.; Šegedin, U.; Petrič, M. Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung 2018, 72, 45–56. [Google Scholar] [CrossRef]
- Gérardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M. Acetylation of Wood—A Review. Int. J. Lignocellul. Prod. 2014, 1, 1–27. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Popescu, M.-C.; Froidevaux, J.; Navi, P.; Popescu, C.-M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Papadopoulos, A.N.; Payne, D. Chemical modification employed as a means of probing the cell-wall micropore of pine sapwood. Wood Sci. Technol. 2004, 37, 475–488. [Google Scholar] [CrossRef]
- Özmen, N.; Çetin, N.S.; Tingaut, P.; Sèbe, G. A new route for the functionalisation of wood through transesterification reactions. Eur. Polym. J. 2006, 42, 1617–1624. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification—Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: A review. Wood Sci. Technol. 2004, 37, 339–348. [Google Scholar] [CrossRef]
- Ames, J.M. Applications of the Maillard reaction in the food industry. Food Chem. 1998, 62, 431–439. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2001, 11, 340–346. [Google Scholar] [CrossRef]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins formed by Maillard reaction in food and their biological activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y. Activity of melanoidins from different sugar/amino acid model systems: Influence of the enantiomer type. Amino Acids 1999, 36, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Peeters, K.; Larnøy, E.; Kutnar, A.; Hill, C.A.S. An examination of the potential for the use of the Maillard reaction to modify wood. Int. Wood Prod. J. 2018, 9, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Hauser, C.; Müller, U.; Sauer, T.; Augner, K.; Pischetsrieder, M. Maillard reaction products as antimicrobial components for packaging films. Food Chem. 2014, 145, 608–613. [Google Scholar] [CrossRef]
- Mohebby, B. Application of ATR Infrared Spectroscopy in Wood Acetylation. J. Agric. Sci. Technol. 2008, 10, 253–259. [Google Scholar]
- González-Penã, M.M.; Hale, M.D.C. Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci. Technol. 2011, 45, 83–102. [Google Scholar] [CrossRef]
- Ferraz, A.U.; Baeza, J.; Rodrigues, J.; Freer, J. Estimating chemical composition of biodegraded pine and eucalyptus by DRIFT spectroscopy and multivariate analysis. Bioresour. Technol. 2000, 74, 201–212. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem. J. 2010, 95, 377–387. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 2011, 48, 667–675. [Google Scholar] [CrossRef]
- Tolvaj, L.; Popescu, C.-M.; Molnar, Z.; Preklet, E. Dependence of the air relative humidity and temperature on the photodegradation processes of beech and spruce wood species. BioResourses 2016, 11, 296–305. [Google Scholar]
- Rep, G.; Pohleven, F.; Košmerl, S. Development of industrial kiln for thermal wood modification by a procedure with an initial vacuum and commercialisation of modified Silvapro wood. In Proceedings of the Sixth European Conference on Wood Modification, Ljubljana, Slovenia, 17–18 September 2012; Jones, D., Militz, H., Petrič, M., Pohleven, F., Humar, H., Pavlič, M., Eds.; University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology: Ljubljana, Slovenia; pp. 11–17. [Google Scholar]
- CEN. EN 310:1993; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardisation: Brussels, Belgium, 1993.
- ASTM D1037-99; Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM: West Conshohocken, PA, USA, 1999.
- CEN. EN 1534:2020; Wood Flooring and Parquet. Determination of Resistance to Indentation. Test Method. European Committee for Standardisation: Brussels, Belgium, 2020.
- Rapp, A.O.; Brischke, C.; Welzbacher, C.R. Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: A mechanical test for quality control of thermally modified wood. Holzforschung 2006, 60, 64–70. [Google Scholar] [CrossRef]
- CEN. EN ISO 5223:2015; Test Sieves for Cereals. European Committee for Standardisation: Brussels, Belgium, 2015.
- CEN. EN 113e; Wood Preservatives—Test Method for Determining the Protective Effectiveness against Wood-Destroying Basidiomycetes. Determination of Toxic Values, Volume 28. European Committee for Standardisation: Brussels, Belgium, 2006.
- CEN. EN 84; Wood Preservatives—Accelerated Ageing of Treated Wood Prior to Biological Testing—Leaching Procedure. European Committee for Standardisation: Brussels, Belgium, 2002.
- CEN. EN 117:2012; Wood Preservatives. Determination of Toxic Values against Reticulitermes Species (European termites) (Laboratory Method). European Committee for Standardisation: Brussels, Belgium, 2012.
- Esteves, B.; Ribeiro, F.; Cruz-Lopes, L.; Ferreira, J.; Domingos, I.; Duarte, M.; Duarte, S.; Nunes, L. Combined treatment by densification and heat treatment of maritime pine wood. Wood Res. 2017, 62, 373–388. [Google Scholar]
- Humar, M.; Repič, R.; Kržišnik, D.; Lesar, B.; Cerc Korošec, R.; Brischke, C.; Emmerich, L.; Rep, G. Quality Control of Thermally Modified Timber Using Dynamic Vapor Sorption (DVS) Analysis. Forests 2020, 11, 666. [Google Scholar] [CrossRef]
- Frederiksson, M.; Thybring, E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 2018, 25, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Brischke, C.; Rapp, A.O.; Welzbacher, C.R. High-energy multiple impact (HEMI)–test Part 1: A new tool for quality control of thermally modified timber. In Proceedings of the 37th Annual Conference, International Research Group on Wood Protection, Tromsø, Norway, 18–22 June 2006. IRG/WP 06-20346. [Google Scholar]
- Welzbacher, C.R.; Brischke, C.; Rapp, A.O. High-energy multiple impact (HEMI)–test—Part2: A mechanical test for the detection of fungal decay. In Proceedings of the 37th Annual Conference, International Research Group on Wood Protection, Tromsø, Norway, 18–22 June 2006. IRG/WP 06-20339. [Google Scholar]
- Popescu, C.-M.; Jones, D.; Kržišnik, D.; Humar, M. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT–IR spectroscopy and chemometric methods. J. Mol. Struct. 2020, 1200, 127133. [Google Scholar] [CrossRef]
- Mayes, D.; Oksanen, O. ThermoWood Handbook; Finnish ThermoWood Association: Helsinki, Finland, 2003. [Google Scholar]
- Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. Improvement of the durability of heat-treated wood against termites. Maderas. Cienc. Tecnol. 2017, 19, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.; Nunes, L.; Kržišnik, D.; Humar, M.; Jones, D. Influence of Zwitterionic Buffer Effects with Thermal Modification Treatments of Wood on Symbiotic Protists in Reticulitermes grassei Clément. Insects 2021, 12, 139. [Google Scholar] [CrossRef]
Species | Code | Treatment Description |
---|---|---|
Beech | B_HT | Heat treatment only |
B_Bi | Bicine pre-treatment and drying | |
B_Bi_HT | Bicine pre-treatment and heat treatment | |
B_Tri | Tricine pre-treatment and drying | |
B_Tri_HT | Tricine pre-treatment and heat treatment | |
B_C | Control | |
Spruce | S_HT | Heat treatment only |
S_Bi | Bicine pre-treatment and drying | |
S_Bi_HT | Bicine pre-treatment and heat treatment | |
S_Tri | Tricine pre-treatment and drying | |
S_Tri_HT | Tricine pre-treatment and heat treatment | |
S-C | Control |
B_C | B_HT | B_Bi | B_Bi_HT | B_Tri | B_Tri_HT | |
---|---|---|---|---|---|---|
L* (s.d.) | 76.00 (2.59) | 64.94 (0.96) | 64.86 (0.96) | 63.14 (1.36) | 64.72 (2.22) | 52.96 (3.26) |
a* (s.d.) | 7.68 (0.18) | 6.90 (0.27) | 9.70 (0.27) | 8.02 (0.32) | 7.86 (0.62) | 9.3 (0.60) |
b* (s.d.) | 8.90 (0.22) | 7.68 (0.19) | 10.20 (0.27) | 8.20 (0.27) | 7.94 (0.37) | 8.40 (0.22) |
ΔL* | −11.06 | −11.14 | −12.86 | −11.28 | −23.04 | |
Δa* | −0.78 | 2.02 | 0.34 | 0.18 | 1.66 | |
Δb* | −1.22 | 1.30 | −0.70 | −0.96 | −0.50 | |
ΔL* (%) | −14.55 | −14.66 | −16.92 | −14.84 | −30.32 | |
Δa* (%) | −10.16 | 26.30 | 4.43 | 2.34 | 21.61 | |
Δb* (%) | −13.71 | 14.61 | −7.87 | −10.79 | −5.62 | |
ΔE* | 11.15 | 11.40 | 12.88 | 11.32 | 23.11 |
S_C | S_HT | S_Bi | S_Bi_HT | S_Tri | S_Tri_HT | |
---|---|---|---|---|---|---|
L* (s.d.) | 84.46 (1.08) | 72.06 (1.33) | 75.20 (1.96) | 54.04 (1.61) | 83.26 (0.22) | 68.80 (1.61) |
a* (s.d.) | 6.90 (0.45) | 8.20 (0.27) | 8.40 (0.55) | 9.52 (0.38) | 7.00 (0.22) | 8.20 (0.41) |
b* (s.d.) | 10.78 (0.38) | 11.80 (0.35) | 13.60 (0.42) | 10.98 (0.18) | 13.06 (0.40) | 13.02 (0.40) |
ΔL* | −12.40 | −9.26 | −30.42 | −1.20 | −15.66 | |
Δa* | 1.30 | 1.50 | 2.62 | 0.10 | 1.30 | |
Δb* | 1.02 | 2.82 | 0.20 | 2.28 | 2.24 | |
ΔL* (%) | −14.7 | −11.0 | −36.0 | −1.40 | −18.5 | |
Δa* (%) | 18.8 | 21.7 | 38.0 | 1.40 | 19.1 | |
Δb* (%) | 9.50 | 26.20 | 1.90 | 21.20 | 6.90 | |
ΔE* | 12.51 | 9.80 | 30.53 | 2.58 | 15.73 |
Time (Seconds) | |||||||
---|---|---|---|---|---|---|---|
1 s | 10 s | 20 s | 30 s | 45 s | 60 s | ||
Beech | B_C | 70.71 | 57.45 | 53.93 | 51.47 | 48.19 | 45.97 |
B_HT | 99.78 | 90.17 | 84.49 | 81.66 | 78.07 | 75.28 | |
B_Bi | 87.04 | 70.98 | 65.27 | 61.53 | 57.80 | 55.80 | |
B_Bi_HT | 101.83 | 86.24 | 79.78 | 75.70 | 71.73 | 68.95 | |
B_Tri | 99.13 | 83.06 | 77.64 | 75.31 | 72.26 | 70.43 | |
B_Tri_HT | 113.17 | 102.75 | 96.96 | 93.04 | 89.23 | 86.50 | |
Spruce | S_C | 106.05 | 99.87 | 97.99 | 96.31 | 94.74 | 93.86 |
S_HT | 112.79 | 110.24 | 109.55 | 109.08 | 108.33 | 107.69 | |
S_Bi | 86.16 | 69.90 | 63.04 | 59.79 | 58.04 | 56.64 | |
S_Bi_HT | 102.58 | 87.81 | 82.87 | 79.85 | 76.88 | 75.44 | |
S_Tri | 102.53 | 86.50 | 81.27 | 77.93 | 74.42 | 72.39 | |
S_Tri_HT | 108.10 | 101.79 | 99.16 | 97.88 | 96.47 | 95.16 |
Beech | EMC95% RH (%) | Spruce | EMC95% RH (%) |
---|---|---|---|
B_C | 23.40 | S_C | 23.79 |
B_HT | 19.98 | S_HT | 19.62 |
B_Bi | 26.95 | S_Bi | 22.96 |
B_Bi_HT | 25.36 | S_Bi_HT | 20.92 |
B_Tri | 24.54 | S_Tri | 20.41 |
B_Tri_HT | 21.58 | S_Tri_HT | 20.86 |
Three-Point Bending Test | Compression Test | |||||
---|---|---|---|---|---|---|
Group | MOE (N/mm2) | MOR (N/mm2) | MOE (N/mm2) | Fm (N/mm2) | HB (N/mm2) | |
Beech | B_C | 16,030 (1213) | 182.70 (18.68) | 20,100 (1120) | 99.73 (5.40) | 30.06 (3.45) |
B_HT | 14,750 (1732) | 162.60 (34.63) | 19,100 (6140) | 105.43 (7.77) | 29.73 (4.83) | |
B_Bi | 15,800 (812) | 178.44 (24.74) | 7800 (920) | 108.37 (4.68) | 30.18 (4.66) | |
B_Bi_HT | 15,956 (1138) | 159.78 (21.90) | 7200 (920) | 106.44 (6.50) | 35.29 (5.52) | |
B_Tri | 16,120 (2420) | 175.40 (40.32) | 7300 (1060) | 108.24 (5.01) | 35.45 (4.69) | |
B_Tri_HT | 14,790 (1931) | 140.21 (34.31) | 8100 (740) | 110.84 (9.41) | 30.84 (4.83) | |
Spruce | S_C | 14,410 (1799) | 106.87 (9.72) | 19,400 (970) | 88.73 (11.61) | 16.77 (1.92) |
S_HT | 12,019 (4761) | 93.66 (25.51) | 21,000 (1250) | 88.49 (12.38) | 16.74 (2.37) | |
S_Bi | 12,040 (935) | 97.72 (15.10) | 18,600 (1710) | 96.39 (10.35) | 17.14 (2.97) | |
S_Bi_HT | 13,440 (1751) | 93.95 (9.62) | 19,000 (1490) | 85.70 (10.10) | 15.77 (2.30) | |
S_Tri | 12,823 (1860) | 92.93 (32.09) | 8000 (1250) | 88.73 (7.31) | 20.18 (2.39) | |
S_Tri_HT | 13,805 (1756) | 87.39 (26.73) | 8400 (520) | 97.98 (7.77) | 19.35 (2.18) |
B_C | B_HT | B_Bi | B_Bi_HT | B_Tri | B_Tri_HT | |
---|---|---|---|---|---|---|
F (s.d.) | 0.89 (0.23) | 1.55 (0.18) | 0.82 (0.22) | 1.82 (0.69) | 1.41 (0.64) | 1.57 (0.62) |
I (s.d.) | 55.63 (2.39) | 50.44 (1.80) | 57.24 (1.93) | 53.87 (4.10) | 55.37 (3.85) | 55.22 (2.64) |
RIM (s.d.) | 88.24 (0.72) | 86.45 (0.43) | 88.70 (0.41) | 87.10 (1.41) | 87.79 (1.35) | 87.63 (0.90) |
S_C | S_HT | S_Bi | S_Bi_HT | S_Tri | S_Tri_HT | |
---|---|---|---|---|---|---|
F (s.d.) | 2.49 (0.66) | 3.65 (0.60) | 3.08 (0.68) | 3.79 (0.98) | 4.04 (1.13) | 5.63 (1.26) |
I (s.d.) | 28.65 (4.55) | 27.86 (1.73) | 29.15 (4.68) | 24.32 (2.61) | 29.64 (4.64) | 25.86 (3.94) |
RIM (s.d.) | 80.30 (1.33) | 79.22 (0.66) | 79.98 (1.48) | 78.24 (1.17) | 79.38 (1.86) | 77.24 (1.74) |
VOC Detected | Formula | Mol. Wt. | B_Bi | B_Bi_HT | B_Tri | B_Tri_HT | S_Bi | S_Bi_HT | S_Tri | S_Tri_HT |
---|---|---|---|---|---|---|---|---|---|---|
Formic Acid | CH2O2 | 46.03 | √ | |||||||
Acetaldehyde | C2H4O | 44.05 | √ | √ | √ | √ | √ | √ | √ | √ |
Tetraacetyl-d-xylonic nitrile | C14H17NO9 | 343.29 | √ | √ | √ | √ | ||||
3N-(7-acetamido-[1,2,4]triazolo[4,3-b][1,2,4]triazol-3-yl)acetamide | C7H9N7O2 | √ | √ | √ | ||||||
Deoxyspergualin | C17H37N7O3 | 387.50 | √ | √ | √ | |||||
Tetrahydro-4h-pyran-4-ol | C5H10O2 | 102.13 | √ | √ | √ | |||||
Oxiranemethanol | C3H6O2 | 74.08 | √ | √ | √ | √ | √ | √ | √ | √ |
O-methylisourea | C2H6N2O | 74.08 | √ | √ | √ | √ | √ | √ | √ | √ |
Propane | C3H8 | 44.10 | √ | √ | √ | √ | √ | √ | √ | √ |
Wavenumber (cm−1) | Peak Identification |
---|---|
1740 | Carbonyl/carboxyl stretching vibration |
1647 | Carbonyl/carboxyl stretching vibration |
1493 | Methyl or methylene deformation vibration |
1465 | Methyl or methylene deformation vibration |
1422 | Methyl or methylene deformation vibration |
1402 | OH stretching |
1317 | OH deformation |
1267 | C-N stretching vibration in amine groups |
1208 | C-N stretching vibration in amine groups |
1166 | C-O groups stretching vibration |
1118 | C-O groups stretching vibration |
1074 | C-O groups stretching vibration |
1045 | C-O groups stretching vibration |
1024 | C-O groups stretching vibration |
_HT | _Bi | _Bi_HT | _Tri | _Tri_HT | S_C | ||
---|---|---|---|---|---|---|---|
Heat treatment | _HT | x | |||||
Bicine and oven dry | _Bi | x | |||||
Bicine, oven dry and heat treatment | _Bi_HT | 0.028 | x | ||||
Tricine and oven dry | _Tri | 0.012 | x | ||||
Tricine, oven dry and heat treatment | _Tri_HT | x | |||||
Spruce control | S_C | 0.035 | 0.015 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.; Kržišnik, D.; Hočevar, M.; Zagar, A.; Humar, M.; Popescu, C.-M.; Popescu, M.-C.; Brischke, C.; Nunes, L.; Curling, S.F.; et al. Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine. Forests 2022, 13, 834. https://doi.org/10.3390/f13060834
Jones D, Kržišnik D, Hočevar M, Zagar A, Humar M, Popescu C-M, Popescu M-C, Brischke C, Nunes L, Curling SF, et al. Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine. Forests. 2022; 13(6):834. https://doi.org/10.3390/f13060834
Chicago/Turabian StyleJones, Dennis, Davor Kržišnik, Miha Hočevar, Andreja Zagar, Miha Humar, Carmen-Mihaela Popescu, Maria-Cristina Popescu, Christian Brischke, Lina Nunes, Simon F. Curling, and et al. 2022. "Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine" Forests 13, no. 6: 834. https://doi.org/10.3390/f13060834
APA StyleJones, D., Kržišnik, D., Hočevar, M., Zagar, A., Humar, M., Popescu, C. -M., Popescu, M. -C., Brischke, C., Nunes, L., Curling, S. F., Ormondroyd, G., & Sandberg, D. (2022). Evaluation of the Effect of a Combined Chemical and Thermal Modification of Wood though the Use of Bicine and Tricine. Forests, 13(6), 834. https://doi.org/10.3390/f13060834