Effect of Thermo-Hydro-Mechanical Treatment on Mechanical Properties of Wood Cellulose: A Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Establishment
2.2. Dynamic Simulation
3. Results and Discussion
3.1. Model Characterization
3.1.1. System Energy
3.1.2. Lattice Parameters and Density
3.2. Hydrogen Bond Analysis
3.3. The Molecular Diffusion Coefficient
3.4. End-to-End Distance
3.5. Mechanical Properties
4. Conclusions
- High pressure improves the densification degree of wood. The total number of hydrogen bonds in the system, the number of hydrogen bonds between cellulose chains, and the combined hydrogen bonds of water and cellulose are on the rise, which improves the structural stability of cellulose. Reduced diffusion coefficient of water molecules in the cellulose indicates that high pressure weakens the cracking of the wood caused by the bulk diffusion of moisture.
- The stiffness of the polymer chain can reflect the macroscopic mechanical properties of the material from the microscopic level. The analysis found that the increase in pressure caused the continuous increase in the end-to-end distance of the cellulose chain and the decrease in the degree of curling, which was related to the formation of many hydrogen bonds between the cellulose chains. The increase in the end-to-end distance also means that the stiffness of the cellulose chain increases, indicating that the wood can have better deformation resistance at the macro level.
- The mechanical properties of the water–cellulose model were studied, and the Young’s modulus, shear modulus, Poisson’s ratio, and K/G value were calculated and analyzed. With the increase in the pressure, the Young’s modulus and the shear modulus were in an upward trend, and the increase was very large, which means that the deformation resistance and rigidity of the wood have been greatly improved. Moreover, Poisson’s ratio and K/G value decreased with the increase in pressure, and the toughness of the wood decreased. The pressurized hydrothermal treatment of wood can significantly improve its rigidity and deformation resistance, and what is more, its utilization rate in applications requiring high rigidity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Stamm, A.J.; Burr, H.K.; Kline, A.A. Staybwood—Heat-stabilized wood. Ind. Eng. Chem. 1946, 38, 630–634. [Google Scholar] [CrossRef]
- Mohebby, B.; Ilbeighi, F.; Kazemi-Najafi, S. Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF). Holz Als Roh-Und Werkst. 2008, 66, 213–218. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Shen, Y.; Li, C.; Wang, Y.; Ma, Z.; Sun, W. New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers 2019, 11, 1145. [Google Scholar] [CrossRef] [Green Version]
- Gündüz, G.; Korkut, S.; Korkut, D.S. The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresour. Technol. 2008, 99, 2275–2280. [Google Scholar] [CrossRef]
- Gaff, M.; Kačík, F.; Gašparík, M. Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Compos. Struct. 2019, 216, 80–88. [Google Scholar] [CrossRef]
- Fang, C.-H.; Mariotti, N.; Cloutier, A.; Koubaa, A.; Blanchet, P. Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 2012, 70, 155–163. [Google Scholar] [CrossRef]
- Zhan, T.; Lu, J.; Jiang, J.; Peng, H.; Li, A.; Chang, J. Viscoelastic Properties of the Chinese Fir (Cunninghamia lanceolata) during Moisture Sorption Processes Determined by Harmonic Tests. Materials 2016, 9, 1020. [Google Scholar] [CrossRef] [Green Version]
- Willems, W.; Altgen, M. Hygrothermolytic wood modification. process description and treatment level characterisation. Wood Mater. Sci. Eng. 2019, 15, 213–222. [Google Scholar] [CrossRef]
- Bao, M.; Huang, X.; Jiang, M.; Yu, W.; Yu, Y. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). J. Wood Sci. 2017, 63, 591–605. [Google Scholar] [CrossRef]
- Atalla, R.H.; Vanderhart, D.L. Native cellulose: A composite of two distinct crystalline forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Maple, J.; Hwang, M.-J.; Hagler, A. Molecular modeling urea-and melamine-formaldehyde resins. 1. A force field for urea and melamine. J. Phys. Chem. 1995, 99, 5445–5456. [Google Scholar] [CrossRef]
- Du, D.; Tang, C.; Yang, L.; Guo, L.; Qiu, Q. Molecular dynamics simulation on the distribution and diffusion of different sulfides in oil-paper insulation systems. J. Mol. Liq. 2020, 314, 113678. [Google Scholar] [CrossRef]
- Zhang, Q.; Bulone, V.; Ågren, H.; Tu, Y. A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 2011, 18, 207–221. [Google Scholar] [CrossRef]
- Chen, P.; Nishiyama, Y.; Putaux, J.-L.; Mazeau, K. Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose 2014, 21, 897–908. [Google Scholar] [CrossRef]
- Wang, W.; Ma, W.; Wu, M.; Sun, L. Effect of Water Molecules at Different Temperatures on Properties of Cellulose Based on Molecular Dynamics Simulation. BioResources 2022, 17, 269–280. [Google Scholar] [CrossRef]
- Theodorou, D.N.; Suter, U.W. Detailed molecular structure of a vinyl polymer glass. Macromolecules 1985, 18, 1467–1478. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. J Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1987. [Google Scholar]
- Huang, S.; Sun, Y.; Xu, Y.; Meng, L. Molecular dynamics simulation of the effect of ammonia molecules on the performance of cellulose Iβ. Acta Polym. Sin. 2014, 14, 188–193. [Google Scholar]
- Ewald, P. Evaluation of optical and electrostatic lattice potentials. Ann. Phys. 1921, 64, 253–287. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef] [Green Version]
- Andrea, T.A.; Swope, W.C.; Andersen, H.C. The role of long ranged forces in determining the structure and properties of liquid water. J. Chem. Phys. 1983, 79, 4576–4584. [Google Scholar] [CrossRef]
- Berendsen, H.J.; Postma, J.v.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tu, D.; Chen, C.; Zhou, Q.; Huang, H.; Zheng, Z.; Zhu, Z. A thermal modification technique combining bulk densification and heat treatment for poplar wood with low moisture content. Constr. Build. Mater. 2021, 291, 123395. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Bayani, S.; Militz, H.; Papadopoulos, A.N. Heat treatment of pine wood: Possible effect of impregnation with silver nanosuspension. Forests 2020, 11, 466. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Orszag, S.A. Numerical Analysis of Spectral Methods: Theory and Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1977. [Google Scholar]
- Einstein, A. Zur elektrodynamik bewegter körper. Ann. Phys. 1905, 4, 891–921. [Google Scholar] [CrossRef]
- Du, D.; Tang, C.; Zhang, J.; Hu, D. Effects of hydrogen sulfide on the mechanical and thermal properties of cellulose insulation paper: A molecular dynamics simulation. Mater. Chem. Phys. 2020, 240, 122153. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, Z.; Chen, C.; He, G.; Hao, C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J. Mol. Liq. 2015, 203, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.-J.; Xiang, B.; Yang, L.-J.; Tang, C.; Sun, H.-G. Study on the thermal aging characteristics and bond breaking process of oil-paper insulation in power transformer. In Proceedings of the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 291–296. [Google Scholar]
- Zhang, B.; Zhu, S.; Guo, T. Modern Polymer Science; Beijing Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Flory, P.J.; Volkenstein, M. Statistical Mechanics of Chain Molecules; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Ren, Z.; Guo, R.; Zhou, X.; Bi, H.; Jia, X.; Xu, M.; Wang, J.; Cai, L.; Huang, Z. Effect of amorphous cellulose on the deformation behavior of cellulose composites: Molecular dynamics simulation. RSC Adv. 2021, 11, 19967–19977. [Google Scholar] [CrossRef] [PubMed]
- Sözbir, G.D.; Bektas, I.; Ak, A.K. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas. Cienc. Tecnol. 2019, 21, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, F.; Zhu, S.; Li, H. Effects of high-pressure treatment on poplar wood: Density profile, mechanical properties, strength potential index, and microstructure. BioResources 2017, 12, 6283–6297. [Google Scholar] [CrossRef] [Green Version]
Pressure (MPa) | Cell Parameters (Å) | ||
---|---|---|---|
The Length | The Width | The Height | |
Untreated | 24.86 | 24.86 | 24.86 |
4 | 22.83 | 22.83 | 22.83 |
5.5 | 22.79 | 22.79 | 22.79 |
8 | 22.71 | 22.71 | 22.71 |
12 | 22.69 | 22.69 | 22.69 |
Pressure (MPa) | Density (g/cm3) | ||
---|---|---|---|
Final | Average | Std. Dev. | |
Untreated | 0.979 | 0.978 | 0.020 |
4 | 1.242 | 1.264 | 0.014 |
5.5 | 1.264 | 1.270 | 0.015 |
8 | 1.268 | 1.280 | 0.014 |
12 | 1.285 | 1.288 | 0.013 |
Pressure (MPa) | Number of Hydrogen Bonds | |||
---|---|---|---|---|
Between Cellulose Chains | Between Water Molecular | Between Water–Cellulose | Total | |
Untreated | 39 | 56 | 20 | 115 |
4 | 59 | 134 | 150 | 343 |
5.5 | 62 | 130 | 160 | 352 |
8 | 64 | 128 | 167 | 359 |
12 | 70 | 127 | 173 | 370 |
Pressure (MPa) | k | D | R-Square |
---|---|---|---|
Untreated | 1.9112 | 0.3185 | 0.9993 |
4 | 1.6162 | 0.2694 | 0.9989 |
5.5 | 1.4387 | 0.2398 | 0.9952 |
8 | 0.7320 | 0.1220 | 0.9967 |
12 | 0.2752 | 0.0459 | 0.9983 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, F.; Wang, W. Effect of Thermo-Hydro-Mechanical Treatment on Mechanical Properties of Wood Cellulose: A Molecular Dynamics Simulation. Forests 2022, 13, 903. https://doi.org/10.3390/f13060903
Ouyang F, Wang W. Effect of Thermo-Hydro-Mechanical Treatment on Mechanical Properties of Wood Cellulose: A Molecular Dynamics Simulation. Forests. 2022; 13(6):903. https://doi.org/10.3390/f13060903
Chicago/Turabian StyleOuyang, Feiyu, and Wei Wang. 2022. "Effect of Thermo-Hydro-Mechanical Treatment on Mechanical Properties of Wood Cellulose: A Molecular Dynamics Simulation" Forests 13, no. 6: 903. https://doi.org/10.3390/f13060903
APA StyleOuyang, F., & Wang, W. (2022). Effect of Thermo-Hydro-Mechanical Treatment on Mechanical Properties of Wood Cellulose: A Molecular Dynamics Simulation. Forests, 13(6), 903. https://doi.org/10.3390/f13060903