Using the Auction Price Method to Estimate Payment for Forest Ecosystem Services in Xin’an River Basin in China: A BDM Approach
Abstract
:1. Introduction
2. Methodology
2.1. Sampling and Research Area
2.2. Auction Method
2.2.1. Auction Products
2.2.2. Auction Selection Mechanism
2.2.3. Auction Procedures
2.3. Statistical Modeling
2.3.1. Multivariant Probit (MVP) Model
2.3.2. Variable Definition
3. Results
3.1. Descriptive Statistics
3.2. Bids Prices in Experiments
3.3. Model Analysis
3.3.1. Influence of Farmers’ Characteristics
3.3.2. Influence of Household and Planting Characteristics
3.3.3. Influence of Farmers’ Policy and Ecological Perceptions
4. Discussions, Conclusions and Policy Implications
4.1. Discussions
4.2. Conclusions
4.3. Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jack, B.K.; Leimona, B.; Ferraro, P.J. A Revealed preference approach to estimating supply curves for ecosystem services: Use of auctions to set payments for soil erosion control in Indonesia. Conserv. Biol. 2009, 23, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Muradian, R.; Corbera, E.; Pascual, U.; Kosoy, N.; May, P. Reconciling theory and practice: An alternative conceptual framework for understanding payments for environmental services. Ecol. Econ. 2010, 69, 1202–1208. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Wunder, S.; Ferraro, P.J. Show me the money: Do payments supply environmental services in developing countries? Rev. Environ. Econ. Policy 2010, 4, 254–274. [Google Scholar] [CrossRef]
- Bo, S.; Yue, Z.; Lixiao, Z.; Fan, Z. A top-down framework for cross-regional payments for ecosystem services. J. Clean. Prod. 2018, 182, 238–245. [Google Scholar]
- Isabel, V. Payments for ecosystem services in the context of adaptation to climate change. Ecol. Soc. 2012, 17, 11. [Google Scholar]
- Jindal, R.; Kerr, J.M.; Ferraro, P.J.; Swallow, B.M. Social dimensions of procurement auctions for environmental service contracts: Evaluating tradeoffs between cost-effectiveness and participation by the poor in rural Tanzania. Land Use Policy 2013, 31, 71–80. [Google Scholar] [CrossRef]
- Ingram, J.C.; Wilkie, D.; Clements, T.; Mcnab, R.B.; Foley, C.A.H. Evidence of payments for ecosystem services as a mechanism for supporting biodiversity conservation and rural livelihoods. Ecosyst. Serv. 2014, 7, 10–21. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; Gonza’lez-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Matthies, B.D.; Kalliokoski, T.; Ekholm, T.; Hoen, H.F.; Valsta, L.T. Risk, Reward, and payments for ecosystem services: A portfolio approach to ecosystem services and forestland investment. Ecosyst. Serv. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Dekker, T.; Ojea, E.; Lorenzo-Arribas, A. Dissecting price setting efficiency in Payments for Ecosystem Services: A meta-analysis of payments for watershed services in Latin America. Ecosyst. Serv. 2019, 38, 100961. [Google Scholar] [CrossRef]
- Müller, A.; Olschewski, R.; Unterberger, C. The valuation of forest ecosystem services as a tool for management planning—A choice experiment. J. Environ. Manag. 2020, 271, 111008. [Google Scholar] [CrossRef]
- Roesch-McNally, G.E.; Rabotyagov, S.S. Paying for forest ecosystem services: Voluntary versus mandatory payments. Environ. Manag. 2016, 57, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Rabotyagov, S.S.; Lin, S.J. Small forest landowner preferences for working forest conservation contract attributes: A case of Washington State, USA. J. For. Econ. 2013, 19, 307–330. [Google Scholar] [CrossRef]
- Vedel, S.E.; Jacobsen, J.B.; Thorsen, B.J. Forest owners’ willingness to accept contracts for ecosystem service provision is sensitive to additionality. Ecol. Econ. 2015, 113, 15–24. [Google Scholar] [CrossRef]
- Leimona, B.; Carrasco, L.R. Auction winning, social dynamics and non-compliance in a payment for ecosystem services scheme in Indonesia. Land Use Policy 2017, 63, 632–644. [Google Scholar] [CrossRef]
- Ferguson, I.; Levetan, L.; Crossman, N.; Lauren, B. Financial Mechanisms to Improve the Supply of Ecosystem Services from Privately-Owned Australian Native Forests. Forests 2016, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.C.; Kristensen, N.P.; Liu, S. Coordinated service provision in payment for ecosystem service schemes through adaptive governance. Ecosyst. Serv. 2016, 19, 103–108. [Google Scholar] [CrossRef]
- Tóth, S.F.; Ettl, G.J.; Könnyű, N.; Rabotyagov, S.S.; Rogers, L.W.; Comnick, J.M. ECOSEL: Multi-Objective Optimization to Sell Forest Ecosystem Services. For. Policy Econ. 2013, 35, 73–82. [Google Scholar] [CrossRef]
- Ninan, K.N.; Inoue, M. Valuing Forest Ecosystem Services: What We Know and What We Don’t. Ecol. Econ. 2013, 93, 137–149. [Google Scholar] [CrossRef]
- Roesch-McNally, G.E.; Rabotyagov, S.; Tyndall, J.C.; Ettl, G.; Tóth, S.F. Auctioning the Forest: A Qualitative Approach to Exploring Stakeholder Responses to Bidding on Forest Ecosystem Services. Small Scale For. 2016, 15, 321–333. [Google Scholar] [CrossRef]
- Fujii, H.; Sato, M.; Managi, S. Decomposition Analysis of Forest Ecosystem Services Values. Sustainability 2017, 9, 687. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.; Mahanty, S.; Schreckenberg, K. Examining Equity: A Multidimensional Framework for Assessing Equity in Payments for Ecosystem Services. Environ. Sci. Policy 2013, 33, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Hua, Z.; Yang, X.; Polasky, S.; Daily, G.C. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, A.O.; Mullally, C.; Swisher, M.; Putz, F.E. Forest cover effects of payments for ecosystem services: Evidence from an impact evaluation in Brazil. Ecol. Econ. 2020, 169, 106522. [Google Scholar]
- Palomo, I. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review. Mt. Res. Dev. 2017, 37, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Rabotyagov, S.S.; Tóth, S.F.; Ettl, G.J. Testing the Design Variables of ECOSEL: A Market Mechanism for Forest Ecosystem Services. For. Sci. 2013, 59, 303–321. [Google Scholar] [CrossRef]
- Lundberg, L.; Persson, U.M.; Alpizar, F.; Lindgren, K. Context Matters: Exploring the Cost-Effectiveness of Fixed Payments and Procurement Auctions for PES. Ecol. Econ. 2018, 146, 347–358. [Google Scholar] [CrossRef]
- McGrath, F.L.; Carrasco, L.R.; Leimona, B. How auctions to allocate payments for ecosystem services contracts impact social equity. Ecosyst. Serv. 2017, 25, 44–55. [Google Scholar] [CrossRef]
- Wunder, S.; Börner, J.; Ezzine-de-Blas, D.; Feder, S.; Pagiola, S. Payments for Environmental Services: Past Performance and Pending Potentials. Annu. Rev. Resour. Econ. 2020, 12, 209–234. [Google Scholar] [CrossRef]
- Van Hecken, G.; Bastiaensen, J.; Windey, C. Towards a Power-Sensitive and Socially-Informed Analysis of Payments for Ecosystem Services (PES): Addressing the Gaps in the Current Debate. Ecol. Econ. 2015, 120, 117–125. [Google Scholar] [CrossRef]
- Farley, J.; Costanza, R. Payments for ecosystem services: From local to global. Ecol. Econ. 2010, 69, 2060–2068. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Etchart, N.; Freire, J.L.; Holland, M.B.; Jones, K.W.; Naughton-Treves, L. What Happens When the Money Runs out? Forest Outcomes and Equity Concerns Following Ecuador’s Suspension of Conservation Payments. World Dev. 2020, 136, 105124. [Google Scholar] [CrossRef]
- Phan, T.-H.D.; Brouwer, R.; Hoang, L.P.; Davidson, M.D. A comparative study of transaction costs of payments for forest ecosystem services in Vietnam. For. Policy Econ. 2017, 80, 141–149. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Analysis of Multivariate Probit Models. Biometrika 1998, 85, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Bingham, L.R.; Riccardo, R.D.; José, G.B. Ecosystem Services Auctions: The Last Decade of Research. Forests 2021, 12, 578. [Google Scholar] [CrossRef]
- Persson, U.M.; Alpízar, F. Conditional cash transfers and payments for environmental services—A conceptual framework for explaining and judging differences in outcomes. World Dev. 2013, 43, 124–137. [Google Scholar] [CrossRef]
- Brown, L.K.; Troutt, E.; Edwards, C.; Gray, B.; Wanjing, H. A uniform price auction for conservation easements in the Canadian prairies. Environ. Resour. Econ. 2011, 50, 49–60. [Google Scholar] [CrossRef]
- Naime, J.; Mora, F.; Sánchez-Martínez, M.; Arreola, F.; Balvanera, P. Economic valuation of ecosystem services from secondary tropical forests: Trade-offs and implications for policy making. For. Ecol. Manag. 2020, 473, 118294. [Google Scholar] [CrossRef]
- Oh, C.O.; Lee, S.; Kim, H.N. Economic Valuation of Conservation of Inholdings in Protected Areas for the Institution of Payments for Ecosystem Services. Forests 2019, 10, 1122. [Google Scholar] [CrossRef] [Green Version]
- Richards, R.C.; Petrie, R.; Christ, J.B.; Ditt, E.; Kennedy, C.J. Farmer preferences for reforestation contracts in Brazil’s Atlantic Forest. For. Policy Econ. 2020, 118, 102235. [Google Scholar] [CrossRef]
- Ranjan, R. Protecting warming lakes through climate-adaptive PES mechanisms. Ecol. Econ. 2020, 177, 106782. [Google Scholar] [CrossRef]
- Davis, R.K. Recreation Planning as An Economic Problem. Nat. Resour. J. 1963, 3, 239–249. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Cane, V.; Luce, R.D. Individual Choice Behavior: A Theoretical Analysis. J. R. Stat. Soc. Ser. A (Gen.) 1960, 123, 486–488. [Google Scholar] [CrossRef]
- Mcfadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers of Econometrics; Zarembka, P.E., Ed.; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Louviere, J.; Hensher, D.A. On the design and analysis of simulated choice or allocation experiments in travel choice modeling. Transp. Res. Rec. 1982, 890, 11–17. [Google Scholar]
- Louviere, J.J.; Woodworth, G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data. J. Mark. Res. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Vickrey, W. Counter speculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Becker, G.M.; DeGroot, M.H.; Marschak, J. Measuring utility by a single-response sequential method. Behav. Sci. 1964, 9, 226–232. [Google Scholar] [CrossRef]
- Shogren, J.F.; Margolis, M.; Koo, C.; List, J.A. A random nth price auction. J. Econ. Behav. Organ. 2001, 46, 409–421. [Google Scholar] [CrossRef]
- Lusk, J.L.; Alexander, C.; Rousu, M.C. Designing Experimental Auctions for Marketing Research: The Effect of Values, Distributions and Mechanisms on Incentives for Truthful Bidding. Rev. Mark. Sci. 2011, 5, 1546–5616. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.J.; Polasky, S. An auction mechanism for the optimal provision of ecosystem services under climate change. J. Environ. Econ. Manag. 2018, 92, 20–34. [Google Scholar] [CrossRef]
- Sharma, B.P.; Cho, S.H.; Yu, T.E. Designing cost-efficient payments for forest-based carbon sequestration: An auction-based modeling approach. For. Policy Econ. 2019, 104, 182–194. [Google Scholar] [CrossRef]
Woodland Levels | Woodland Slope | Soil Fertility | Irrigation Conditions | Transport Condition | Variety |
---|---|---|---|---|---|
Low quality forest land | Steeper (>25°) | Thin soil layer, low fertility | No water around. | Country road (for motorcycles and tricycles) | Poor tea varieties |
Middle quality forest land | Stee (15° ≤ slope ≥ 25°) | Low fertility | The water source is far away but there are water diversion facilities. | Close to township roads (for small cars) | Tea varieties in general |
High quality forest land | Gentle (<15°) | Thick soil layer, high fertility | Close to the water source (within 100 m) | Close to the highway (for large trucks) | Good tea varieties |
Variable | Definition | Mean | Std. Dev. | |
---|---|---|---|---|
Dependent variable | ||||
Higher than average price for low quality forest land | 1 = the bid higher than the average price; 0 = otherwise | 0.338 | 0.474 | |
Higher than average price for medium quality forest land | 1 = the bid higher than the average price; 0 = otherwise | 0.342 | 0.475 | |
Higher than average price for high quality forest land | 1 = the bid higher than the average price; 0 = otherwise | 0.272 | 0.446 | |
Independent variable | ||||
Individual characteristics | Gender | 1 = male, 0 = female | 0.636 | 0.482 |
Age | 1 = Over 40 years old, 0 = otherwise | 0.952 | 0.214 | |
Education | 1 = High School and above, 0 = otherwise | 0.114 | 0.318 | |
Health | 1 = healthy; 0 = chronic diseases, major diseases and disabilities | 0.676 | 0.469 | |
Occupation | 1 = farmer, 0 = otherwise | 0.809 | 0.394 | |
Family characteristics | Income | Continuous variable/1000 yuan | 10.889 | 9.649 |
Household size | Total household size, continuous type variable/person | 4.239 | 2.043 | |
Planting characteristics | Forest area | Total area of operating forest land, continuous type variable/ha | 0.315 | 0.259 |
Average cost per hectare | Average cost per hectare of operating forest land, continuous type variable/1000 yuan | 6.075 | 7.380 | |
Average output per hectare | Average output per hectare of operating forest land, continuous type variable/1000 yuan | 31.800 | 21.015 | |
Policy Awareness | Policy cognition | 1 = Familiarity, 0 = otherwise | 0.739 | 0.440 |
Policy Satisfaction | 1 = Satisfaction, 0 = otherwise | 0.794 | 0.405 | |
Policy Support | 1 = Support, 0 = otherwise | 0.960 | 0.197 | |
Ecological Awareness | Ecological Awareness | 1 = Necessity, 0 = otherwise | 0.886 | 0.318 |
Statistical Characteristics | Classification Indicators | Number | Proportion % |
---|---|---|---|
Gender | male | 173 | 63.60 |
female | 99 | 36.40 | |
Age | <40 | 13 | 4.78 |
≥40 | 259 | 95.22 | |
Education | Junior high school or below | 241 | 88.60 |
High school or junior college degree or above | 31 | 11.40 | |
Health Conditions | Healthy | 201 | 67.65 |
Chronic diseases, major diseases and disabilities | 71 | 32.35 | |
Occupation | Farmer | 220 | 80.88 |
Others | 52 | 19.12 | |
Policy Cognition | Familiarity | 201 | 73.90 |
Unfamiliarity | 71 | 26.10 | |
Policy Satisfaction | Satisfaction | 216 | 79.41 |
Dissatisfaction | 56 | 20.59 | |
Policy Support | Support | 261 | 95.96 |
Nonsupport | 11 | 4.04 | |
Ecological Awareness | Necessity | 241 | 88.60 |
Unnecessary | 31 | 11.40 |
Average Cost (Yuan/Ha/Year) | Average Output (Yuan/Ha/Year) | Average Net Income (Yuan/Ha/Year) | |
---|---|---|---|
Max | 43,500 | 112,500 | 97,500 |
Min | 0 | 0 | −2250 |
Mean | 6075 | 31,800 | 25,725 |
Low-Quality | Middle-Quality | High-Quality | |
---|---|---|---|
Highest bid | 112,500.00 | 150,000.00 | 225,000.00 |
Average bid | 17,123.10 | 23,493.75 | 31,064.40 |
Lowest bid | 0.00 | 1500.00 | 7500.00 |
Bid and average premium for total output | −28.48% | −1.65% | 28.09% |
Bid and average premium for net income | −14.16% | 18.54% | 54.74% |
Variable | Coefficient | Std. Dev. | Z-Value | p-Value | |
---|---|---|---|---|---|
Low quality | Gender | −0.071 | 0.188 | −0.380 | 0.705 |
Age | 0.185 | 0.459 | 0.400 | 0.687 | |
Education | −0.063 | 0.290 | −0.220 | 0.829 | |
Health Conditions | 0.326 * | 0.195 | 1.670 | 0.095 | |
Occupation | 0.730 *** | 0.250 | 2.920 | 0.003 | |
Income | −0.002 | 0.009 | −0.220 | 0.823 | |
Household size | 0.079 * | 0.044 | 1.810 | 0.070 | |
Economic forest area | −0.021 | 0.027 | −0.760 | 0.449 | |
Average land cost per hectare | −0.007 | 0.216 | −0.030 | 0.975 | |
Average income per hectare of land | 0.407 *** | 0.084 | 4.840 | 0.000 | |
Policy cognition | −0.548 *** | 0.198 | −2.770 | 0.006 | |
Ecological Awareness | 0.592 ** | 0.292 | 2.030 | 0.042 | |
Policy Satisfaction | 0.543 ** | 0.234 | 2.320 | 0.020 | |
Policy Support | −0.203 | 0.509 | −0.400 | 0.690 | |
_cons | −2.894 *** | 0.852 | −3.400 | 0.001 | |
Middle quality | Gender | −0.061 | 0.168 | −0.360 | 0.716 |
Age | 1.141 *** | 0.411 | 2.770 | 0.006 | |
Education | 0.059 | 0.263 | 0.220 | 0.822 | |
Health Conditions | 0.269 | 0.174 | 1.550 | 0.121 | |
Occupation | 0.347 * | 0.205 | 1.700 | 0.090 | |
Income | 0.005 | 0.009 | 0.580 | 0.563 | |
Household size | 0.050 | 0.040 | 1.230 | 0.217 | |
Economic forest area | −0.010 | 0.022 | −0.430 | 0.668 | |
Average land cost per hectare | −0.415 ** | 0.209 | −1.980 | 0.047 | |
Average income per hectare of land | 0.329 *** | 0.071 | 4.620 | 0.000 | |
Policy cognition | −0.297 * | 0.171 | −1.740 | 0.082 | |
Ecological Awareness | 0.253 | 0.254 | 1.000 | 0.319 | |
Policy Satisfaction | 0.645 *** | 0.218 | 2.960 | 0.003 | |
Policy Support | −0.551 | 0.436 | −1.260 | 0.207 | |
_cons | −2.756 *** | 0.738 | −3.730 | 0.000 | |
High quality | Gender | −0.180 | 0.172 | −1.040 | 0.297 |
Age | 1.200 *** | 0.436 | 2.750 | 0.006 | |
Education | −0.203 | 0.253 | −0.800 | 0.422 | |
Health Conditions | 0.455 ** | 0.181 | 2.520 | 0.012 | |
Occupation | 0.234 | 0.203 | 1.150 | 0.249 | |
Income | 0.006 | 0.008 | 0.750 | 0.454 | |
Household size | 0.068 * | 0.038 | 1.760 | 0.078 | |
Economic forest area | −0.011 | 0.022 | −0.500 | 0.615 | |
Average land cost per hectare | −0.355 * | 0.202 | −1.760 | 0.079 | |
Average income per hectare of land | 0.294 *** | 0.068 | 4.350 | 0.000 | |
Policy cognition | −0.301 * | 0.167 | −1.800 | 0.072 | |
Ecological Awareness | 0.509 * | 0.270 | 1.890 | 0.059 | |
Policy Satisfaction | 0.636 *** | 0.222 | 2.870 | 0.004 | |
Policy Support | −0.866 ** | 0.424 | −2.040 | 0.041 | |
_cons | −2.873 *** | 0.748 | −3.840 | 0.000 | |
σ12 | 0.933 *** | 0.021 | 43.630 | 0.000 | |
σ13 | 0.856 *** | 0.031 | 27.540 | 0.000 | |
σ23 | 0.972 *** | 0.011 | 86.380 | 0.000 | |
Likelihood ratio test of rho12= rho13 = rho23 = 0: | |||||
chi2(3) = 276.606 Prob > chi2 = 0.0000 | |||||
R2 = 16.05 |
Farmers’ Bids in Experimental Auction | ||||
---|---|---|---|---|
Low Quality | Middle Quality | High Quality | Average | |
price | 17,123.10 | 23,493.75 | 31,064.40 | 23,893.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Hui, B.; Zhu, L.; Zhang, T.; Chen, T.; Su, C. Using the Auction Price Method to Estimate Payment for Forest Ecosystem Services in Xin’an River Basin in China: A BDM Approach. Forests 2022, 13, 902. https://doi.org/10.3390/f13060902
Li T, Hui B, Zhu L, Zhang T, Chen T, Su C. Using the Auction Price Method to Estimate Payment for Forest Ecosystem Services in Xin’an River Basin in China: A BDM Approach. Forests. 2022; 13(6):902. https://doi.org/10.3390/f13060902
Chicago/Turabian StyleLi, Tan, BaoHang Hui, Le Zhu, Tianye Zhang, Tianyu Chen, and Chong Su. 2022. "Using the Auction Price Method to Estimate Payment for Forest Ecosystem Services in Xin’an River Basin in China: A BDM Approach" Forests 13, no. 6: 902. https://doi.org/10.3390/f13060902
APA StyleLi, T., Hui, B., Zhu, L., Zhang, T., Chen, T., & Su, C. (2022). Using the Auction Price Method to Estimate Payment for Forest Ecosystem Services in Xin’an River Basin in China: A BDM Approach. Forests, 13(6), 902. https://doi.org/10.3390/f13060902