Use of Hydrological Models to Predict Risk for Rutting in Logging Operations
Abstract
:1. Introduction
- Will inclusion of S-HYPE-modeled data improve existing descriptions of rut depth within logging sites?
- Will inclusion of S-HYPE-modeled data improve existing descriptions of proportion of forwarder trails with ruts across logging sites?
2. Materials and Methods
2.1. Input Data
2.2. Statistical Inference
- Field and spatial data only.
- Field, spatial, and S-HYPE data.
2.2.1. Rut Depth Variation
2.2.2. Proportion of Forwarder Trails with Ruts Variation
3. Results
3.1. Rut Depth Variation
3.2. Proportion of Forwarder Trails with Ruts Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Logging Site ID | Number of Sub-Basins Sustaining Sites | Area (ha) | Number of Ruts per ha | Total Length of Ruts (m) | Total Length of Forwarder Trails (m) | % Forwarder Trails Protected with Slash | Forwarder Trail Type Distribution | Soil Type Distribution | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% Main Base Forwarder Trails | % Base Forwarder Trails | % Strip Forwarder Trails | % Clay | % Glaciofluvial Sediment | % Till | % Peat | % Thin Soil and Bare Bedrocks | |||||||
1 | 1 | 1.78 | 2.8 | 23 | 1760 | 65.94 | 1.89 | 60.07 | 38.04 | - | - | 100.00 | - | - |
2 | 1 | 2.33 | 34.3 | 303 | 1752 | 59.94 | - | 52.04 | 47.96 | - | - | 100.00 | - | - |
3 | 1 | 1.38 | 4.34 | 20 | 1388 | 84.41 | - | 60.43 | 39.57 | - | - | 85.52 | 14.48 | - |
4 | 1 | 6.74 | 10.69 | 240 | 7467 | 74.11 | 5.63 | 61.37 | 33.00 | - | - | 100.00 | - | - |
5 | 1 | 7.24 | 16.86 | 315 | 5406 | 86.68 | 0.00 | 67.04 | 32.96 | - | - | 100.00 | - | - |
6 | 2 | 28.87 | 36.34 | 3895 | 14,291 | 81.82 | 1.66 | 59.28 | 39.06 | - | - | 100.00 | - | - |
7 | 1 | 13.89 | 42.12 | 2160 | 6855 | 68.05 | 0.00 | 56.83 | 43.17 | - | - | 100.00 | - | - |
8 | 1 | 14.99 | 20.75 | 840 | 9406 | 80.20 | 2.46 | 63.12 | 34.42 | - | - | 44.82 | 51.26 | 3.93 |
9 | 1 | 16.1 | 14.16 | 740 | 12,529 | 84.28 | 0.00 | 64.77 | 35.23 | - | - | 98.25 | 1.75 | - |
10 | 1 | 8.92 | 2.69 | 75 | 7692 | 65.39 | 3.76 | 64.49 | 31.75 | - | - | 69.42 | 0.92 | 29.66 |
11 | 1 | 11.39 | 11.85 | 475 | 7432 | 63.48 | 0.00 | 51.86 | 48.14 | - | - | 99.63 | 0.37 | - |
12 | 1 | 48.56 | 13.43 | 2579 | 35,183 | 40.18 | 1.70 | 39.32 | 58.98 | - | - | 99.49 | 0.51 | - |
13 | 1 | 17.67 | 2.77 | 148 | 13,634 | 67.59 | 0.00 | 26.60 | 73.40 | - | - | 98.10 | 1.90 | - |
14 | 1 | 20.53 | 35.8 | 2235 | 14,805 | 71.61 | 1.83 | 46.69 | 51.48 | - | - | 100.00 | - | - |
15 | 1 | 3.06 | 15.38 | 163 | 1806 | 67.30 | - | 53.71 | 46.29 | - | 90.35 | 9.65 | - | - |
16 | 2 | 9.75 | 1.74 | 76 | 7493 | 85.67 | 3.30 | 58.37 | 38.33 | - | - | 2.71 | 3.68 | 93.61 |
17 | 1 | 19.74 | 22.95 | 1620 | 15,096 | 76.65 | 0.49 | 74.03 | 25.47 | - | - | 27.80 | 72.20 | - |
18 | 1 | 4.37 | 2.29 | 30 | 2922 | 80.04 | 3.07 | 58.22 | 38.71 | - | - | 100.00 | - | - |
19 | 1 | 7.36 | 1.36 | 50 | 4697 | 91.98 | - | 58.44 | 41.56 | - | - | 100.00 | - | - |
20 | 1 | 21.19 | 5.71 | 463 | 16,272 | 36.91 | 2.00 | 74.39 | 23.60 | - | - | 99.59 | 0.41 | - |
21 | 1 | 7.49 | 20.96 | 500 | 6137 | 76.48 | 2.04 | 64.85 | 33.11 | - | - | 98.39 | 1.61 | - |
22 | 2 | 5.03 | 42.72 | 1128 | 2739 | 40.27 | 12.74 | 13.48 | 73.78 | 8.70 | - | 78.39 | 12.91 | - |
23 | 1 | 15.95 | 45.15 | 2258 | 10,908 | 37.67 | 1.59 | 35.58 | 62.83 | 51.27 | - | 31.82 | 1.98 | 14.92 |
24 | 1 | 9 | 10 | 510 | 5480 | 12.06 | 0.00 | 27.74 | 72.26 | 4.34 | - | 65.42 | 0.72 | 29.52 |
25 | 1 | 15.92 | 40.77 | 3317 | 8600 | 51.74 | 2.45 | 24.20 | 73.34 | - | - | 79.94 | 4.53 | 15.53 |
26 | 1 | 12.1 | 47.6 | 5635 | 6944 | 38.13 | 1.01 | 18.46 | 80.53 | - | - | 82.74 | 1.22 | 16.03 |
27 | 1 | 9.66 | 38.71 | 2680 | 5633 | 56.59 | 1.48 | 15.62 | 82.90 | - | - | 97.64 | 1.28 | 1.08 |
Variable Name | Scale | Definition |
---|---|---|
temp | °C | air temperature, provided in Tobs.txt/Tobs_nnn.txt |
ctmp | °C | corrected air temperature |
snow | mm | snow water equivalent |
sdep | cm | snow depth |
soim | mm | computed soil moisture (including standing water) |
som2 | mm | soil water of upper two soil layers (including standing water) |
sml1 | mm | soil moisture upper soil layer (not including standing water) |
sml2 | mm | soil moisture second soil layer |
sml3 | mm | soil moisture third soil layer |
smrz | mm | soil moisture root zone (upper two soil layers) (not including standing water) |
sm13 | mm | soil moisture all soil layers (not including standing water) |
stsw | mm | standing soil water |
srff | - | soil moisture root zone (upper two soil layers) (not including standing water) as fraction of wcfc volume |
smfd | - | soil moisture (not including standing water) as fraction of soil depth |
srfd | - | soil moisture root zone (upper two soil layers) (not including standing water) as fraction of root depth |
smfp | - | soil moisture (not including standing water) as fraction of pore volume |
srfp | - | soil moisture root zone (upper two soil layers) (not including standing water) as fraction of pore volume |
smdf | mm | soil moisture deficit to field capacity of upper two soil layers |
gwat | m | groundwater level |
sfst | cm | frost depth |
stmp | °C | soil temperature |
stm1 | °C | upper soil layer temperature |
stm2 | °C | middle soil layer temperature |
stm3 | °C | lowest soil layer temperature |
cout | m3/s | simulated outflow from lake/subcatchment |
prec | mm/[period] | precipitation as provided in Pobs.txt |
cprc | mm/[period] | corrected precipitation |
crun | mm/[period] | calculated local runoff from land area. Note that this is not the same as the flow to the local stream if floodplains are used. |
cros | mm/[period] | simulated surface runoff. Note that this is not the same as the flow to the local stream if floodplains are used |
psim | mm/[period] | precipitation including water that will be removed as “interception losses” |
temp | °C | air temperature, provided in Tobs.txt/Tobs_nnn.txt |
ctmp | °C | corrected air temperature |
snow | mm | snow water equivalent |
sdep | cm | snow depth |
soim | mm | computed soil moisture (including standing water) |
som2 | mm | soil water of upper two soil layers (including standing water) |
References
- Lundmark, T.; Bergh, J.; Hofer, P.; Lundström, A.; Nordin, A.; Poudel, B.; Sathre, R.; Taverna, R.; Werner, F. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation. Forests 2014, 5, 557–578. [Google Scholar] [CrossRef]
- Högberg, P.; Ceder, L.A.; Astrup, R.; Binkley, D.; Bright, R.; Egnell, L.D.G.; Filipchuk, A.; Genet, H.; Ilintsev, A.; Kurz, W.A.; et al. Sustainable Boreal Forest Management—Challenges and Opportunities for Climate Change Mitigation; Swedish Forest Agency: Sweden, 2021; p. 60. [Google Scholar]
- Anon. Riksskogstaxeringen_Officiell Statistik Om Den Svenska Skogen. Available online: https://skogsstatistik.slu.se/pxweb/sv/OvrStat/OvrStat__Avverkning/AVV_arlig_avverkning_landsdelar_tab.px/ (accessed on 15 November 2020).
- Eliasson, L. Effects of Forwarder Tyre Pressure on Rut Formation and Soil Compaction. Silva Fenn. 2005, 39, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Hansson, L.J.; Koestel, J.; Ring, E.; Gärdenäs, A.I. Impacts of off-road traffic on soil physical properties of forest clear-cuts: X-ray and laboratory analysis. Scand. J. For. Res. 2017, 33, 166–177. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil Compaction and Growth of Woody Plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Wästerlund, I. Growth reduction of trees near strip roads resulting from soil compaction and damaged roots—A literature survey. Sver. Skogsvårdsförbunds Tidskr. 1983, 81, 97–109. [Google Scholar]
- Mariotti, B.; Hoshika, Y.; Cambi, M.; Marra, E.; Feng, Z.; Paoletti, E.; Marchi, E. Vehicle-induced compaction of forest soil affects plant morphological and physiological attributes: A meta-analysis. For. Ecol. Manag. 2020, 462, 118004. [Google Scholar] [CrossRef]
- Eklöf, K.; Lidskog, R.; Bishop, K. Managing Swedish forestry’s impact on mercury in fish: Defining the impact and mitigation measures. Ambio 2016, 45 (Suppl. 2), 163–174. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Peth, S.; Becker, S. Impact of modern forest vehicles on soil physical properties. For. Ecol. Manag. 2007, 248, 56–63. [Google Scholar] [CrossRef]
- Håkansson, I. Packning av åkermark vid maskindrift. Omfattning-Effekter-Motåtgärder. Machinary induced compaction of arable soils- Incidence, consequence and counter measures. In Soil Science; Sveriges lantbruks universitet (SLU): Uppsala, Sweden, 2000; p. 123. [Google Scholar]
- Sakai, H.; Nordfjell, T.; Suadicani, K.; Talbot, B.; Bøllehuus, E. Soil Compaction on Forest Soils from Different Kinds of Tires and Tracks and Possiblity of Accurate Estimate.pdf. Croat. J. For. Eng. 2008, 29, 15–27. [Google Scholar]
- Toivio, J.; Helmisaari, H.-S.; Palviainen, M.; Lindeman, H.; Ala-Ilomäki, J.; Sirén, M.; Uusitalo, J. Impacts of timber forwarding on physical properties of forest soils in southern Finland. For. Ecol. Manag. 2017, 405, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, J.; Ala-Ilomäki, J. The significance of above-ground biomass, moisture content and mechanical properties of peat layer on the bearing capacity of ditched pine bogs. Silva Fenn. 2013, 47. [Google Scholar] [CrossRef] [Green Version]
- Sirén, M.; Salmivaara, A.; Ala-Ilomäki, J.; Launiainen, S.; Lindeman, H.; Uusitalo, J.; Sutinen, R.; Hänninen, P. Predicting forwarder rut formation on fine-grained mineral soils. Scand. J. For. Res. 2019, 34, 145–154. [Google Scholar] [CrossRef]
- Uusitalo, J.; Ala-Ilomäki, J.; Lindeman, H.; Toivio, J.; Siren, M. Modelling soil moisture—Soil strength relationship of fine-grained upland forest soils. Silva Fenn. 2019, 53. [Google Scholar] [CrossRef]
- Eliasson, L.; Wästerlund, I. Effects of slash reinforcement of strip roads on rutting and soil compaction on a moist fine-grained soil. For. Ecol. Manag. 2007, 252, 118–123. [Google Scholar] [CrossRef]
- Hoffmann, S.; Schönauer, M.; Heppelmann, J.; Asikainen, A.; Cacot, E.; Eberhard, B.; Hasenauer, H.; Ivanovs, J.; Jaeger, D.; Lazdins, A.; et al. Trafficability Prediction Using Depth-to-Water Maps: The Status of Application in Northern and Central European Forestry. Curr. For. Rep. 2022, 8, 55–71. [Google Scholar] [CrossRef]
- Svensson, S.A.; Braide, A. Tekniska Skogsdata [Träd, Bestånd, Mark, Ståndort; Inkl. Trädfunktioner]; Sveriges Lantbruksuniverisitet: Umeå, Sweden, 1987. [Google Scholar]
- Berg, S. Terrängtypsschemat för Skogsarbete; Skogforsk: Gävle, Sweden, 1995; ISBN 91-7614-035-0. [Google Scholar]
- Anon. Klimatindikator—Antal Dagar Med Snötäcke. Available online: https://www.smhi.se/klimat/klimatet-da-och-nu/klimatindikatorer/klimatindikator-antal-dagar-med-snotacke-1.91081 (accessed on 1 December 2020).
- Anon. Klimatindikator_Temperatur. Available online: https://www.smhi.se/klimat/klimatet-da-och-nu/klimatindikatorer/klimatindikator-temperatur-1.2430 (accessed on 1 December 2020).
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Asikainen, A.; Laitila, J.; Anttila, P.; Peltola, H. Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate. Hydrol. Earth Syst. Sc. 2019, 23, 1611–1631. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.N.C.; Ogilvie, J.; Castunguay, M.; Connors, T.; Meng, F.R.; Arp, P.A. DEM-derived flow channel and wet area mapping: A new tool for forest operations planning. In Proceedings of the Sustainable Forest Management Network, Fourth International Conference, Edmonton, AB, Canada, 20–22 June 2006. [Google Scholar]
- Ågren, A.; Lidberg, W.; Ring, E. Mapping Temporal Dynamics in a Forest Stream Network—Implications for Riparian Forest Management. Forests 2015, 6, 2982–3001. [Google Scholar] [CrossRef] [Green Version]
- White, B.; Ogilvie, J.; Campbell, D.M.H.M.H.; Hiltz, D.; Gauthier, B.; Chisholm, H.K.H.; Wen, H.K.; Murphy, P.N.C.N.C.; Arp, P.A.A. Using the Cartographic Depth-to-Water Index to Locate Small Streams and Associated Wet Areas across Landscapes. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2013, 37, 333–347. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models. Eur. J. Soil Sci. 2009, 60, 94–109. [Google Scholar] [CrossRef]
- Mohtashami, S.; Eliasson, L.; Hansson, L.; Willén, E.; Thierfelder, T.; Nordfjell, T. Evaluating the effect of DEM resolution on performance of cartographic depth-to-water maps, for planning logging operations. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102728. [Google Scholar] [CrossRef]
- Reeves, D.A.; Reeves, M.C.; Abbott, A.M.; Page-Dumroese, D.S.; Coleman, M.D. A detrimental soil disturbance prediction model for ground-based timber harvesting. Can. J. For. Res. 2012, 42, 821–830. [Google Scholar] [CrossRef]
- Kankare, V.; Luoma, V.; Saarinen, N.; Peuhkurinen, J.; Holopainen, M.; Vastaranta, M. Assessing feasibility of the forest trafficability map for avoiding rutting—A case study. Silva Fenn. 2019, 53. [Google Scholar] [CrossRef]
- Jones, M.-F.; Arp, P.A. Relating Cone Penetration and Rutting Resistance to Variations in Forest Soil Properties and Daily Moisture Fluctuations. Open J. Soil Sci. 2017, 7, 149–171. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.-F.; Arp, P. Analyzing and Projecting Soil Moisture and Cone Penetrability Variations in Forest Soils. Open J. For. 2019, 9, 109–142. [Google Scholar] [CrossRef] [Green Version]
- Salmivaara, A.; Launiainen, S.; Perttunen, J.; Nevalainen, P.; Pohjankukka, J.; Ala-Ilomäki, J.; Sirén, M.; Laurén, A.; Tuominen, S.; Uusitalo, J.; et al. Towards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology. For. Int. J. For. Res. 2020, 93, 662–674. [Google Scholar] [CrossRef]
- Friberg, G.; Bergkvist, I. Så Påverkar Arbetsrutiner Och Markfuktighetskartor Körskador I Skogsbruket [How Operational Procedures and Depth-To-Water Maps Can Reduce Damage on Soil And Water And Rutting in the Swedish Forestry]; 904-2016; Forestry Research Institute of Sweden: Uppsala, Sweden, 2016; pp. 1–36. [Google Scholar]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Strömqvist, J.; Arheimer, B.; Dahné, J.; Donnelly, C.; Lindström, G. Water and nutrient predictions in ungauged basins: Set-up and evaluation of a model at the national scale. Hydrol. Sci. J. 2012, 57, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N. Statistics for Spatial Data, 2nd ed.; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 1993. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generallized Linear Models, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 1989; Volume 37, p. 532. [Google Scholar]
- Haenlein, M.; Kaplan, A.M. A Beginner’s Guide to Partial Least Squares Analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Marra, E.; Cambi, M.; Fernandez-Lacruz, R.; Giannetti, F.; Marchi, E.; Nordfjell, T. Photogrammetric estimation of wheel rut dimensions and soil compaction after increasing numbers of forwarder passes. Scand. J. For. Res. 2018, 33, 613–620. [Google Scholar] [CrossRef]
- Labelle, E.R.; Poltorak, B.J.; Jaeger, D. The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res. 2019, 49, 164–178. [Google Scholar] [CrossRef]
- Montanari, A. Uncertainty of hydrological predictions. In Treatise on Water Science; University of Bologna: Bologna, Italy, 2011; Volume 2, pp. 459–478. [Google Scholar]
- Lindström, G. Lake water levels for calibration of the S-HYPE model. Hydrol. Res. 2016, 47, 672–682. [Google Scholar] [CrossRef]
- Arheimer, B.; Dahné, J.; Lindström, G.; Marklund, L.; Strömqvist, J. Multi-variable evaluation of an integrated model system covering Sweden (S-HYPE). In Proceedings of the Conceptual and Modelling Studies of Integrated Groundwater, Surface Water, and Ecological Systems, Melbourne, Australia, 28 June–7 July 2011; pp. 145–150. [Google Scholar]
- Tyystjärvi, V. Soil Moisture in Process Based Modelling; University of Helsinki: Helsinki, Finland, 2019. [Google Scholar]
- Roeckner, E.; Bäuml, G.; Bonaventura, L.; Brokopf, R.; Giorgetta, M.E.M.; Hagemann, S.; Kirchner, I.; Kornblueh, L.; Manzini, E.; Rhodin, A.; et al. The Atmospheric General Circulation Model Echman5, Part 1, Model Description; Max Planc Institute for Meteorology: Hamburg, Germany, 2003; p. 349. [Google Scholar]
- Launiainen, S.; Guan, M.; Salmivaara, A.; Kieloaho, A.-J. Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: A spatial approach. Hydrol. Earth Syst. Sc. 2019, 23, 3457–3480. [Google Scholar] [CrossRef] [Green Version]
- Maclean, I.M.D. Ecohydrotools. Available online: https://github.com/ilyamaclean/ecohydrotools (accessed on 11 August 2020).
Input-Data | Contained Data | Data Category | Data Type | Reference |
---|---|---|---|---|
Rut length and depth | Length classes: 1–5 m, 6–10 m, 11–20 m, >20 m. Depth classes: 10–20 cm, 21–50 cm, >51 cm | Field surveyed | Shape file | |
Slash protection | Yes/No | Field surveyed | ||
Trail type | Three classes: strip trails = 1–5 passes, base trails = 6–10 passes, main base trails > 10 passes. | Field surveyed | Shape file | |
Soil type | Soil type in top 50 cm of the soil according to Quaternary maps | Spatial data | Shape file of varying resolution: 1:25–100,000 and 1:750,000 | Geological Survey of Sweden, https://www.sgu.se/en/ (accessed on 15 August 2020). |
Soil moisture | Estimations by depth-to-water (DTW) index, converted to two classes, wet (DTW < 1 m) and dry (DTW > 1 m) | Spatial data | Raster (2 m) | The Swedish Forest Agency, https://www.skogsstyrelsen.se/ (accessed on 1 April 2020). |
Elevation | Digital elevation model created from high-resolution laser scanning of Sweden | Spatial data | Raster (2 m) | The Swedish Mapping, Cadastral and Land Registration Authority, https://www.lantmateriet.se/ (accessed on 1 April 2020). |
S-HYPE | Modeled hydrological variables, see Table A2 | Hydrologically modeled data | Text datasheets per soil type and sub-basin area | https://www.smhi.se/forskning/forskningsenheter/hydrologisk-forskning/hype-1.557 (accessed on 12 August 2017). |
Regressor Subset | Fixed Regressors | Random Regressors | R2 | |||
---|---|---|---|---|---|---|
(1) Field and spatial data | Trail type * | Ground protection * | DTM (elevation) * | DTW (soil moisture) | Logging sites | 18.8% |
(2) Field, spatial, and S-HYPE data | Trail type * | Ground protection * | DTM (elevation) * | Sml2 (soil moisture at second soil layer by S-HYPE) * | Logging sites nested within sub-basin areas | 19.3% |
Regressor Subset | Fixed Regressors | Random Regressors | R2 | |||||
---|---|---|---|---|---|---|---|---|
(1) Field and spatial data | Forwarder trail type * | Ground protection * | Soil type | Proportion of wet area in logging sites, % (areas with DTW ≤ 1 m) | Logging sites | 33.1% | ||
(2) Field, spatial, and S-HYPE data | Forwarder trail type * | Ground protection * | Soil type | Relative precipitation (Rel_prec) | Relative soil moisture * (Rel_srfd) | Relative ground water level (Rel_gwat) | Logging sites nested with sub-basin areas | 35.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohtashami, S.; Thierfelder, T.; Eliasson, L.; Lindström, G.; Sonesson, J. Use of Hydrological Models to Predict Risk for Rutting in Logging Operations. Forests 2022, 13, 901. https://doi.org/10.3390/f13060901
Mohtashami S, Thierfelder T, Eliasson L, Lindström G, Sonesson J. Use of Hydrological Models to Predict Risk for Rutting in Logging Operations. Forests. 2022; 13(6):901. https://doi.org/10.3390/f13060901
Chicago/Turabian StyleMohtashami, Sima, Tomas Thierfelder, Lars Eliasson, Göran Lindström, and Johan Sonesson. 2022. "Use of Hydrological Models to Predict Risk for Rutting in Logging Operations" Forests 13, no. 6: 901. https://doi.org/10.3390/f13060901
APA StyleMohtashami, S., Thierfelder, T., Eliasson, L., Lindström, G., & Sonesson, J. (2022). Use of Hydrological Models to Predict Risk for Rutting in Logging Operations. Forests, 13(6), 901. https://doi.org/10.3390/f13060901