Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery
Abstract
:1. Introduction
- To explore the pattern of forest recovery under different fire severities and vegetation types conditions through long-term observations;
- To explore the effect of each factor on post-fire recovery using Ridge Regression.
2. Materials and Methods
2.1. Study Areas
- Areas with a forest burned area greater than to ensure that the recovery time would not be too fast;
- Fires that occurred between 2003 and 2010, to ensure a recovery study period of at least ten years;
- Areas in which no other fires occurred within the next five years, in the recovery process after this fire.
2.2. Data
2.3. Methods
2.3.1. Vegetation Index
2.3.2. Ridge Regression
3. Results
3.1. Forest Fire Vegetation Restoration
3.1.1. Forest Fire Identification
3.1.2. Effects of Different Fire Severities on Post-Fire Recovery
3.1.3. Effects of Different Vegetation Types on Post-Fire Recovery
3.2. Analysis of Driving Factors of Forest Fire
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loydi, A.; Funk, F.A.; García, A. Vegetation recovery after fire in mountain grasslands of Argentina. J. Mt. Sci.-Engl. 2020, 17, 373–383. [Google Scholar] [CrossRef]
- Nolan, R.H.; Collins, L.; Leigh, A.; Ooi, M.K.J.; Curran, T.J.; Fairman, T.A.; Resco de Dios, V.; Bradstock, R. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 2021, 44, 3471–3489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Yao, F.M.; Liu, C.; Yang, L.M.; Boken, V.K. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades—An overview. Int. J. Environ. Res. Public Health 2011, 8, 3156–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest Fires and Climate Change in the 21ST Century. Mitig. Adapt. Strat. Gl. 2006, 11, 847–859. [Google Scholar] [CrossRef]
- Lasslop, G.; Hantson, S.; Harrison, S.P.; Bachelet, D.; Burton, C.; Forkel, M.; Forrest, M.; Li, F.; Melton, J.R.; Yue, C.; et al. Global ecosystems and fire: Multi-model assessment of fire-induced tree-cover and carbon storage reduction. Glob. Chang. Biol. 2020, 26, 5027–5041. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Souza, C., Jr.; Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 2020, 26, 2956–2969. [Google Scholar] [CrossRef] [PubMed]
- Lasslop, G.; Coppola, A.I.; Voulgarakis, A.; Yue, C.; Veraverbeke, S. Influence of Fire on the Carbon Cycle and Climate. Curr. Clim. Chang. Rep. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Asner, G.P.; Alencar, A. Drought impacts on the Amazon forest: The remote sensing perspective. New Phytol. 2010, 187, 569–578. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 2011, 87, 240–252. [Google Scholar] [CrossRef]
- Meng, R.; Dennison, P.E.; Huang, C.; Moritz, M.A.; D’Antonio, C. Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 2015, 171, 311–325. [Google Scholar] [CrossRef]
- Gill, A.M. Fire and The Australian Flora: A Review. Aust. For. 1975, 38, 4–25. [Google Scholar] [CrossRef]
- Caccamo, G.; Bradstock, R.; Collins, L.; Penman, T.; Watson, P. Using MODIS data to analyse post-fire vegetation recovery in Australian eucalypt forests. J. Spat. Sci. 2014, 60, 341–352. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.Y.; Evans, J.P.; Parinussa, R.M.; van Dijk, A.I.J.M.; Yebra, M. Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations. Int. J. Remote Sens. 2018, 39, 6479–6498. [Google Scholar] [CrossRef]
- Ma, J.; Bu, R.; Liu, M.; Chang, Y.; Han, F.; Qin, Q.; Hu, Y. Recovery of understory vegetation biomass and biodiversity in burned larch boreal forests in Northeastern China. Scand. J. For. Res. 2015, 31, 382–393. [Google Scholar] [CrossRef]
- Idris, M.H.; Kuraji, K.; Suzuki, M. Evaluating vegetation recovery following large-scale forest fires in Borneo and northeastern China using multi-temporal NOAA/AVHRR images. J. For. Res.-Jpn. 2017, 10, 101–111. [Google Scholar] [CrossRef]
- Liu, Z. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China. Sci. Rep. 2016, 6, 37572. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Su, H.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
- Giorgis, M.A.; Zeballos, S.R.; Carbone, L.; Zimmermann, H.; von Wehrden, H.; Aguilar, R.; Ferreras, A.E.; Tecco, P.A.; Kowaljow, E.; Barri, F.; et al. A review of fire effects across South American ecosystems: The role of climate and time since fire. Fire Ecol. 2021, 17, 1–20. [Google Scholar]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Besnard, S.; Carvalhais, N.; Arain, M.A.; Black, A.; Brede, B.; Buchmann, N.; Chen, J.; Clevers, J.; Dutrieux, L.P.; Gans, F.; et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE 2019, 14, e0211510. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, A.; Nielsen-Pincus, M.; Holz, A.; Catalano, A.J.; Gleason, K.E. Projected Impact of Mid-21st Century Climate Change on Wildfire Hazard in a Major Urban Watershed outside Portland, Oregon USA. Fire 2020, 3, 70. [Google Scholar] [CrossRef]
- Yang, B.; He, M.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Brauning, A.; Griessinger, J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, R.J.; Bucharova, A.; Brodt, L.; Kamp, J.; Rieker, D.; Soromotin, A.V.; Yurtaev, A.; Holzel, N. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years. Sci. Total Environ. 2021, 760, 143425. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Keane, R.E.; Zhu, Z.; Wang, Y.; Shan, Y. Current and future patterns of forest fire occurrence in China. Int. J. Wildland Fire 2020, 29, 104–119. [Google Scholar] [CrossRef]
- Szpakowski, D.; Jensen, J. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.O.; Kimball, J.S.; Jones, L.A. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada. Glob. Chang. Biol. 2013, 19, 3111–3122. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2013, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Moore, C.E.; Brown, T.; Keenan, T.F.; Duursma, R.A.; van Dijk, A.I.J.M.; Beringer, J.; Culvenor, D.; Evans, B.; Huete, A.; Hutley, L.B.; et al. Reviews and syntheses: Australian vegetation phenology: New insights from satellite remote sensing and digital repeat photography. Biogeosciences 2016, 13, 5085–5102. [Google Scholar] [CrossRef] [Green Version]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Henareh Khalyani, A. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; White, J.C. Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sens. Environ. 2018, 205, 32–45. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest. Ecol. Indic. 2016, 62, 32–46. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L. Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans. Geosci. Remote 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 14171428. [Google Scholar] [CrossRef] [PubMed]
- Talucci, A.C.; Forbath, E.; Kropp, H.; Alexander, H.D.; DeMarco, J.; Paulson, A.K.; Zimov, N.S.; Zimov, S.; Loranty, M.M. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sens. 2020, 12, 2970. [Google Scholar] [CrossRef]
- Li, M.; Guo, X. Evaluating Post-Fire Vegetation Recovery in North American Mixed Prairie Using Remote Sensing Approaches. Open J. Ecol. 2018, 08, 646–680. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. Gisci. Remote Sens. 2017, 55, 1–18. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, C.; Chen, W.; Xu, M.; Dang, Y.; Singh, R.P.; Bashir, B.; Xie, B.; Lin, X. Remote Sensing Monitoring of Vegetation Dynamic Changes after Fire in the Greater Hinggan Mountain Area: The Algorithm and Application for Eliminating Phenological Impacts. Remote Sens. 2020, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Parker, B.M.; Lewis, T.; Srivastava, S.K. Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sens. Environ. 2015, 170, 340–349. [Google Scholar] [CrossRef]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbin, S.P. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- Bolton, D.K.; Coops, N.C.; Wulder, M.A. Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data. Remote Sens. Environ. 2015, 163, 48–60. [Google Scholar] [CrossRef]
- Fernandez-Manso, A.; Quintano, C.; Roberts, D.A. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ. 2016, 184, 112–123. [Google Scholar] [CrossRef]
- Storey, E.A.; Stow, D.A.; O’Leary, J.F. Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery. Remote Sens. Environ. 2016, 183, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Alvarez, F.; Han, T.; Rogan, J.; Hawkes, B. Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sens. Environ. 2009, 113, 1540–1555. [Google Scholar] [CrossRef]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote Sensing of Forest Fire Severity and Vegetation Recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Orenes, F.; Arcenegui, V.; Chrenkova, K.; Mataix-Solera, J.; Molto, J.; Jara-Navarro, A.B.; Torres, M.P. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research. Sci. Total Environ. 2017, 586, 1057–1065. [Google Scholar] [CrossRef]
- Shvetsov, E.G.; Kukavskaya, E.A.; Buryak, L.V.; Barrett, K. Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations. Environ. Res. Lett. 2019, 14, 055001. [Google Scholar] [CrossRef]
- João, T.; João, G.; Bruno, M.; João, H. Indicator-based assessment of post-fire recovery dynamics using satellite NDVI time-series. Ecol. Indic. 2018, 89, 199–212. [Google Scholar] [CrossRef]
- Gu, X.L.; Wu, Z.W.; Zhang, J.Y.; Yan, S.J.; Fu, J.J. Analysis on temporal and spatial characteristics of forest fires in Jiangxi province based on MODIS Data from 2001 to 2015. Guangdong Agric. Sci. 2018, 45, 129–136. [Google Scholar] [CrossRef]
- Lin, B.; Liu, K. Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression. Sustainability 2017, 9, 1892. [Google Scholar] [CrossRef] [Green Version]
- McDonald, G.C. Ridge regression. Wires Comput. Mol. Sci. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Wu, R. Forecast Analysis of Securities Index Based on Ridge Regression—In Case of Shanghai Composite Index. Bus. Glob. 2016, 4, 47–55. [Google Scholar] [CrossRef]
- Wang, Q.; Leng, L.F.; Chang, Y.L. Improvement of Ridge Regression and Principal Component Regression in Stock Index Tracking. J. Chongqing Univ. Technol. (Nat. Sci.) 2018, 32, 212–221. [Google Scholar]
- Marquardt, D.W.; Snee, R.D. Ridge regression in practice. Am. Stat. 1975, 29, 3–20. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Abdollahi, M.; Dewan, A.; Hassan, Q. Applicability of Remote Sensing-Based Vegetation Water Content in Modeling Lightning-Caused Forest Fire Occurrences. ISPRS Int. J. Geo.-Inf. 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Guo, Y.; Hu, H.Q. Characteristics of Forest Fire Data in Southwest China during 2001–2017. J. Northwest For. Univ. 2021, 36, 179–186. [Google Scholar]
- Yueming, R.; Kaijun, L.; Huaguo, H.; Qinan, L.; Chuan, W. Inversion of canopy water content of fire scars in Genhe county based on INFORM model and Google Earth Engine. J. Cent. South Univ. For. Technol. 2021, 41, 80–91. [Google Scholar]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Sarkar, K.; Chakraborti, S.; Joshi, P.K.; Zhang, Q.; Wang, Y.; Bhatt, S.; et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 2020, 725, 138331. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Sarmah, S.; Singha, M.; Wang, J.; Dong, J.; Deb Burman, P.K.; Goswami, S.; Ge, Y.; Ilyas, S.; Niu, S. Mismatches between vegetation greening and primary productivity trends in South Asia—A satellite evidence. Int. J. Appl. Earth Obs. 2021, 104, 102561. [Google Scholar] [CrossRef]
- Tucker, C.J.; Townshend, J.R.G.; Goff, T.E. African Land-Cover Classification Using Satellite Data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef]
- Defries, R.S.; Townshend, J.R.G. Ndvi-Derived Land-Cover Classifications at a Global-Scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Brown, M.E.; Lary, D.J.; Vrieling, A.; Stathakis, D.; Mussa, H. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. Int. J. Remote Sens. 2008, 29, 7141–7158. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from Spot/Vegetation NDVI temporal series. Ecol. Model 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Wang, X.H.; Piao, S.L.; Ciais, P.; Li, J.S.; Friedlingstein, P.; Koven, C.; Chen, A.P. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Serbin, S.P.; Ahl, D.E.; Gower, S.T. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens. Environ. 2013, 133, 71–84. [Google Scholar] [CrossRef]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Singh, P.; Singh, R.K. Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Comput. Electron. Agric. 2022, 192, 106581. [Google Scholar] [CrossRef]
- Xu, D.; Wang, C.; Chen, J.; Shen, M.; Shen, B.; Yan, R.; Li, Z.; Karnieli, A.; Chen, J.; Yan, Y.; et al. The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sens. Environ. 2021, 264, 112578. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 2014, 152, 512–525. [Google Scholar] [CrossRef]
- Hailing, S.; Hongping, W. The Driving Factors of the Increase of the Building Energy Consumption Based on Ridge Regression. Urban Stud. 2013, 20, 4. [Google Scholar]
- Wang, Q.; Zhao, B.; Zhang, Z.Q.; Zhang, X.F. The Three-North Shelterbelt Program and Dynamic Changes in Vegetation Cover. J. Resour. Ecol. 2014, 5, 53–59. [Google Scholar]
- An, L.; Jia, H. The Application of Variable Selection to Multi-Collinearity Problems—Based on the Research and Development Input and Output Data. Stat. Appl. 2015, 4, 133–143. [Google Scholar]
- Guo, S.C.; Feng, S.L.; Long, X.; Jin, S.L. Experimental study on lightning potential forecast in central China based on the ridge regression method. J. Lanzhou Univ. Nat. Sci. 2021, 57, 604. [Google Scholar]
- Zhe, L.; Wei, W.; Zhang, S.W.; Cui, Q.Q.; Li, R.Y. Estimating Wheat Planting Density Based on Multiple Ridge Regression. J. Agric. Sci. Technol.-Iran 2020, 22, 72–80. [Google Scholar]
- Fang, L.; Yang, J.; White, M.; Liu, Z. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests 2018, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. Forest Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef] [Green Version]
Study Area | Location | Coordinates | Time | Burning Area | Main Vegetation Types |
---|---|---|---|---|---|
Zone 1 | Hulun Buir | 51.1312 N–121.839 E | 2–20 May 2003 | 981.567 | Deciduous Needleleaf Forests |
Deciduous Broadleaf Forests | |||||
Mixed Forests | |||||
Shrublands | |||||
Grasslands | |||||
Zone 2 | Da Hinggan Ling Prefecture | 52.0021 N–126.125 E | 30 April–16 June 2003 | 4596.004 | Deciduous Needleleaf Forests |
Deciduous Broadleaf Forests | |||||
Mixed Forests | |||||
Grasslands | |||||
Zone 3 | Shanxi | 38.0021 N–113.329 E | 20–25 April 2006 | 81.565 | Shrublands |
Grasslands | |||||
Zone 4 | Yunnan | 25.681 N–100.376 E | 10–21 March 2010 | 40.576 | Mixed Forests |
Grasslands |
Product/Bands | Temporal and Spatial Resolution | Explain | |
---|---|---|---|
MODIS | MCD64A1 | 500 m | Identify fire tracks in the study area and draw vector maps |
MOD14A1 | 1 km-8 d | The fire confidence is specified in pixels | |
MOD13A1 | 500 m-16 d | Extraction and calculation of vegetation index (NDVI, EVI, NDMI) | |
M0D09A1 | 500 m-8 d | Calculation the Normalized Burn Ratio (NBR) and the differenced Normalized Burn Ratio (dNBR) | |
MCD13Q1 | 1 km | Land cover type classification | |
ERA5 | temperature | 2 m-1 monthly | Average air temperature at 2 m (daily mean) |
precipitation | m | Total precipitation (daily total) | |
Soil temperature | K | The temperature of the soil in layer 1 (0–7 cm) of the ECMWF Integrated Forecasting System. | |
Terra Climate | Soil | mm | Soil moisture derived using a one-dimensional soil water balance model |
Aet | mm | Actual evapotranspiration derived using a one-dimensional soil water balance model | |
Def | mm | Climate water deficit derived using a one-dimensional soil water balance model | |
Pr | mm | Precipitation accumulation | |
Tmmn | °C | Minimum temperature | |
Tmmx | °C | Maximum temperature | |
FLDAS | Qg_tavg | Soil heat flux | |
Qair_f_tavg | Specific humidity | ||
SoilMoi00_10cm | Soil moisture (00–10 cm underground) | ||
SoilMoi10_40cm | Soil moisture (10–40 cm underground) | ||
SoilMoi40_100cm | Soil moisture (40–100 cm underground) | ||
SoilMoi100_200cm | Soil moisture (100–200 cm underground) |
Index | Expression | Description |
---|---|---|
Normalized Difference Vegetation Index | NDVI and EVI are used to monitor changes in vegetation greenness (The values of NDVI and EVI are between −1 and 1, and the normal values of green vegetation) | |
Enhanced Vegetation Index | ||
Normalized Burn Ratio | Monitor whether the fire occurs and identify the fire trace | |
Normalized Difference Moisture Index | Extract the water content of the vegetation canopy | |
the differenced Normalized Burn Ratio | Estimate the burn severity of the fire |
Study Area | Low Severity | Moderate Severity | High Severity |
---|---|---|---|
Zone 1 | 0 < dNBR < 0.2 | 0.2 ≤ dNBR < 0.4 | dNBR ≥ 0.4 |
Zone 2 | 0.1 < dNBR < 0.16 | 0.16 ≤ dNBR < 0.3 | dNBR ≥ 0.3 |
Zone 3 | 0.055 < dNBR < 0.145 | 0.145 ≤ dNBR < 0.22 | dNBR ≥ 0.22 |
Zone 4 | 0.04 < dNBR < 0.12 | 0.12 ≤ dNBR < 0.24 | dNBR ≥ 0.24 |
Type | Baseval. | Max | Mean | Amplitude |
---|---|---|---|---|
Deciduous Needleleaf Forests | 0.2643 | 0.4477 | 0.3501 | 0.1835 |
Deciduous Broadleaf Forests | 0.3029 | 0.5137 | 0.3970 | 0.2111 |
Mixed Forests | 0.2648 | 0.4449 | 0.3716 | 0.1801 |
Shrublands | 0.2481 | 0.4100 | 0.3153 | 0.1763 |
Grasslands | 0.2365 | 0.4248 | 0.3524 | 0.1885 |
Year | Baseval. | Max | Ampl. | Mean | Estimation of Main Vegetation Types |
---|---|---|---|---|---|
2002 | 0.1935 | 0.4667 | 0.2732 | 0.3577 | Forest |
2003 | 0.1739 | 0.2765 | 0.1026 | 0.2026 | Grasslands |
2004 | 0.1886 | 0.3188 | 0.1303 | 0.2536 | Grasslands |
2005 | 0.2117 | 0.3482 | 0.1364 | 0.2904 | Grasslands |
2006 | 0.2666 | 0.3550 | 0.0883 | 0.3080 | Grasslands |
2007 | 0.2760 | 0.3757 | 0.0997 | 0.3261 | Grasslands |
2008 | 0.2550 | 0.3617 | 0.1067 | 0.3109 | Grasslands |
2009 | 0.2695 | 0.4151 | 0.1456 | 0.3410 | Grasslands |
2010 | 0.2892 | 0.4117 | 0.1225 | 0.3484 | Grasslands |
2011 | 0.2695 | 0.4419 | 0.1723 | 0.3606 | Grasslands |
2012 | 0.2611 | 0.4462 | 0.1851 | 0.3509 | Grasslands |
2013 | 0.2646 | 0.4953 | 0.2307 | 0.3809 | Forest |
2014 | 0.2592 | 0.4817 | 0.2224 | 0.3697 | Forest |
2015 | 0.2749 | 0.4539 | 0.1790 | 0.3606 | Forest |
2016 | 0.2790 | 0.4613 | 0.1823 | 0.3708 | Forest |
2017 | 0.2788 | 0.4890 | 0.2101 | 0.3756 | Forest |
2018 | 0.2733 | 0.4807 | 0.2074 | 0.3691 | Forest |
2019 | 0.2624 | 0.4458 | 0.1834 | 0.3579 | Forest |
2020 | 0.2653 | 0.4872 | 0.2218 | 0.3723 | Forest |
Year | Baseval. | Max | Ampl. | Mean | Estimation of Main Vegetation Types |
---|---|---|---|---|---|
2002 | 0.2449 | 0.5275 | 0.2827 | 0.3975 | Forest |
2003 | 0.2276 | 0.3487 | 0.1211 | 0.2745 | Grasslands |
2004 | 0.2447 | 0.4619 | 0.2172 | 0.3449 | Grasslands |
2005 | 0.2541 | 0.4251 | 0.1709 | 0.3346 | Grasslands |
2006 | 0.2837 | 0.4438 | 0.1600 | 0.3577 | Grasslands |
2007 | 0.2926 | 0.5170 | 0.2245 | 0.3968 | Grasslands |
2008 | 0.2712 | 0.4365 | 0.1653 | 0.3529 | Grasslands |
2009 | 0.2665 | 0.4630 | 0.1965 | 0.3564 | Grasslands |
2010 | 0.2750 | 0.5377 | 0.2627 | 0.3923 | Forest |
2011 | 0.2819 | 0.5063 | 0.2243 | 0.3912 | Forest |
2012 | 0.2850 | 0.5158 | 0.2307 | 0.3849 | Forest |
2013 | 0.2725 | 0.5012 | 0.2287 | 0.3733 | Forest |
2014 | 0.2715 | 0.5460 | 0.2746 | 0.4077 | Forest |
2015 | 0.2946 | 0.5190 | 0.2244 | 0.3950 | Forest |
2016 | 0.3081 | 0.5683 | 0.2602 | 0.4264 | Forest |
2017 | 0.3053 | 0.5578 | 0.2524 | 0.4162 | Forest |
2018 | 0.3016 | 0.5428 | 0.2413 | 0.4012 | Forest |
2019 | 0.2929 | 0.5591 | 0.2663 | 0.4196 | Forest |
2020 | 0.2905 | 0.5484 | 0.2578 | 0.4095 | Forest |
Independent Variable | Zone 1 | Zone 2 | Zone 3 | Zone 4 |
---|---|---|---|---|
air_temperature_2m | 280.9687 | 441.9791 | 198.6482 | 48.5518 |
precipitation | 5.5803 | 5.2305 | 6.7810 | 8.9000 |
soil_temperature | 161.7993 | 217.5032 | 101.5689 | 30.9440 |
pr | 11.8155 | 8.2197 | 18.0869 | 8.0774 |
def | 4.6275 | 7.6822 | 36.3580 | 58.7483 |
aet | 5.9457 | 5.4454 | 24.4846 | 25.9693 |
soil_moisture | 3.8887 | 2.8730 | 3.4613 | 5.8624 |
tmmn | 116.1371 | 156.3384 | 111.4930 | 22.2615 |
tmmx | 103.9297 | 127.7386 | 68.0482 | 14.1496 |
SoilMoi100_200cm | 1.9654 | 1.2187 | 1.5865 | 11.1703 |
SoilMoi40_100cm | 2.8919 | 2.9092 | 4.0294 | 68.9484 |
SoilMoi10_40cm | 3.0035 | 4.7844 | 4.1863 | 72.8044 |
SoilMoi00_10cm | 4.7541 | 3.4573 | 5.6312 | 37.7164 |
Qg | 5.0672 | 8.8173 | 7.2950 | 8.1072 |
Qair | 33.2108 | 39.3646 | 32.3019 | 34.8219 |
Dependent Variable | Zone 1 | Zone 2 | Zone 3 | Zone 4 | ||||
---|---|---|---|---|---|---|---|---|
NDVI | EVI | NDVI | EVI | NDVI | EVI | NDVI | EVI | |
constant | −3.803409 ** | −2.088772 ** | −2.882776 ** | −2.068646 ** | −2.136167 | −0.419936 | 2.546419 | −0.634158 |
air_temperature_2m | 0.007401 ** | 0.003959 ** | 0.006699 ** | 0.004553 ** | 0.008268 ** | 0.003899 * | 0.007125 | 0.005414 |
precipitation | 0.047458 | 0.060939 | −0.086581 | −0.087635 | −0.147393 | −0.140648 | −0.320704 | −0.024361 |
soil_temperature | 0.007086 ** | 0.003763 ** | 0.003380 * | 0.002259 * | 0.013212 ** | 0.009271 ** | −0.016231 | −0.003412 |
pr | 0.000054 | 0.000230 ** | 0.000072 | 0.000257 | 0.000361 | 0.000393 * | −0.000696 * | −0.000243 |
def | −0.000034 | 0.000005 | −0.000019 | 0.000003 | 0.000053 | 0.000055 ** | −0.000027 | −0.000003 |
aet | 0.000028 | 0.000010 | 0.000031 | 0.000034 | 0.000017 | 0.000038 | 0.000055 | 0.000036 |
soil_ moisture | 0.000002 | −0.000004 | −0.000031 | −0.000039 | −0.000007 | 0.000004 | 0.000022 | −0.000002 |
tmmn | 0.000542 ** | 0.000327 ** | 0.001066 ** | 0.000606 ** | 0.000749 * | 0.000579 ** | 0.000232 | 0.000241 |
tmmx | 0.000680 ** | 0.000284 ** | 0.000555 ** | 0.000302 ** | 0.000008 | 0.000113 | 0.001693 | 0.000290 |
SoilMoi100_200cm | 0.491963 ** | 0.255826 ** | 0.602195 ** | 0.474445 * | −12.1318 ** | −10.5677 ** | 0.744633 ** | 0.405073 ** |
SoilMoi40_100cm | 0.052904 | 0.154634 | 0.015860 | 0.114421 | 0.359546 | 0.213440 | 0.062536 | 0.240833 |
SoilMoi10_40cm | −0.071292 | −0.174804 | −0.045349 | −0.242848 | 0.042609 | −0.022720 | 0.124141 | 0.086111 |
SoilMoi00_10cm | −0.231088 | −0.081440 | 0.040574 | 0.051104 | 0.606331 | 0.300097 | 0.153566 | 0.111667 |
Qg | 0.004082 ** | 0.004766 ** | 0.007151 ** | 0.007434 ** | −0.00771 ** | −0.000791 | −0.02041 ** | −0.005873 |
Qair | 5.053745 | 7.735988 ** | 11.940298 ** | 12.668206 ** | −0.281842 | 0.283235 | −3.006526 | 0.951760 |
R-square | 0.911133 | 0.852603 | 0.933542 | 0.88843 | 0.876618 | 0.820434 | 0.557328 | 0.675701 |
Adjusted R-square | 0.898675 | 0.83194 | 0.924226 | 0.872789 | 0.859321 | 0.795261 | 0.495271 | 0.630238 |
F value, F (15,107) | 73.14, p = 0.000 | 41.26, p = 0.000 | 100.2, p = 0.000 | 56.80, p = 0.000 | 50.68, p = 0.000 | 32.59, p = 0.000 | 8.98, p = 0.000 | 14.86, p = 0.000 |
Study Area | Dependent Variable | Adjusted R-Square | K | Ridge Regression Equation |
---|---|---|---|---|
Zone 1 | NDVI | 0.898675 | 0.08 | |
EVI | 0.83194 | 0.22 | ||
Zone 2 | NDVI | 0.924226 | 0.03 | |
EVI | 0.872789 | 0.05 | ||
Zone 3 | NDVI | 0.859321 | 0.02 | |
EVI | 0.795261 | 0.04 | ||
Zone 4 | NDVI | 0.495271 | 0.03 | |
EVI | 0.630238 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests 2022, 13, 883. https://doi.org/10.3390/f13060883
Hao B, Xu X, Wu F, Tan L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests. 2022; 13(6):883. https://doi.org/10.3390/f13060883
Chicago/Turabian StyleHao, Bin, Xu Xu, Fei Wu, and Lei Tan. 2022. "Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery" Forests 13, no. 6: 883. https://doi.org/10.3390/f13060883
APA StyleHao, B., Xu, X., Wu, F., & Tan, L. (2022). Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests, 13(6), 883. https://doi.org/10.3390/f13060883