Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Region
2.2. Sample Terrain Design and Sample Collection
2.3. Soil Indicator Test
2.4. Soil Quality Evaluation Method
2.5. Data Handling
3. Results
3.1. The Content of Carbon, Nitrogen and Phosphorus in the Soil and Their Respective Stoichiometric Characteristics under Different Restoration Modes
3.2. The Soil Quality Evaluation after Using Different Restoration Modes
3.2.1. The Statistical Features of the Soil Indicators under Different Restoration Modes
3.2.2. Research on the Minimal Data Set of Soil Quality Evaluation Indicator
3.2.3. The Differential Characteristics of Soil Quality under Different Restoration Modes
4. Discussion
4.1. The Differential Analysis of the Carbon, Nitrogen and Phosphorus Content in the Soil and Stoichiometric Characteristics of Soil under Different Restoration Modes
4.2. The Different Analyses of Soil Indicators under Different Restoration Modes
4.3. The Soil Quality Analysis under Different Restoration Modes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romeo, F.; Settineri, G.; Sidari, M.; Mallamaci, C.; Muscolo, A. Responses of soil quality indicators to innovative and traditional thinning in a beech (Fagus sylvatica L.) forest. For. Ecol. Manag. 2020, 465, 118106. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Li, P.; Guo, Z.; Wulan, E.; Xue, S. Stocks and Stoichiometry of Soil Organic Carbon, Total Nitrogen, and Total Phosphorus after Vegetation Restoration in the Loess Hilly Region, China. Forests 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, Y.; Niklaus, P.A.; Castro-Izaguirre, N.; Clark, A.T.; Bruelheide, H.; Ma, K.; Schmid, B. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 2020, 4, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Jin, H.; Wang, G. An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China. Environ. Monit. Assess. 2010, 164, 357–368. [Google Scholar] [CrossRef]
- Holl, K. Primer of Ecological Restoration; Island Press: Washington, DC, USA, 2020. [Google Scholar]
- Wang, J.; Zhao, W.; Wang, G.; Yang, S.; Pereira, P. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Sci. Total Env. 2021, 770, 144833. [Google Scholar] [CrossRef]
- Liu, Y. Evaluation of Artificial Restoration Effect of the Abandoned Mines in Beijing; Beijing Forestry University: Beijing, China, 2012. [Google Scholar]
- Yang, Z.; Wen, C.; Yang, L.; Li, Z.; Wei, W.; Zhang, Q. Effects of different restoration methods on ecosystem multifunctionality in the semi-arid loess small watershed. Acta Ecol. Sin. 2020, 40, 8606–8617. [Google Scholar]
- Zhang, Y.; Xu, X.; Li, Z.; Liu, M.; Xu, C.; Zhang, R.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Env. 2019, 650 Pt 2, 2657–2665. [Google Scholar] [CrossRef]
- Guo, N. Study on the properties of different restoration models in abandoned areas of a coal mine. Environ. Eng. 2016, 34, 1039–1043, 1048. [Google Scholar]
- Karlen, D.L.; Mausbach, M.; Doran, J.W.; Cline, R.; Harris, R.; Schuman, G. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Fu, B.; Liu, G.; Zhu, Y. Soil quality: Concept indicators and its assessment. Acta Ecol. Sin. 2006, 26, 901–913. [Google Scholar]
- Hemati, Z.; Selvalakshmi, S.; Xia, S.; Yang, X. Identification of indicators: Monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecol. Indic. 2020, 116, 106491. [Google Scholar] [CrossRef]
- Qiu, X.; Peng, D.; Wang, H.; Wang, Z.; Cheng, S. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecol. Indic. 2019, 103, 236–247. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Ren, Y.; Wang, Z.; Zhou, Y. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 2019, 107, 105251. [Google Scholar] [CrossRef]
- Huang, T.; Yue, X.; Ge, X.; Wang, X. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agric. Res. Arid Areas 2010, 28, 141–147, 187. [Google Scholar]
- Guo, L.; Sun, Z.; Ouyang, Z.; Han, D.; Li, F. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Sefati, Z.; Khalilimoghadam, B.; Nadian, H. Assessing urban soil quality by improving the method for soil environmental quality evaluation in a saline groundwater area of Iran. Catena 2019, 173, 471–480. [Google Scholar] [CrossRef]
- Badiane, N.N.Y.; Chotte, J.-L.; Pate, E.; Masse, D.; Rouland, C. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Appl. Soil Ecol. 2001, 18, 229–238. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Hu, L.; Cai, Q. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Heuck, C.; Weig, A.; Spohn, M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol. Biochem. 2015, 85, 119–129. [Google Scholar] [CrossRef]
- Guo, S.; Xu, Y.; He, C.; Wu, S.; Ren, C.; Han, X.; Feng, Y.; Ren, G.; Yang, G. Differential responses of soil quality in revegetation types to precipitation gradients on the Loess Plateau. Agric. For. Meteorol. 2019, 276–277, 107622. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Y.; Liu, G.; Argent, R.M. Soil quality indices and their application in the hilly loess plateau region of China. Soil Res. 2006, 44, 245–254. [Google Scholar] [CrossRef]
- ‘Yan’an Soil’ Writing Group. Yan ’an soil; Xi’an Cartographic Publishing House: Shaanxi, China, 1989; Chapter 9. [Google Scholar]
- Institute of Soil Science; Chinese Academy of Sciences. Soil Physical Properties Determination Method; Science Press: Beijing, China, 1978; Chapters 2, 4, 6. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000; Chapters 2–10. [Google Scholar]
- Guan, S. Study Way of Soil Enzymes; Agriculture Press: Beijing, China, 1986; p. 376. [Google Scholar]
- Pang, S.; Ou, Z.; Shen, W.; Yuanrui, H.; Huang, X.; Zheng, W. Edaphic characteristics of different regeneration patterns in karst mountainous areas of Guangxi. J. Cent. South Univ. For. Technol. 2016, 36, 60–66. [Google Scholar]
- Shao, G.; Ai, J.; Sun, Q.; Hou, L.; Dong, Y. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Wilding, L. Spatial Variability: Its Documentation, Accomodation and Implication to Soil Surveys; Soil Spatial Variability: Pudoc, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Ma, R.; Hu, F.; Liu, J.; Wang, C.; Wang, Z.; Liu, G.; Zhao, S. Shifts in soil nutrient concentrations and C: N: P stoichiometry during long-term natural vegetation restoration. PeerJ 2020, 8, e8382. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Peng, W.; Du, H.; Xu, Q. Responses of soil and microbial C:N:P stoichiometry to vegetation succession in a Karst Region of Southwest China. Forests 2019, 10, 755. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Guoyi, Z.; Liu, L.; Manzoni, S.; Ciais, P.; Goll, D.; Peñuelas, J.; Sardans, J.; Wang, W.; Zhu, J. Natural forests promote phosphorus retention in soil. Glob. Change Biol. 2022, 28, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, C.; Zhao, L.; Ma, Y.; Tong, X.; Deng, J.; Ren, C.; Han, X.; Yang, G. Dynamics of storage and relative availability of soil inorganic nitrogen along revegetation chronosequence in the loess hilly region of China. Soil Tillage Res. 2019, 187, 11–20. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, F. C, N, and P stoichiometric characteristics of Pinus tabulaeformis plantation in the Ziwuling Region of the Loess Plateau. Acta Ecol. Sin. 2018, 38, 6870–6880. [Google Scholar]
- Liu, M.; Ma, Z. Carbon, nitrogen, and phosphorus stoichiometric characteristics of ground cover and soil in a forest-shrub ecotone in the eastern Tibetan Plateau. Chin. J. Appl. Environ. 2021, 27, 1155–1162. [Google Scholar]
- Zhang, Q.; Jia, X.; Li, T.; Shao, M.; Yu, Q.; Wei, X. Decreased soil total phosphorus following artificial plantation in the Loess Plateau of China. Geoderma 2021, 385, 114882. [Google Scholar] [CrossRef]
- Yang, D.; Luo, J.; Peng, P.; Li, W.; Shi, W.; Jia, L.; He, Y. Dynamics of nitrogen and phosphorus accumulation and their stoichiometry along a chronosequence of forest primary succession in the Hailuogou Glacier retreat area, eastern Tibetan Plateau. PLoS ONE 2021, 16, e0246433. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Zhang, M.; Xu, Y.; Zhang, S.; Meng, Z.; Hou, Y. The Development and Application of a GIS-Based Tool to Assess Forest Landscape Restoration Effects on Water Conservation Capacity. Forests 2021, 12, 1291. [Google Scholar] [CrossRef]
- Chang, R.; Jin, T.; Lü, Y.; Liu, G.; Fu, B. Soil carbon and nitrogen changes following afforestation of marginal cropland across a precipitation gradient in Loess Plateau of China. PLoS ONE 2014, 9, e85426. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, H.; Ma, S.; Wang, R.; Wang, G.; Shao, Y.; Li, C. Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicol. Environ. Saf. 2015, 113, 483–490. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, K.; Liu, J.; Lin, T.; He, P. Spatial Heterogeneity of Soil Physical Properties of Phyllostachys heterocycla cv. Pubescens Forest, Western Fu-jian. J. Northeast For. Univ. 2017, 45, 49–56. [Google Scholar]
- Zhao, X.; Wu, P.; Gao, X.; Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 2015, 26, 54–61. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, W.; Liu, M.; Zhu, P.; Liu, Q. Water holding capacity of soils and ground covers in a forest-shrub ecotone of the source area of Minjiang River. J. Soil Water Conserv. 2018, 32, 146–150. [Google Scholar]
- Hu, W.; Shao, M.; Han, F.; Reichardt, K.; Tan, J. Watershed scale temporal stability of soil water content. Geoderma 2010, 158, 181–198. [Google Scholar] [CrossRef]
- Kooch, Y.; Ghorbanzadeh, N.; Kuzyakov, Y.; Praeg, N.; Ghaderi, E. Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. Catena 2022, 210, 105951. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, N.; Liu, G.; Liu, C.; Qiang, F. Soil quality evaluation of various microtopography types at different restoration modes in the loess area of Northern Shaanxi. Catena 2021, 207, 105633. [Google Scholar] [CrossRef]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model. Geoderma 2019, 334, 82–89. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Karlen, D.L.; Hartz, T.K.; Horwath, W.R.; Pettygrove, G.S.; Scow, K.M.; Munk, D.S. On-farm assessment of soil quality in California’s Central Valley. Agron. J. 2002, 94, 12–23. [Google Scholar]
- Liu, Z.; Zhou, W.; Shen, J.; Li, S.; Ai, C. Soil quality assessment of yellow clayey paddy soils with different productivity. Biol. Fertil. Soils 2014, 50, 537–548. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Zhao, N.; Meng, P.; Zhang, J.; Lu, S.; Cheng, Z. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China. Chin. J. Appl. Ecol. 2014, 25, 351–358. [Google Scholar]
- Liu, Z.; Zhu, Q.; Qin, W.; Li, P.; Wang, J.; Kuang, G. Comparison of vegetation community between natural recovery and artificial restoration in semiarid loess area. Ecol. Environ. Sci. 2010, 19, 857–863. [Google Scholar]
Sample Area | Total Nutrients | Soil Depth/cm | Mean g/kg | Maximum g/kg | Minimum g/kg | Coefficient of Variation % |
---|---|---|---|---|---|---|
Natural restoration model | SOC | 0–20 | 4.67 ± 1.26 a | 7.03 | 2.36 | 39.81% |
20–40 | 3.34 ± 1.08 a | 5.22 | 1.65 | |||
40–60 | 2.82 ± 1.28 a | 7.31 | 0.87 | |||
TN | 0–20 | 0.48 ± 0.15 a | 0.81 | 0.27 | 40.82% | |
20–40 | 0.38 ± 0.15 b | 0.67 | 0.12 | |||
40–60 | 0.32 ± 0.13 a | 0.55 | 0.12 | |||
TP | 0–20 | 0.56 ± 0.07 a | 0.69 | 0.4 | 10.4% | |
20–40 | 0.54 ± 0.05 a | 0.64 | 0.41 | |||
40–60 | 0.54 ± 0.05 a | 0.61 | 0.41 | |||
Artificial restoration mode | SOC | 0–20 | 4.42 ± 2.01 a | 8.22 | 1.37 | 50.99% |
20–40 | 3.92 ± 1.88 a | 7.6 | 1.29 | |||
40–60 | 3.07 ± 1.67 a | 6.13 | 0.49 | |||
TN | 0–20 | 0.6 ± 0.26 a | 1.18 | 0.2 | 46.23% | |
20–40 | 0.53 ± 0.22 a | 1 | 0.19 | |||
40–60 | 0.42 ± 0.20 a | 0.84 | 0.18 | |||
TP | 0–20 | 0.52 ± 0.06 a | 0.62 | 0.39 | 10.41% | |
20–40 | 0.51 ± 0.05 a | 0.6 | 0.43 | |||
40–60 | 0.51 ± 0.05 a | 0.61 | 0.39 |
Soil Indicator | Restoration Pattern | Mean g/kg | Maximum g/kg | Minimum g/kg | Coefficient of Variation % |
---|---|---|---|---|---|
BD | Natural | 1.26 ± 0.04 a | 1.37 | 1.11 | 3.55 |
Artificial | 1.24 ± 0.11 a | 1.64 | 0.96 | 9.03 | |
FC | Natural | 31.83 ± 2.88 b | 38.47 | 20.06 | 9.06 |
Artificial | 35.39 ± 6.75 a | 56.22 | 20.19 | 19.06 | |
CWHC | Natural | 37.60 ± 2.37 a | 32.55 | 45.78 | 6.31 |
Artificial | 37.30 ± 4.52 a | 47.96 | 24.42 | 12.13 | |
TCP | Natural | 52.77 ± 2.29 a | 60.7 | 48 | 4.33 |
Artificial | 51.63 ± 3.61 a | 59.65 | 44.9 | 7 | |
SWC | Natural | 8.86 ± 2.25 a | 14.4 | 2.97 | 25.42 |
Artificial | 9.02 ± 3.18 a | 15.61 | 3.65 | 35.23 | |
AN | Natural | 34.32 ± 12.53 a | 79.87 | 16.95 | 36.51 |
Artificial | 40.01 ± 17.19 a | 91.93 | 15 | 42.97 | |
AP | Natural | 2.70 ± 1.12 a | 7.32 | 0.88 | 41.33 |
Artificial | 1.97 ± 1.07 b | 5.76 | 0.53 | 54.43 | |
AK | Natural | 86.99 ± 22.94 b | 155.97 | 55.45 | 26.37 |
Artificial | 109.66 ± 35.81 a | 223.87 | 53.4 | 32.65 | |
pH | Natural | 8.47 ± 0.07 a | 8.59 | 8.3 | 0.77 |
Artificial | 8.44 ± 0.14 a | 8.72 | 8.21 | 1.6 | |
SUC | Natural | 5.12 ± 3.68 b | 14.59 | 0.57 | 71.96 |
Artificial | 7.96 ± 5.57 a | 23.13 | 0.62 | 69.96 | |
ALP | Natural | 0.91 ± 0.31 a | 2.28 | 0.31 | 34.33 |
Artificial | 0.87 ± 0.27 a | 1.55 | 0.15 | 31.26 | |
CAT | Natural | 0.64 ± 0.11 a | 0.24 | 0.9 | 17.75 |
Artificial | 0.65 ± 0.12 a | 0.9 | 0.33 | 18.09 | |
URE | Natural | 8.75 ± 4.12 a | 19.91 | 2.26 | 47.09 |
Artificial | 9.5 ± 4.80 a | 17.05 | 1.63 | 50.54 |
1 | 2 | 3 | 4 | 5 | Classing | Norm Value | Weight 1 | Weight 2 | |
---|---|---|---|---|---|---|---|---|---|
SUC | 0.885 | 0.106 | 0.191 | −0.033 | −0.112 | 1 | 2.033 | 0.068 | |
URE | 0.870 | 0.177 | 0.177 | 0.078 | 0.074 | 1 | 1.999 | 0.067 | |
SOC | 0.842 | 0.146 | 0.176 | 0.257 | 0.143 | 1 | 1.934 | 0.068 | 0.235 |
AN | 0.817 | 0.181 | 0.056 | 0.227 | −0.062 | 1 | 1.878 | 0.061 | |
TN | 0.799 | 0.144 | 0.237 | 0.329 | −0.142 | 1 | 1.837 | 0.068 | |
ALP | 0.678 | 0.141 | −0.070 | −0.227 | 0.216 | 1 | 1.558 | 0.047 | |
CAT | 0.653 | −0.013 | 0.315 | −0.360 | 0.067 | 1 | 1.499 | 0.053 | |
CWHC | 0.144 | 0.956 | 0.096 | −0.023 | −0.002 | 2 | 1.524 | 0.076 | 0.240 |
BD | −0.055 | −0.813 | −0.418 | 0.118 | −0.085 | 2 | 1.297 | 0.069 | |
TCP | 0.325 | 0.757 | −0.315 | 0.094 | −0.093 | 2 | 1.208 | 0.064 | |
AK | 0.271 | −0.039 | 0.692 | 0.076 | −0.023 | 3 | 0.902 | 0.045 | 0.158 |
FC | 0.234 | 0.459 | 0.679 | 0.208 | 0.077 | 3 | 0.884 | 0.062 | |
SWC | 0.154 | −0.042 | 0.187 | 0.867 | 0.173 | 4 | 1.098 | 0.068 | 0.182 |
pH | −0.746 | 0.009 | −0.013 | −0.548 | 0.003 | 4 | 0.944 | 0.069 | |
AP | 0.041 | −0.095 | −0.114 | 0.012 | 0.865 | 5 | 0.993 | 0.062 | 0.185 |
TP | 0.006 | 0.185 | 0.405 | 0.253 | 0.636 | 5 | 0.731 | 0.054 | |
Eigenvalue | 5.280 | 2.544 | 1.697 | 1.603 | 1.319 | ||||
Variance contribution rate (%) | 33.000 | 15.899 | 10.605 | 10.018 | 8.241 | ||||
Accumulative contribution rate (%) | 33.000 | 48.899 | 59.504 | 69.522 | 77.763 |
Restoration Pattern | Soil Depth | All Index Data Sets | Mean | Coefficient of Variation% | Minimum Index Dataset | Mean | Coefficient of Variation % |
---|---|---|---|---|---|---|---|
Natural restoration model | 0–20 | 0.55 | 0.47 | 22.59 | 0.50 | 0.45 | 24.65 |
20–40 | 0.45 | 0.43 | |||||
40–60 | 0.40 | 0.41 | |||||
Artificial restoration mode | 0–20 | 0.54 | 0.51 | 26.8 | 0.48 | 0.47 | 25.56 |
20–40 | 0.51 | 0.47 | |||||
40–60 | 0.47 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Ai, N.; Liu, G.; Liu, C.; Zhang, Z. Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province. Forests 2022, 13, 913. https://doi.org/10.3390/f13060913
Gao R, Ai N, Liu G, Liu C, Zhang Z. Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province. Forests. 2022; 13(6):913. https://doi.org/10.3390/f13060913
Chicago/Turabian StyleGao, Rui, Ning Ai, Guangquan Liu, Changhai Liu, and Zhiyong Zhang. 2022. "Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province" Forests 13, no. 6: 913. https://doi.org/10.3390/f13060913
APA StyleGao, R., Ai, N., Liu, G., Liu, C., & Zhang, Z. (2022). Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province. Forests, 13(6), 913. https://doi.org/10.3390/f13060913