Use of Harvester Data to Estimate the Amount of Merchantable Non-Utilized Woody Material Remaining after Mechanized Cut-to-Length Forest Operations
Abstract
:1. Introduction
- (1)
- Develop mathematical functions to reconstruct and estimate the section of merchantable NUWM of balsam fir (Abies balsamea L. (Mill)) and white spruce (Picea glauca (Moench) Voss), beyond the last processed log, using on-board computer data.
- (2)
- Design a software tool to estimate and spatialize the volume of merchantable NUWM for the two target species.
- (3)
- Perform an explorative comparison of the technical and economic performance between the forecasts of the NUWM volume obtained with OBC data and conventional NUWM field inventory.
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Pre-Harvest Inventory
2.3. Machine Specifications and Operating Procedure
2.4. Post-Harvest Inventory
2.5. Data Analysis
2.5.1. Stem Reconstruction
2.5.2. Estimation of Total Tree Length above Stump Height
- Ltop: top section length (m)
- L: total log length (m)
- DBHOB: diameter at breast height over bark (cm)
- SEDOBTL: small-end diameter over bark of the last log (cm)
- ax: parameter
- H: total tree length above stump level (m)
- L: total log length (m)
- θ: Snowdon’s bias correction factor
- Hp∶ predicted values
- Ho∶ observed values
- ∶ average of the observe values Ho
- n∶ number of samples in validation data
2.5.3. Estimating Merchantable Tree-Top
- Ltopm: length of the merchantable top section (m)
- DOBM: diameter over bark merchantable (cm) and equal 9.1 cm
- a and b: estimated parameters
2.6. Software Tool
2.7. Assessment and Comparision
3. Results
3.1. Pre-Harvest Study Tree Inventory
3.2. Estimating Total Tree Height
3.3. Estimating Merchantable Top Length
3.4. Spatialization Tool
3.5. Explorative Comparison
4. Discussion
4.1. Study Limitations
4.2. Estimation of Merchantable Top Section
4.3. Spatialization Tool
4.4. Explorative Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labelle, E.R.; Jaeger, D.; Poltorak, B.J. Assessing the Ability of Hardwood and Softwood Brush Mats to Distribute Applied Loads. Croat. J. For. Eng. 2015, 36, 227–242. [Google Scholar]
- Uusitalo, J. Introduction to Forest Operations and Technology, 2010th ed.; JVP Forest Systems Oy: Tampere, Finland, 2010; ISBN 952-92-5269-2. [Google Scholar]
- Labelle, E.R.; Jaeger, D. Soil Compaction Caused by Cut-to-Length Forest Operations and Possible Short-Term Natural Rehabilitation of Soil Density. Soil Sci. Soc. Am. J. 2011, 75, 2314–2329. [Google Scholar] [CrossRef] [Green Version]
- Éditeur officiel du Québec. Loi sur L’aménagement Durable du Territoire Forestier; Gouvernement du Québec: Quebec, QC, Canada, 2021; Chapter A-18.1; p. 88.
- Plasse, J.-G. Inventaire de la Matière Ligneuse Utilisable mais non Récoltée dans les Aires de Coupe: Instructions; Ministère des Ressources Naturelles, Division des Permis D’intervention et de L’utilisation Polyvalente, Direction de L’assistance Technique: Charlesbourg, QC, Canada, 2000.
- Proulx, G.; Beaudoin, J.-M.; Asselin, H.; Bouthillier, L.; Théberge, D. Untapped Potential? Attitudes and Behaviours of Forestry Employers toward the Indigenous Workforce in Quebec, Canada. Can. J. For. Res. 2020, 50, 413–421. [Google Scholar] [CrossRef]
- Kemmerer, J.; Labelle, E.R. Using Harvester Data from On-Board Computers: A Review of Key Findings, Opportunities and Challenges. Eur. J. For. Res. 2021, 140, 1–17. [Google Scholar] [CrossRef]
- Roth, G. StanForD as a Data Source for Forest Management: A Forest Stand Reconciliation Implementation Case Study; University of Canterbury: Christchurch, New Zealand, 2016. [Google Scholar]
- Latvia University of Life Sciences and Technologies; Strubergs, A.; Lazdins, A.; Latvia State Forest Research Institute ‘Silava’; Sisenis, L. Latvia University of Life Sciences and Technologies Evaluation of Compliance of Existing Forest Machine Information Systems for the Implementation of the Standard StanForD 2010; Research for Rural Development. International Scientific Conference Proceedings (Latvia): Jelgava, Latvia, 2020; pp. 66–72. [Google Scholar]
- Terblanche, M. Unlocking the Potential of Harvester On-Board-Computer Data in the South African Forestry Value Chain; Stellenbosch University: Stellenbosch, South Africa, 2019. [Google Scholar]
- Ghaffariyan, M.R. Evaluating the Machine Utilisation Rate of Harvester and Forwarder Using On-Board Computers in Southern Tasmania (Australia). J. For. Sci. 2016, 61, 277–281. [Google Scholar] [CrossRef]
- Vesa, L.; Palander, T. Modeling Stump Biomass of Stands Using Harvester Measurements for Adaptive Energy Wood Procurement Systems. Energy 2010, 35, 3717–3721. [Google Scholar] [CrossRef]
- Rodrigues, C.K.; Lopes, E.S.; Figueiredo Filho, A.; Pelissari, A.L.; Silva, M.K.C. Modeling Residual Biomass from Mechanized Wood Harvesting with Data Measured by Forest Harvester. An. Acad. Bras. Ciênc. 2019, 91, e20190194. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Bi, H.; Watt, D.; Strandgard, M.; Li, Y. Reconstructing the Size of Individual Trees Using Log Data from Cut-to-Length Harvesters in Pinus Radiata Plantations: A Case Study in NSW, Australia. J. For. Res. 2018, 29, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Bi, H.; Watt, D.; Li, Y.; Strandgard, M.; Ghaffariyan, M.R. A New Model for Predicting the Total Tree Height for Stems Cut-to-Length by Harvesters in Pinus Radiata Plantations. J. For. Res. 2021, 32, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Ministère des Forêts, de la Faune et des Parcs Ressources et industries forestières du Québec, portrait statistique 2020. 2020. p. 160. Available online: https://mffp.gouv.qc.ca/wp-content/uploads/PortraitStatistique_2020.pdf (accessed on 12 May 2022).
- Labelle, E.; Huss, L. Creation of Value through a Harvester On-Board Bucking Optimization System Operated in a Spruce Stand. Silva Fenn. 2018, 52, 9947. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Perron, J.-Y.; Québec (Province) Direction des Inventaires Forestiers. Tarif de Cubage Général: Volume Marchand Brut; Direction des Inventaires Forestiers: Quebec, QC, Canada, 2003; ISBN 978-2-551-21866-0.
- Varjo, J. Puutavaran Mittauksen Kehittämistutkimuksia 1989–1993; Metsäntutkimuslaitoksen Tiedonantoja; Metsäntutkimuslaitos: Helsinki, Finland, 1995; ISBN 978-951-40-1434-5. [Google Scholar]
- Craigmile, P.F. EnvStats: An R Package for Environmental Statistics by Steven P. Millard. J. Agric. Biol. Environ. Stat. 2017, 22, 107–109. [Google Scholar] [CrossRef]
- Snowdon, P. A Ratio Estimator for Bias Correction in Logarithmic Regressions. Can. J. For. Res. 1991, 21, 720–724. [Google Scholar] [CrossRef]
- Huang, S.; Yang, Y.; Wang, Y. A Critical Look at Procedures for Validating Growth and Yield Models. In Modelling Forest Systems, Proceedings of the Workshop on the Interface between Reality, Modelling and the Parameter Estimation Processes, Sesimbra, Portugal, 2–5 June 2002; Amaro, A., Reed, D., Soares, P., Eds.; CABI: Wallingford, UK, 2003; pp. 271–292. ISBN 978-0-85199-693-6. [Google Scholar]
- Woo, H.; Acuna, M.; Choi, B.; Han, S. FIELD: A Software Tool That Integrates Harvester Data and Allometric Equations for a Dynamic Estimation of Forest Harvesting Residues. Forests 2021, 12, 834. [Google Scholar] [CrossRef]
- Ministère des Forêts, de la Faune et des Parcs Devis technique: Inventaires de suivi de la matière ligneuse non utilisée (MLNU)—Méthode du transect 2018. Available online: https://mffp.gouv.qc.ca/publications/forets/entreprises/Norme_echange_numerique_BGA_2018_19.pdf (accessed on 12 May 2022).
- Palander, T.; Vesa, L.; Tokola, T.; Pihlaja, P.; Ovaskainen, H. Modelling the Stump Biomass of Stands for Energy Production Using a Harvester Data Management System. Biosyst. Eng. 2009, 102, 69–74. [Google Scholar] [CrossRef]
- Siipilehto, J.; Lindeman, H.; Vastaranta, M.; Yu, X.; Uusitalo, J. Reliability of the Predicted Stand Structure for Clear-Cut Stands Using Optional Methods: Airborne Laser Scanning-Based Methods, Smartphone-Based Forest Inventory Application Trestima and Pre-Harvest Measurement Tool EMO. Silva Fenn. 2016, 50, 1568. [Google Scholar] [CrossRef] [Green Version]
Site | Harvest Area (ha) | Species Composition | Study Area (ha) | Slope (%) | DBH 1 (cm) | Height (m) | Volume (m3) 2 | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. 3 | Mean | S.D. | Mean | S.D. | |||||
1 | 10.41 | BF 4 (71%), WS 5 (29%) | 2.88 | 9–15 | 21.10 (ad) | 5.22 | 15.4 (a) | 1.90 | 0.24 (a) | 0.14 |
2 | 21.94 | BF (73%), WS (16%), WB 6 (11%) | 2.23 | 16–30 | 23.31 (b) | 5.89 | 16.80 (b) | 2.63 | 0.33 (b) | 0.21 |
3 | 8.05 | BF (79%), WS (19%), WB (2%) | 1.13 | 9–15 | 20.24 (ac) | 3.61 | 13.59 (c) | 1.82 | 0.19 (c) | 0.09 |
4 | 13.47 | BF (87%), WS (10%), WB (3%) | 1.63 | 4–8 | 19.94 (c) | 4.29 | 14.37 (d) | 1.85 | 0.20 (c) | 0.11 |
5 | 10.81 | BF (95%), WS (5%) | 1.37 | 4–8 | 22.14 (d) | 4.65 | 17.60 (b) | 1.44 | 0.31 (d) | 0.20 |
Site | Harvester | Harvesting Head | On-Board Computer | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Make and Model | Normal Operating Weight (kg) | Reach (m) | Make and Model | Minimal Weight (kg) | Maximum Felling Diameter (mm) | Feeding Speed (m/s) | Maximum Opening of Front and Rear Knives (mm) | Model | StanForD Version | |
1 | Tigercat H855C | 27.600 | 9.4 | Ponsse H8HD | 1.450 | 800 | 4.5 | 740/780 | OptiWin 4.743 | StanForD |
2 | Tigercat H855C | 27.600 | 9.4 | Ponsse H8HD | 1.450 | 800 | 4.5 | 740/780 | OptiWin 4.743 | StanForD |
3 | Tigercat H822D | 28.350 | 9.1 | LogMax 6000V | 1.342 | 710 | 5.0 | 641/466 | Log Mate 500 1.8.9.30369 | StanForD 2010 |
4 | Ponsse Ergo 07 6-wheeler | 19.000 | 11.0 | Ponsse H7 | 1.150 | 800 | 5.0 | 640/750 | OptiWin 4.710 | StanForD |
5 | Tigercat H822D | 28.350 | 9.1 | LogMax 6000V | 1.342 | 710 | 5.0 | 641/466 | Log Mate 510 2.1.13.27792 | StanForD 2010 |
Site | Species | N | DBH 1 (cm) | Height (m) | Gross Merchantable Volume (m3) | Section with Defect that Could Impact Harvesting Productivity (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D. 2 | Mean | S.D. | Mean | S.D. | First Third | Second Third | Third | |||
1 | WS 3 | 103 | 21.89 (a) | 5.38 | 15.42 (a) | 1.98 | 0.27 (a) | 0.19 | 8.74 | 1.94 | 2.91 |
BF 4 | 122 | 19.84 (a) | 4.21 | 15.33 (a) | 1.83 | 0.21 (a) | 0.10 | 5.74 | 0.82 | 0.82 | |
2 | WS | 70 | 25.06 (b) | 5.53 | 17.24 (b) | 2.59 | 0.39 (b) | 0.21 | 5.71 | 0.00 | 1.43 |
BF | 100 | 21.26 (a) | 4.78 | 16.27 (b) | 2.59 | 0.26 (b) | 0.14 | 3.00 | 1.01 | 5.00 | |
3 | WS | 95 | 20.12 (ac) | 3.51 | 12.89 (c) | 1.55 | 0.19 (c) | 0.10 | 3.16 | 1.05 | 2.11 |
BF | 99 | 20.53 (a) | 3.85 | 14.32 (c) | 1.73 | 0.20 (a) | 0.09 | 8.08 | 0.00 | 1.01 | |
4 | WS | 96 | 20.13 (ac) | 4.13 | 14.24 (d) | 1.89 | 0.21 (d) | 0.11 | 0.21 | 0.00 | 0.00 |
BF | 95 | 19.63 (a) | 4.46 | 14.47 (c) | 1.78 | 0.19 (a) | 0.11 | 5.26 | 1.05 | 3.16 | |
5 | WS | 96 | 23.82 (b) | 5.39 | 17.29 (b) | 2.26 | 0.36 (ab) | 0.19 | 3.13 | 0.00 | 1.04 |
BF | 98 | 20.79 (a) | 3.36 | 16.52 (b) | 1.75 | 0.24 (abc) | 0.09 | 8.16 | 3.06 | 3.06 | |
Grand total | 974 | 21.2 | 4.74 | 15.4 | 2.39 | 0.25 | 0.15 | 4.57 | 0.65 | 1.50 |
Species | a1 | a2 | a3 | a4 | a5 | a6 |
---|---|---|---|---|---|---|
WS 1 | −2.42692 (1.19279) | −0.02819 (0.01952) | −0.16932 (0.06823) | −0.13394 (0.17995) | −0.07533 (0.10313) | 2.79668 (0.79354) |
N = 355 R2 = 0.4064 θ = 0.9888 | ||||||
BF 2 | −0.04908 0.72460 | −0.01883 0.01800 | −0.05782 0.03751 | −0.23020 0.15465 | −0.22560 0.08366 | 1.55360 0.46305 |
N = 390 R2= 0.5249 θ = 0.9775 |
Economic and Technical Aspects | Conventional Field Method | OBC Method |
---|---|---|
Cost | 50$/ha | 12.3–13.2 $/ha |
Season of operations | Summer | All year long |
Results | Once a year | Real time—As frequent as necessary |
Labor needed | Seasonal forest technician during summer | Operation supervisor or operator already in employment |
Error | Human error | Harvester and human error |
Measurement precision | 2 cm classes | Millimeter |
Safety and health at work | Walking around debris can be dangerous | Less time in forest around debris |
Sampling scale | Plot | Tree |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delmaire, M.; Labelle, E.R. Use of Harvester Data to Estimate the Amount of Merchantable Non-Utilized Woody Material Remaining after Mechanized Cut-to-Length Forest Operations. Forests 2022, 13, 945. https://doi.org/10.3390/f13060945
Delmaire M, Labelle ER. Use of Harvester Data to Estimate the Amount of Merchantable Non-Utilized Woody Material Remaining after Mechanized Cut-to-Length Forest Operations. Forests. 2022; 13(6):945. https://doi.org/10.3390/f13060945
Chicago/Turabian StyleDelmaire, Myriam, and Eric R. Labelle. 2022. "Use of Harvester Data to Estimate the Amount of Merchantable Non-Utilized Woody Material Remaining after Mechanized Cut-to-Length Forest Operations" Forests 13, no. 6: 945. https://doi.org/10.3390/f13060945
APA StyleDelmaire, M., & Labelle, E. R. (2022). Use of Harvester Data to Estimate the Amount of Merchantable Non-Utilized Woody Material Remaining after Mechanized Cut-to-Length Forest Operations. Forests, 13(6), 945. https://doi.org/10.3390/f13060945