Research on Static Stability of Firefighting Adapter
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Remove two vectors from the list, and combine them into one vector;
- (2)
- Inserted the vector into the list;
- (3)
- Repeat if the list contains more than one vector;
- (4)
- The last vector is the final gravity vector T.
- Coordinates [x, y, z] [mm].
- -
- -
- Coordinates of a front axle pivot point FPP;
- -
- Coordinates of centers of gravities for front (FG) and rear (RG) frames;
- -
- Coordinates of centers of gravities of additional loads (FAW, RAW).
- Gravities [N].
- -
- Gravities (FG, RG, FAW, RAW).
- Slope angle is a constant;
- Frame’s articulation is variable in interval of ;
- Skidder’s rotation on a slope is variable in interval of .
- Frame’s articulation is a constant;
- Slope angle is variable in interval of ;
- Skidder’s rotation on a slope is variable in interval of .
3. Results
3.1. The Skidder with the Full Water Tank (C2 Configuration)
3.2. The Skidder with the Half-Filled Water Tank (C3 Configuration)
3.3. The Skidder with the Full Water Tank and Additional Weight in the Front (C4 Configuration)
3.4. The Skidder with the Half-Filled Water Tank and Additional Weight in the Front (C5 Configuration)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forest Research. Forest Fires and Climate Change. Available online: https://www.forestresearch.gov.uk/research/climate-change-impacts/forest-fires-and-climate-change/ (accessed on 24 June 2022).
- Chromek, I.; Hnilica, R.; Hnilicová, M.; Messingerová, V. Funkčné nadstavby, jeden zo spôsobov zvýšenia efektívnosti dostupnej techniky pri hasení lesných požiarov. In Proceedings of the Požární Ochrana 2017: Sborník Přednášek XXVI, Ročníku Mezinárodní Konference pod Záštitou Primátora Města Ostravy a Českého Národního Výboru CTIF, Ostrava, Czech Republic, 6–7 September 2017; pp. 85–87. [Google Scholar]
- Hnilica, R.; Messingerová, V.; Stanovský, M.; Slugeň, J.; Hnilicová, M.; Ferenčík, M. Possibilities of Mechanization of Works on Forest Establishment and Timber Stand Improvement/Možnosti Mechanizácie Prác pri Zakladaní a Výchove Lesa; Monograph; Technical University in Zvolen: Zvolen, Slovak Republic, 2015; p. 99. [Google Scholar]
- Wiesik, J.; Aniszewska, M. Urzadzenia Techniczne w Produkcji Lesnej; SGGW: Warszawa, Poland, 2011; pp. 237–240. [Google Scholar]
- Fire Apparatus Magazine. Wildland Firefighting 4 × 4 Brush Truck. Available online: https://www.fireapparatusmagazine.com/fire-apparatus/wildland-firefighting-4x4-brush-truck/ (accessed on 11 July 2022).
- Howe and Howe. Termite. Available online: https://www.howeandhowe.com/civil/thermite (accessed on 11 July 2022).
- BAI. Fire Fighting and Rescue Vehicles. Available online: https://www.bai.it/en/ (accessed on 11 July 2022).
- Jarvis, R. An autonomous heavy duty outdoor robotic tracked vehicle. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems, Innovative Robotics for Real-World Applications, IROS’97, Grenoble, France, 11 September 1997; Volume 1, pp. 352–359. [Google Scholar] [CrossRef]
- Cao, S.; Chen, S.; Yu, W.; Chen, S.; Xu, X. Research on Ride Comfort of Diminutive Forest Fire-fighting Vehicles. Open Autom. Control Syst. J. 2014, 6, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Hnilica, R.; Ťavodová, M.; Hnilicová, M.; Matej, J.; Messingerová, V. The Innovative Design of the Fire-Fighting Adapter for Forest Machinery. Forests 2020, 11, 843. [Google Scholar] [CrossRef]
- Gibson, H.G.; Elliott, K.C.; Persson, S.P.E. Side Slope Stability of Articulated-Frame Logging Tractors. J. Terramech. 1971, 8, 65–79. [Google Scholar] [CrossRef]
- Franceschetti, B.; Rondelli, V.; Capacci, E. Lateral Stability Performance of Articulated Narrow-Track Tractors. Agronomy 2021, 11, 2512. [Google Scholar] [CrossRef]
- Sierzputowski, G.; Dudziński, P. A mathematical model for determining and improving rollover stability of four-wheel earthmoving vehicles with arbitrary undercarriage system design. Arch. Civ. Mech. Eng. 2020, 20, 52. [Google Scholar] [CrossRef]
- Bołoz, Ł.; Kozłowski, A. Methodology for Assessing the Stability of Drilling Rigs Based on Analytical Tests. Energies 2021, 14, 8588. [Google Scholar] [CrossRef]
- Tomašić, Ž.; Šušnjar, M.; Horvat, D.; Pandur, Z. Forces Affecting Timber Skidding. Croat. J. For. Eng. 2009, 30, 2. [Google Scholar]
- Bietresato, M.; Mazzetto, F. Increasing The Safety of Agricultural Machinery Operating on Sloping Grounds by Performing Static and Dynamic Tests of Stability on a New-Concept Facility. Int. J. Saf. Secur. Eng. 2018, 8, 77–89. [Google Scholar] [CrossRef]
- Bietresato, M.; Mazzetto, F. Definition of the Layout for a New Facility to Test the Static and Dynamic Stability of Agricultural Vehicles Operating on Sloping Grounds. Appl. Sci. 2019, 9, 4135. [Google Scholar] [CrossRef] [Green Version]
- Bietresato, M.; Mazzetto, F. Stability Tests of Agricultural and Operating Machines by Means of an Installation Composed by a Rotating Platform (the “Turntable”) with Four Weighting Quadrants. Appl. Sci. 2020, 10, 3786. [Google Scholar] [CrossRef]
- Majdan, R.; Abrahám, R.; Tkáč, Z.; Drlička, R.; Matejková, E.; Kollárová, K.; Mareček, J. Static Lateral Stability of Tractor with Rear Wheel Ballast Weights: Comparison of ISO 16231-2 (2015) with Experimental Data Regarding Tyre Deformation. Appl. Sci. 2021, 11, 381. [Google Scholar] [CrossRef]
- Mazzetto, F.; Bietresato, M.; Gasparetto, A.; Vidoni, R. Simulated stability tests of a small articulated tractor designed for extreme-sloped vineyards. J. Agric. Eng. 2013, XLIV, e133. [Google Scholar] [CrossRef]
- Demšar, I.; Bernik, R.; Duhovnik, J. A Mathematical Model and Numerical Simulation of the Static Stability of a Tractor. Agric. Conspec. Sci. 2012, 77, 143–150. [Google Scholar]
- Keisan Online Calculator: Shortest Distance between Two Lines Calculator. Available online: https://keisan.casio.com/exec/system/1223531414 (accessed on 16 November 2021).
- Duka, A.; Poršinsky, T.; Pentek, T.; Pandur, Z.; Vusić, D.; Papa, I. Mobility Range of a Cable Skidder for Timber Extraction on Sloped Terrain. Forests 2018, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Reński, A. Investigation of the Influence of the Centre of Gravity Position on the Course of Vehicle Rollover. 24th Enhanced Safety of Vehicles Conference at Gothenburg, Sweden. Available online: https://www.researchgate.net/publication/279449206_Investigation_of_theInfluence_of_the_Centre_of_Gravity_Position_on_the_Course_of_Vehicle_Rollover (accessed on 24 June 2022).
Coordinates of important points (x, y, z) [mm] | FPP (−1200, 0, 500), RRW (1200, 1010, 0), RLW (1200, −1010, 0), FRW (1200, 1010, 0), FLW (1200, −1010, 0), FG (−1100, 0, 1000), RG (1100, 0, 800), FAW (−1700, 0, 340), RAW (2825, 0, 926) |
Gravities [N] | FG (gravity) = 0.615 × 7145 kg × 9.81 m/s = 43,106 N, RG (gravity) = 0.385 × 7145 kg × 9.81 m/s = 26,985 N (skidder’s weight of 7145 kg, where 61.5% is on the front axle) |
Loads: | A and/or B at RAW and/or FAW positions, as described in configurations (Table 2). |
Loads A and/or B/Configuration | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
B = 0 | X | X | X | ||
A = 0 | X | ||||
B = 500 kg | X | X | |||
A = 2688 kg (2000 L) | X | X | |||
A = 1688 kg (1000 L) | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matej, J.; Hnilica, R.; Hnilicová, M. Research on Static Stability of Firefighting Adapter. Forests 2022, 13, 1180. https://doi.org/10.3390/f13081180
Matej J, Hnilica R, Hnilicová M. Research on Static Stability of Firefighting Adapter. Forests. 2022; 13(8):1180. https://doi.org/10.3390/f13081180
Chicago/Turabian StyleMatej, Jaroslav, Richard Hnilica, and Michaela Hnilicová. 2022. "Research on Static Stability of Firefighting Adapter" Forests 13, no. 8: 1180. https://doi.org/10.3390/f13081180
APA StyleMatej, J., Hnilica, R., & Hnilicová, M. (2022). Research on Static Stability of Firefighting Adapter. Forests, 13(8), 1180. https://doi.org/10.3390/f13081180