A Farmer’s Perspective on the Relevance of Grassland-Related Innovations in Mediterranean Dehesa Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Grasslands-Related Innovations
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Information about Farmers and Farms
3.2. Relevance of the Innovations for Dehesa Farmers
3.3. Influence of Farmer and Farm Characteristics on the Relevance Given to the Innovations
4. Discussion
4.1. Relevance of the Studied Innovations and Relationship with Farmer and Farm Characteristics
4.2. Study Limitations and Future Research
5. Conclusions
- Innovations aimed at increasing the performance and resilience of grasslands such as the use of new seed mixtures to improve the performance and diversity of grasslands and the adoption of new forage drought-resistant species are considered highly relevant by Dehesa farmers. Considering the potential of these measures to improve: (i) the profitability of the farms, (ii) their resilience to face current and future threats such as increasing droughts and (iii) their ability to provide ES; these types of innovations should be targeted by policies.
- High-tech innovations were, overall, poorly rated by Dehesa farmers. This might denote low applicability to the context of Dehesas or the need for further development of the innovations and better information on their potential.
- Dissemination of research results is demanded by Dehesa farmers and could be essential to promote the innovation process.
- Famer and farm characteristics such as age, education level, and stocking rate seem to be related to the relevance given to some of the innovations and could play an important role in the willingness to adopt them.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.; Johnson, D. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Jaurena, M.; Durante, M.; Devincenzi, T.; Savian, J.V.; Bendersky, D.; Moojen, F.G.; Pere, M.; Soca, P.; Quadros, F.L.F.; Pizzio, R. Native Grasslands at the Core: A New Paradigm of Intensification for the Campos of Southern South America to Increase Economic and Environmental Sustainability. Front. Sustain. Food Syst. 2021, 5, 11. [Google Scholar] [CrossRef]
- FAO. FAO’s Work on Agricultural Innovation. 2018. Available online: https://www.fao.org/documents/card/es/c/ca2460en/ (accessed on 1 October 2021).
- Rolo, V.; Hartel, T.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; Mirck, J.; Palma, J.H.N.; Pantera, A.; Paulo, J.A. Challenges and innovations for improving the sustainability of European agroforestry systems of high nature and cultural value: Stakeholder perspectives. Sustain. Sci. 2020, 15, 1301–1315. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Caldeira, M.C.; Pereira, J.S.; Aronson, J.; Pausas, J.G. Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front. Ecol. Environ. 2011, 9, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.G.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.P.; Pinto-Correira, T.; Plieninger, T. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2019, 18, 36–42. [Google Scholar] [CrossRef]
- Pinto-Correia, T.; Ribeiro, N.; Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 2011, 82, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Moreno, G.; Pulido, F.J. The Functioning, Management and Persistence of Dehesas. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, R., Eds.; Springer Science & Business Media: New York, NY, USA, 2008; Volume 6, pp. 127–160. [Google Scholar] [CrossRef]
- Plieninger, T.; Flinzberger, L.; Hetman, M.; Horstmannshoff, I.; Reinhard-Kolempas, M.; Topp, E.; Moreno, G.; Huntsinger, L. Dehesas as high nature value farming systems: A social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecol. Soc. 2021, 26, 23. [Google Scholar] [CrossRef]
- European Commission. Interpretation Manual of European Union Habitats. 2013. Available online: https://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf (accessed on 1 October 2021).
- Habitats Directive. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna. OJEU 1992, 206, 7–50. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043 (accessed on 6 June 2022).
- Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A.G. Foraging of Iberian fattening pigs grazing natural pasture in the dehesa. Livest. Sci. 2009, 120, 135–143. [Google Scholar] [CrossRef]
- Marañón, T. Diversidad en comunidades de pasto mediterráneo: Modelos y mecanismos de coexistencia. Ecología 1991, 5, 149–157. [Google Scholar]
- Olea, L.; San Miguel-Ayanz, A. The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. In Sustainable Grassland Productivity, Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain 3–6 April 2006; Lloveras, J., González-Rodríguez, A., Vázquez-Yáñez, O., Piñeiro, J., Santamaría, O., Olea, L., Poblaciones, M.J., Eds.; Sociedad Española para el Estudio de los Pastos: Badajoz, Spain, 2006; pp. 3–13. [Google Scholar]
- Pörtner, H.; Roberts, D.C.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Aldunce, P.; Ali, E.; Begum, R.A.; Bednar-Friedl, B.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report; Technical Summary. The Intergovernmental Panel on Climate Change (IPCC). 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 6 June 2022).
- Moore, A.D.; Bell, L.W.; Revell, D.K. Feed gaps in mixed-farming systems: Insights from the Grain & Graze program. Anim. Prod. Sci. 2009, 49, 736–748. [Google Scholar] [CrossRef]
- Cerda, A.; Schnabel, S.; Ceballos, A.; Gomez-Amelia, D. Soil hydrological response under simulated rainfall in the Dehesa land system (Extremadura, SW Spain) under drought conditions. Earth Surf. Process. Landf. 1998, 23, 195–209. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Climate change and broadacre livestock production across southern Australia. 2. Adaptation options via grassland management. Crop Pasture Sci. 2013, 64, 615–630. [Google Scholar] [CrossRef]
- Matías, L.; Hidalgo-Galvez, M.D.; Cambrollé, J.; Domínguez, M.T.; Pérez-Ramos, I.M. How will forecasted warming and drought affect soil respiration in savannah ecosystems? The role of tree canopy and grazing legacy. Agric. For. Meteorol. 2021, 304–305, 108425. [Google Scholar] [CrossRef]
- Moore, A.D.; Ghahramani, A. Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability. Glob Chang. Biol. 2013, 19, 1440–1455. [Google Scholar] [CrossRef]
- Iglesias, E.; Báez, K.; Diaz-Ambrona, C.H. Assessing drought risk in Mediterranean Dehesa grazing lands. Agric. Syst. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Hernández-Esteban, A.; López-Díaz, M.L.; Cáceres, Y.; Moreno, G. Are sown legume-rich pastures effective allies for the profitability and sustainability of Mediterranean dehesas? Agrofor. Syst. 2019, 93, 2047–2065. [Google Scholar] [CrossRef]
- Hernández-Esteban, A.; Rolo, V.; López-Díaz, M.L.; Moreno, G. Long-term implications of sowing legume-rich mixtures for plant diversity of Mediterranean wood pastures. Agric. Ecosyst. Environ. 2019, 286, 106686. [Google Scholar] [CrossRef]
- Real, D.; Oldham, C.M.; Nelson, M.N.; Croser, J.; Castello, M.; Verbyla, A.; Pradhan, A.; Van Burgel, A.; Méndez, P.; Correal, E.; et al. Evaluation and breeding of tedera for Mediterranean climates in southern Australia. Crop Pasture Sci. 2014, 65, 1114–1131. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Carriere Cañada, M.; García Moreno, A.M.; Leal-Murillo, J.R.; González-Dugo, M.P.; Abellanas Oar, B.; Gómez-Giráldez, P.; Fernández-Rebollo, P. Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions. Comput. Electron. Agric. 2022, 192, 106614. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; García Moreno, A.M.; Hidalgo-Fernández, M.T.; Leal-Murillo, J.R.; Abellanas Oar, B.; Gómez-Giráldez, P.J.; González-Dugo, M.P.; Fernández-Rebollo, P. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Sci. Total Environ. 2021, 791, 148101. [Google Scholar] [CrossRef]
- Gómez-Giráldez, P.J.; Aguilar, C.; Caño, A.B.; García-Moreno, A.; González-Dugo, M.P. Remote sensing estimation of net primary production as monitoring indicator of holm oak savanna management. Ecol. Indic. 2019, 106, 105526. [Google Scholar] [CrossRef]
- Anderson, D.M.; Estell, R.E.; Holechek, J.L.; Ivey, S.; Smith, G.B. Virtual herding for flexible livestock management—A review. Rangel. J. 2014, 36, 205–221. [Google Scholar] [CrossRef]
- Chebli, Y.; El Otmani, S.; Hornick, J.L.; Keli, A.; Bindelle, J.; Chentouf, M.; Cabaraux, J.F. Using GPS Collars and Sensors to Investigate the Grazing Behavior and Energy Balance of Goats Browsing in a Mediterranean Forest Rangeland. Sensors 2022, 22, 781. [Google Scholar] [CrossRef] [PubMed]
- Jouven, M.; Lapeyronie, P.; Moulin, C.H.; Bocquier, F. Rangeland utilization in Mediterranean farming systems. Animal 2010, 4, 1746–1757. [Google Scholar] [CrossRef] [Green Version]
- Agroforward. AGroFORestry that Will Advance Rural Development. Available online: https://www.agforward.eu/index.html (accessed on 6 June 2022).
- Inno4Grass. Shared Innovation Space for Sustainable Productivity of Grasslands in Europe. Available online: https://www.inno4grass.eu/en/ (accessed on 6 June 2022).
- Damanpour, F.; Schneider, M. Phases of the adoption of innovation in organizations: Effects of environment, organization and top managers. Br. J. Manag. 2006, 17, 215–236. [Google Scholar] [CrossRef]
- Jitea, M.I.; Mihai, V.C.; Arion, F.H.; Muresan, I.C.; Dumitras, D.E. Innovation gaps and barriers in alternative innovative solutions for sustainable high nature value grasslands. Evidence from Romania. Agriculture 2021, 11, 235. [Google Scholar] [CrossRef]
- Pichlak, M. The innovation adoption process: A multidimensional approach. Organ. Manag. J. 2015, 22, 476–494. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors Determining Adoption of New Agricultural Technology by Smallholder Farmers in Developing Countries. JEDS 2015, 6, 208–216. [Google Scholar]
- Arzeni, A.; Ascione, E.; Borsotto, P.; Carta, V.; Castellotti, T.; Vagnozzi, A. Analysis of farms characteristics related to innovation needs: A proposal for supporting the public decision-making process. Land Use Policy 2021, 100, 104892. [Google Scholar] [CrossRef]
- Brunori, G.; Barjolle, D.; Dockes, A.C.; Helmle, S.; Ingram, J.; Klerkx, L.; Moschitz, H.; Nemes, G.; Tisenkopfs, T. CAP reform and innovation: The role of learning and innovation networks. EuroChoices 2013, 12, 27–33. [Google Scholar] [CrossRef]
- Moreno, G.; Staffan, B.; Burguess, P.J.; Camilli, F.; Crous-Duran, A.F.; Hao, H.; Hartel, T.; Lind, T.; Mirck, J.; Palma, J.; et al. Milestone 2.2 (MS3) Innovations to be Examined for High Nature and Cultural Value Agroforestry; Agroforward. 2015. Available online: https://www.agforward.eu/documents/Milestone2_2_Innovations.pdf (accessed on 7 June 2022).
- Porqueddu, C.; Maltoni, S.; McIvor, J.G. Strategies to mitigate seasonality of production in grassland-based systems. In Proceedings of The XX International Grassland Congress; McGilloway, D.A., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 111–122. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Thomas, D.T. Feed-base strategies that reduce risk of feed-gaps in livestock systems across Australia’s mixed farming zone. In Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future Scenarios”, Proceedings of the 19th Symposium of the European Grassland Federation, Alghero, Italy, 7–10 May 2017; Porqueddu, C., Franca, A., Lombardi, G., Molle, G., Peratoner, G., Hopkins, A., Eds.; Istituto Sistema Produzione Animale Ambiente Mediterraneo: Alghero, Italy, 2017; pp. 100–102. [Google Scholar]
- Descheemaeker, K.; Llewellyn, R.; Moore, A.; Whitbread, A. Summer-growing perennial grasses are a potential new feed source in the Mallee. Crop Pasture Sci. 2014, 65, 1033–1043. [Google Scholar] [CrossRef]
- Edwards, T.; Howieson, J.; Nutt, B.; Yates, R.; O’Hara, G.; Van Wyk, B.E. A ley-farming system for marginal lands based upon a self-regenerating perennial pasture legume. Agron Sustain Dev. 2019, 39, 13. [Google Scholar] [CrossRef] [Green Version]
- Norton, M.R.; Malinowski, D.P.; Volaire, F. Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agron Sustain Dev. 2016, 36, 29. [Google Scholar] [CrossRef] [Green Version]
- Volaire, F.; Barkaoui, K.; Norton, M. Designing resilient and sustainable grasslands for a drier future: Adaptive strategies, functional traits and biotic interactions. Eur. J. Agron. 2014, 52, 81–89. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, A.M.; Fernández-Rebollo, P.; Muñoz Espejo, M.L.; Carbonero-Muñoz, M.D. Gestión de los Pastos en la Dehesa; Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Ed.; Instituto de Investigación y Formación Agraria y Pesquera (IFAPA): Cordoba, Spain, 2016. [Google Scholar]
- González López, F.; Maya Blanco, V. Mejora de los Pastos de Secano en Extremadura; Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX): Badajoz, Spain, 2015. [Google Scholar]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Escribano, M.; Díaz-Caro, C.; Mesias, F.J. A participative approach to develop sustainability indicators for dehesa agroforestry farms. Sci. Total Environ. 2018, 640–641, 89–97. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davíðsdóttir, B.; Jónsdóttir, E.M.; Kristinsdóttir, S.M.; Ragnarsdóttir, K.V. Soil indicators for sustainable development: A transdisciplinary approach for indicator development using expert stakeholders. Agric. Ecosyst. Environ. 2016, 232, 179–189. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Contador, J.F.L.; Lozano-Parra, J.; Gómez-Gutiérrez, Á. Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecol. Indic. 2017, 74, 49–61. [Google Scholar] [CrossRef]
- Eekeren, N.V.; Philipsen, B. Soil signals of grassland: A practical guide with a checklist for soil quality assessment. In Meeting the Future Demands for Grassland Production, Proceedings of the 28th General Meeting of the European Grassland Federation, Helsinki, Finland (Online), 19–21 October 2020; Virkajärvi, P., Hakala, K., Hakojärvi, H., Helin, J., Herzon, I., Jokela, V., Uusi-Kämppä, J., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2020; pp. 752–755. [Google Scholar]
- De Miguel, Á.; Hoekstra, A.Y.; García-Calvo, E. Sustainability of the water footprint of the Spanish pork industry. Ecol. Indic. 2015, 57, 465–474. [Google Scholar] [CrossRef]
- Lassaletta, L.; Sanz-Cobena, A.; Aguilera, E.; Quemada, M.; Billen, G.; Bondeau, A.; Cayuela, M.L.; Cramer, W.; Eekhout, J.P.C.; Garnier, J. Nitrogen dynamics in cropping systems under Mediterranean climate: A systemic analysis. Environ. Res. Lett. 2021, 16, 073002. [Google Scholar] [CrossRef]
- Tarrasón, D.; Ojeda, G.; Ortiz, O.; Alcañiz, J.M. Can organic amendments be useful in transforming a mediterranean shrubland into a dehesa? Restor. Ecol. 2014, 22, 486–494. [Google Scholar] [CrossRef]
- Bailey, D.W.; Trotter, M.G.; Tobin, C.; Thomas, M.G. Opportunities to Apply Precision Livestock Management on Rangelands. Front. Sustain. Food Syst. 2021, 5, 611915. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Marini, D.; Lea, J.M.; Keshavarzi, H.; Dyall, T.R.; Lee, C. The application of virtual fencing technology effectively herds cattle and sheep. Anim. Prod. Sci. 2021, 61, 1393–1402. [Google Scholar] [CrossRef]
- Marini, D.; Llewellyn, R.; Belson, S.; Lee, C. Controlling within-field sheep movement using virtual fencing. Animals 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Huson, K.M.; Livel, F.O.; Aubry, A.; Takahashi, T.; Gordon, A.; McConnell, D.A. GrassCheck: Monitoring grass growth and maximizing grass utilisation on UK farms. In Meeting the Future Demands for Grassland Production, Proceedings of the 28th General Meeting of the European Grassland Federation, Helsinki, Finland (Online), 19–21 October 2020; Virkajärvi, P., Hakala, K., Hakojärvi, H., Helin, J., Herzon, I., Jokela, V., Uusi-Kämppä, J., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2020; pp. 714–718. [Google Scholar]
- AgriSearch. GrassCheck. Available online: https://www.agrisearch.org/about-grass-check (accessed on 4 June 2022).
- Moore, A.D.; Donnelly, J.R.; Freer, M. Grazplan: Decision support systems for Australian grazing enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro DSS. Agric. Syst. 1997, 55, 535–582. [Google Scholar] [CrossRef]
- Donnelly, J.R.; Freer, M.; Moore, A.D. Using the GrassGro decision support tool to evaluate some objective criteria for the definition of exceptional drought. Agric. Syst. 1998, 57, 301–313. [Google Scholar] [CrossRef]
- Aguilera, E.; Reyes-Palomo, C.; Díaz-Gaona, C.; Sanz-Cobena, A.; Smith, P.; García-Laureano, R.; Rodríguez-Estévez, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Chang. 2021, 69, 102319. [Google Scholar] [CrossRef]
- Topp, C.F.E.; Reckling, M.; Hanegraaf, M.; Bachinger, J.; Walker, R.L.; Buckingham, S.; Sykes, J.; Watson, C.A. Farmer friendly tools—how can they help support decision making under a changing climate? Asp. Appl. Biol. 2017, 136, 37–42. [Google Scholar]
- Reyes-Palomo, C.; Aguilera, E.; Llorente, M.; Díaz-Gaona, C.; Moreno, G.; Rodríguez-Estévez, V. Carbon sequestration offsets a large share of GHG emissions in dehesa cattle production. J. Clean. Prod. 2022, 358, 131918. [Google Scholar] [CrossRef]
- Porqueddu, C.; Melis, R.A.; Sanna, F.; Franca, A. Innovations in grassland-based farms: Focusing on the sources of inspiration for a better dissemination. In Meeting the Future Demands for Grassland Production, Proceedings of the 28th General Meeting of the European Grassland Federation, Helsinki, Finland (Online), 19–21 October 2020; Virkajärvi, P., Hakala, K., Hakojärvi, H., Helin, J., Herzon, I., Jokela, V., Uusi-Kämppä, J., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2020; pp. 665–667. [Google Scholar]
- Agresti, A. Categorical Data Analysis. John Wiley & Sons: Hoboken, NJ, USA, 2003.
- Christensen, R.H.B. Analysis of Ordinal Data with Cumulative Link Models—Estimation with the R-Package Ordinal. R-Package Version 2015. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjXquuszZX5AhXym1YBHeUzDkAQFnoECAgQAQ&url=http%3A%2F%2Fpeople.vcu.edu%2F~dbandyop%2FBIOS625%2FCLM_R.pdf&usg=AOvVaw1Np-8UtLEwvpWq_8LMWF4c (accessed on 7 June 2022).
- Christensen, R.H.B. Cumulative link models for ordinal regression with the R package ordinal. J. Stat. Softw. 2018, 35, 1–40. [Google Scholar]
- Christensen, R.H.B. A Tutorial on Fitting Cumulative Link Models with the Ordinal Package. 2015. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.19&rep=rep1&type=pdf (accessed on 7 June 2022).
- Christensen, R.H.B. A Tutorial on Fitting Cumulative Link Mixed Models with Clmm2 from the Ordinal Package. Tutorial for the R Package Ordinal. 2019. Available online: https://cran.microsoft.com/snapshot/2014-09-08/web/packages/ordinal/vignettes/clmm2_tutorial.pdf (accessed on 7 June 2022).
- Christensen, R.H.B.; Ordinal—Regression Models for Ordinal Data. R Package Version 2019.12-10. 2019. Available online: https://github.com/runehaubo/ordinal (accessed on 7 June 2022).
- McCullagh, P. Regression models for ordinal data. J. R Stat. Soc. Ser. B Stat. Methodol. 1980, 42, 109–127. [Google Scholar] [CrossRef]
- Mangiafico, S.S. One-Way Repeated Ordinal Regression with CLMM. Available online: https://rcompanion.org/handbook/G_08.html (accessed on 7 June 2022).
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Package ‘Emmeans’. 2019. Available online: https://github.com/rvlenth/emmeans (accessed on 7 June 2022).
- Consejería de Agricultura, Ganadería, Pesca. y Desarrollo Sostenible. Tabla de Equivalencias en UGM por Cabeza y Especie. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/areas/ganaderia/produccion-animal/paginas/registro-explotaciones-manual-tabla-equivalencia-ugm.html (accessed on 7 June 2022).
- Maroto-Molina, F.; Gómez-Cabrera, A.; Guerrero-Ginel, J.E.; Garrido-Varo, A.; Adame-Siles, J.A.; Pérez-Marín, D.C. Caracterización y tipificación de explotaciones de dehesa asociadas a cooperativas: Un caso de estudio en España. Rev. Mex. Cienc. Pecu. 2018, 9, 812–832. [Google Scholar] [CrossRef]
- Milán, M.J.; Bartolomé, J.; Quintanilla, R.; García-Cachán, M.D.; Espejo, M.; Herráiz, P.L.; Sánchez-Recio, J.; Piedrafita, J. Structural characterisation and typology of beef cattle farms of Spanish wooded rangelands (dehesas). Livest. Sci. 2006, 99, 197–209. [Google Scholar] [CrossRef]
- Solano, C.; Bernués, A.; Rojas, F.; Joaquín, N.; Fernandez, W.; Herrero, M. Relationships between management intensity and structural and social variables in dairy and dual-purpose systems in Santa Cruz, Bolivia. Agric. Syst. 2000, 65, 159–177. [Google Scholar] [CrossRef]
- Mair, P.; De Leeuw, J.; Groenen, P.J.F. Package ‘Gifi’. 2019. Available online: https://cran.r-project.org/web/packages/Gifi/Gifi.pdf (accessed on 7 June 2022).
- Schmitz, S.; Weiand, L.; Becker, S.; Niehoff, N.; Schwartzbach, F.; von Schneidemesser, E. An assessment of perceptions of air quality surrounding the implementation of a traffic-reduction measure in a local urban environment. Sustain. Cities Soc. 2018, 41, 525–537. [Google Scholar] [CrossRef]
- McKinley, E.; Pagès, J.F.; Ballinger, R.C.; Beaumont, N. Forgotten landscapes: Public attitudes and perceptions of coastal saltmarshes. Ocean Coast. Manag. 2020, 187, 105117. [Google Scholar] [CrossRef]
- Szumilas, M. Explaining Odds Ratios. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2019. Available online: https://www.R-project.org/ (accessed on 7 June 2022).
- Gaspar, P.; Mesías, F.J.; Escribano, M.; Rodriguez De Ledesma, A.; Pulido, F. Economic and management characterization of dehesa farms: Implications for their sustainability. Agrofor. Syst. 2007, 71, 151–162. [Google Scholar] [CrossRef]
- Gaspar, P.; Escribano, M.; Mesías, F.J.; de Ledesma, A.R.; Pulido, F. Sheep farms in the Spanish rangelands (dehesas): Typologies according to livestock management and economic indicators. Small Rumin. Res. 2008, 74, 52–63. [Google Scholar] [CrossRef]
- Hughes, N.; Soh, W.Y.; Boult, C.; Lawson, K. Defining drought from the perspective of Australian farmers. Clim. Risk Manag. 2022, 35, 100420. [Google Scholar] [CrossRef]
- Lamega, S.A.; Komainda, M.; Hoffmann, M.P.; Ayisi, K.K.; Odhiambo, J.J.O.; Isselstein, J. It depends on the rain: Smallholder farmers’ perceptions on the seasonality of feed gaps and how it affects livestock in semi-arid and arid regions in Southern Africa. Clim. Risk Manag. 2021, 34, 100362. [Google Scholar] [CrossRef]
- Thomas, D.T.; Flohr, B.M.; Monjardino, M.; Loi, A.; Llewellyn, R.S.; Lawes, R.A.; Norman, H.C. Selecting higher nutritive value annual pasture legumes increases the profitability of sheep production. Agric. Syst. 2021, 194, 103272. [Google Scholar] [CrossRef]
- European Comission. List of Potential Agricultural Practices that Eco-Schemes Could Support. 2022. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/factsheet-agri-practices-under-ecoscheme_en.pdf (accessed on 7 June 2022).
- Fernández-Habas, J.; Hidalgo-Fernández, M.T.; Leal-Murillo, J.R.; Méndez, P.; Quero, J.L.; Vanwalleghem, T.; Fernández-Rebollo, P. Effects of two water regimes on morphological traits, nutritive value and physiology of three Bituminaria bituminosa varieties from the Canary Islands. J. Agron. Crop Sci. 2021, 208, 413–426. [Google Scholar] [CrossRef]
- Real, D. Critical Agronomic Practices for Establishing the Recently Domesticated Perennial Herbaceous Forage Legume Tedera in Mediterranean-like Climatic Regions in Western Australia. Agronomy 2022, 12, 274. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. Int. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Miller, G.A.; Mitchell, M.; Barker, Z.E.; Giebel, K.; Codling, E.A.; Amory, J.R.; Michie, C.; Davison, C.; Tachtatzis, C.; Andonovic, I.; et al. Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows. Animal 2020, 14, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Umstatter, C.; Morgan-Davies, J.; Waterhouse, T. Cattle responses to a type of virtual fence. Rangel. Ecol. Manag. 2015, 68, 100–107. [Google Scholar] [CrossRef]
- Verdon, M.; Langworthy, A.; Rawnsley, R. Virtual fencing technology to intensively graze lactating dairy cattle. II: Effects on cow welfare and behavior. J. Dairy Sci. 2021, 104, 7084–7094. [Google Scholar] [CrossRef] [PubMed]
- Department of Primary Industries and Regional Development. Understanding Pastures from Space for South West Western Australia. Available online: https://www.agric.wa.gov.au/sheep/understanding-pastures-space-south-west-western-australia (accessed on 7 June 2022).
- Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. Spatial and temporal monitoring of pasture ecological quality: Sentinel-2-based estimation of crude protein and neutral detergent fiber contents. Remote Sens. 2019, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Morais, T.; Teixeira, R.; Domingos, T. Spatiotemporal patterns of pasture quality based on ndvi time-series in mediterranean montado ecosystem. Remote Sens. 2021, 13, 3820. [Google Scholar] [CrossRef]
- Hogg, N.; Davis, J.K. What is hindering the adoption of new annual pasture legumes? Extension requirements to overcome these barriers. J. Agric. Ext. 2009, 5, 29–38. [Google Scholar]
- Larson, J.A.; Roberts, R.K.; English, B.C.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Paxton, K.; Reeves, J.M. Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precis. Agric. 2008, 9, 195–208. [Google Scholar] [CrossRef]
- Walton, J.C.; Lambert, D.M.; Roberts, R.K.; Larson, J.A.; English, B.; Larkin, S.L.; Martin, W.S.; Marra, C.M.; Paxton, K.W.; Reeves, J.M. Adoption and Abandonment of Precision Soil Sampling in Cotton Production. J. Agric. Resour. Econ. 2008, 33, 428–448. [Google Scholar]
- Isgin, T.; Bilgic, A.; Forster, D.L.; Batte, M.T. Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Comput. Electron. Agric. 2008, 62, 231–242. [Google Scholar] [CrossRef]
- Junta de Andalucía. Decreto 172/2017, de 24 de Octubre, por el que se Aprueba el Plan Director de las Dehesas de Andalucía, se Crea su Comité de Seguimiento y se Modifica el Decreto 57/2011, de 15 de Marzo, por el que se Regula la Comisión Andaluza Para la Dehesa y el Decreto 530/2004, de 16 de Noviembre, por el que se Regula la Composición, las Funciones y el Régimen de Funcionamiento del Consejo Andaluz de Biodiversidad. 2017. Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-planificacion/-/asset_publisher/Jw7AHImcvbx0/content/plan-director-de-las-dehesas-de-andaluc-c3-ada/20151 (accessed on 14 July 2022).
- Plieninger, T.; Mainou, J.M.; Konold, W. Land manager attitudes toward management, regeneration, and conservation of Spanish holm oak savannas (dehesas). Landsc. Urban Plan. 2004, 66, 185–198. [Google Scholar] [CrossRef]
- Plieninger, T.; Pulido, F.J.; Konold, W. Effects of land-use history on size structure of holm oak stands in Spanish dehesas: Implications for conservation and restoration. Environ. Conserv. 2003, 30, 61–70. [Google Scholar] [CrossRef]
- Reyna-Bowen, L.; Fernandez-Rebollo, P.; Fernández-Habas, J.; Gómez, J.A. The influence of tree and soil management on soil organic carbon stock and pools in dehesa systems. Catena 2020, 190, 104511. [Google Scholar] [CrossRef]
- Hidalgo-Galvez, M.D.; Barkaoui, K.; Volaire, F.; Matías, L.; Cambrollé, J.; Fernández-Rebollo, P.; Carbonero, M.D.; Pérez-Ramos, I.M. Can trees buffer the impact of climate change on pasture production and digestibility of Mediterranean dehesas? Sci. Total Environ. 2022, 835, 155535. [Google Scholar] [CrossRef] [PubMed]
- López-Sánchez, A.; Perea, R.; Dirzo, R.; Roig, S. Livestock vs. wild ungulate management in the conservation of Mediterranean dehesas: Implications for oak regeneration. For. Ecol. Manag. 2016, 362, 99–106. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Roig, S.; Dirzo, R.; Perea, R. Effects of domestic and wild ungulate management on young oak size and architecture. Sustainability 2021, 13, 7930. [Google Scholar] [CrossRef]
- Fernandez-Habas, J.; Fernandez-Rebollo, P.; Casado, M.R.; Moreno, A.M.G.; Abellanas, B. Spatio-temporal analysis of oak decline process in open woodlands: A case study in SW Spain. J. Environ. Manag. 2019, 248, 109308. [Google Scholar] [CrossRef]
- Escribano, M.; Gaspar, P.; Mesias, F.J. Creating market opportunities in rural areas through the development of a brand that conveys sustainable and environmental values. J. Rural Stud. 2020, 75, 206–215. [Google Scholar] [CrossRef]
- Campos, P.; Ovando, P.; Mesa, B.; Oviedo, J.L. Environmental Income of Livestock Grazing on Privately-owned Silvopastoral Farms in Andalusia, Spain. Land Degrad. Dev. 2018, 29, 250–261. [Google Scholar] [CrossRef]
- Gaspar, P.; Escribano, M.; Mesias, F.J. A qualitative approach to study social perceptions and public policies in dehesa agroforestry systems. Land Use Policy 2016, 58, 427–436. [Google Scholar] [CrossRef]
- O’Rourke, E.; Charbonneau, M.; Poinsot, Y. High nature value mountain farming systems in Europe: Case studies from the Atlantic Pyrenees, France and the Kerry Uplands, Ireland. J. Rural. Stud. 2016, 46, 47–59. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Kohler, M.L.; Dauber, J.; Klimek, S. High Nature Value farming: From indication to conservation. Ecol. Indic. 2015, 57, 557–563. [Google Scholar] [CrossRef]
- Fielke, S.J.; Botha, N.; Reid, J.; Gray, D.; Blackett, P.; Park, N.; Williams, T. Lessons for co-innovation in agricultural innovation systems: A multiple case study analysis and a conceptual model. J. Agric. Educ. Ext. 2018, 24, 9–27. [Google Scholar] [CrossRef]
- van Ewijk, E.; Ros-Tonen, M.A.F. The fruits of knowledge co-creation in agriculture and food-related multi-stakeholder platforms in sub-Saharan Africa—A systematic literature review. Agric. Syst. 2021, 186, 102949. [Google Scholar] [CrossRef]
- Manda, J.; Khonje, M.G.; Alene, A.D.; Tufa, A.H.; Abdoulaye, T.; Mutenje, M.; Sentimela, P.; Manyong, V. Does cooperative membership increase and accelerate agricultural technology adoption? Empirical evidence from Zambia. Technol. Forecast. Soc. Chang. 2020, 158, 120160. [Google Scholar] [CrossRef]
Short Denomination | Description | References |
---|---|---|
Sow seed mixtures | Sowing of seed mixtures to improve grasslands’ productivity, quality, and ecosystem services such as pollination and nitrogen fixation. Mixtures of annuals mainly consist of legumes. | [6,24,25,43,44] |
Drought-resistant species | Search for drought-resistant grassland species adapted to the Dehesa environment that could develop satisfactorily in a future scenario of reduced rainfall. It can reduce the impacts of regular feed gaps during the summer season by providing out-of-season forage. | [6,18,26,44,45,46,47,48,49] |
Knowledge of grassland performance | Increasing the knowledge of farmers about productivity, quality, and phenology of grasslands species in Dehesa farms through Apps, seminars, websites or manuals. The intrinsic complexity of Mediterranean grasslands due to high variability and diversity could difficult their efficient management. Increasing the knowledge in key aspects such as the dynamics of phenology and quality of the different types of grasslands/species could help farmers with more efficient management and inform them in the search for suitable complementary forage crops. | [50,51,52] |
Monitoring soil | Monitoring and assessment of soil health through field indicators Soils of Dehesa systems are essential to sustain ecological and economic functions such as pasture production for feeding livestock and regulating water dynamics. Since management has a direct impact on soil health, field indicators can be used to assess the impact of management on soil health status and its effect on farm sustainability. | [53,54,55,56] |
Grassland fertilisation | Improving fertilisation of Dehesa grasslands and development of suitable fertilisation guidelines according to soil and fertiliser type. Application dates of nitrogen fertilisation are determinant to achieving the desired outcomes and avoiding negative effects such as legume depletion. Phosphate fertilisation is essential to maintain and promote the legume content of Mediterranean grasslands and thus improve their quality. | [44] |
Manure slurry outputs | Development of tools to make efficient use of manure and slurry generated on the farms. It could minimise the nitrogen loss and the need for external inputs. In Dehesas systems the extensive production of ruminants and monogastric livestock (pigs mainly) is sometimes combined with more intensive phases such as fattening of lambs, finishing of beef cattle, or breeding of piglets. The manure and slurry produced in these phases could be integrated into the management of the grasslands of the farm. | [57,58,59] |
GPS collars | GPS collars and associated Apps to obtain information on the localisation and behaviour of livestock. Farmers could use this information to save time in the surveillance and localisation of the animals as well as to derive information on the status of the animals. | [3,6,31,32,43,60] |
Virtual fencing | Technology based on collars attached to the animals which emit a tone and an electric pulse when they approach a pre-determined virtual fence. It could substitute the use of physical fences, improve grassland utilisation, and allow easier management of short-duration rotational grazing. | [32,43,61,62] |
Remote sensing | Use of drones and satellites to obtain information on biomass production, quality, and composition of grasslands that could be used for the management of the farm. This technology can provide information in nearly real-time on key attributes of the grasslands that can help the farmer in the decision-making. | [27,28,29,63,64] |
Software grass growth | Software and models to forecast the grass growth and biomass production in the short-term based on information on the current stage and weather forecast. It could provide useful information to plan practices such as early sowing at the beginning of autumn and make estimations on forage needs in the short term to feed livestock. It could also allow for more informed grazing management to for example increase stocking rate if higher grass growth is forecasted. | [65,66,67,68] |
Software GHG emissions | Software and models to assess the GHG emissions of the farm based on the management and provision of recommendations on how to reduce them. There is a growing interest in assessing the GHG emissions of farming activities. This is expected to have an impact on the design of public policies but also on the consumers’ preferences. The possibility of quantitatively estimating the GHG emissions at farm level could help extensive farmers to differentiate their products from those with higher GHG emissions. | [69,70,71] |
Dissemination research | Dissemination and divulgation of research on grasslands through websites, seminars, manuals, advising organisations and courses. Establishing communication channels between research and Dehesa farmers can increase the effectiveness, competitiveness, resilience, and environmental sustainability of Dehesa farms, and thereby could mean a potential innovation in this context. | [34,40,72] |
Variable | Classes | N |
---|---|---|
Farm size (FS) (ha) a | ||
Small | <78 | 11 |
Medium | 78–432 | 20 |
Large | >432 | 11 |
Stocking rate (LU/ha) | ||
Low | <0.30 | 13 |
Medium | 0.30–0.72 | 18 |
High | >0.72 | 11 |
Stocking rate without pig (LU/ha) | ||
Low | <0.29 | 11 |
Medium | 0.29–0.59 | 20 |
High | >0.59 | 11 |
Sheep | No | 30 |
Yes | 12 | |
Cattle | No | 24 |
Yes | 18 | |
Pig | No | 24 |
Yes | 18 | |
Farmer age (FA) | ||
<35 | 10 | |
35–55 | 17 | |
>55 | 15 | |
Farmer education level (FE) | ||
Prim | From primary to secondary general education | 8 |
Prof | Professional qualification (secondary vocational education) | 6 |
Uni | From university to PhD (tertiary education) | 28 |
Innovation (Response) | Variable (Predictor) | Estimate | Standard Error | OR | z Value | p-Value |
---|---|---|---|---|---|---|
Knowledge of grassland performance | Farmer age 35–55 | 3.1 | 1.1 | 21.9 | 2.8 | <0.01 ** |
Farmer age >55 | 2.7 | 1.1 | 14.6 | 2.5 | <0.05 * | |
St. rate medium | 2.4 | 1.0 | 10.9 | 2.4 | <0.05 * | |
St. rate high | 2.2 | 1.1 | 8.8 | 2.0 | <0.05 * | |
Sheep yes | 1.8 | 1.0 | 6.2 | 1.8 | 0.07 | |
Monitoring soil | Farmer age 35–55 | 2.1 | 0.8 | 7.8 | 2.5 | <0.05 * |
Farmer age >55 | 1.0 | 0.7 | 2.6 | 1.3 | 0.20 | |
Grasslands fertilisation | St. rate medium | 1.5 | 0.8 | 4.4 | 1.9 | 0.06 |
St. rate high | 0.6 | 0.8 | 1.8 | 0.7 | 0.48 | |
Cattle yes | −0.9 | 0.7 | 0.4 | −1.4 | 0.15 | |
Pig yes | 1.8 | 0.7 | 6.1 | 2.6 | <0.01 ** | |
Manure slurry outputs | St. rate medium | −1.6 | 0.8 | 0.2 | −1.9 | 0.05 |
St. rate high | 0.1 | 0.9 | 1.1 | 0.1 | 0.88 | |
Pig yes | 1.4 | 0.6 | 3.9 | 2.2 | <0.05 * | |
Virtual fencing | Farm size medium | 0.3 | 0.7 | 1.4 | 0.5 | 0.62 |
Farm size large | 1.5 | 0.8 | 4.6 | 1.9 | 0.06 | |
Remote sensing | FE prof | −0.1 | 0.9 | 0.9 | −0.3 | 0.74 |
FE uni | 1.5 | 0.8 | 4.5 | 2.0 | <0.05 * | |
Pig yes | 1.0 | 0.6 | 2.6 | 1.6 | 0.11 | |
Software grass growth | Pig yes | 1.1 | 0.6 | 3.1 | 1.9 | 0.05 |
Software GHG emissions | FE prof | 3.1 | 1.2 | 21.4 | 2.5 | <0.05 * |
FE uni | 2.3 | 0.9 | 9.7 | 2.5 | <0.05 * | |
St. rate medium | −0.9 | 0.8 | 0.4 | −1.2 | 0.22 | |
St. rate high | 1.8 | 0.9 | 6.3 | 2.1 | <0.05 * | |
Pig yes | 3.4 | 0.8 | 31.0 | 4.2 | <0.001 *** | |
Dissemination research | Farmer age 35–55 | 2.1 | 1.0 | 7.9 | 2.0 | <0.05 * |
Farmer age >55 | 2.7 | 1.0 | 14.9 | 2.7 | <0.01 ** | |
St. rate medium | 0.1 | 0.8 | 1.1 | 0.1 | 0.92 | |
St. rate high | 2.7 | 1.1 | 14.3 | 2.4 | <0.05 * | |
Sheep yes | 2.3 | 0.9 | 9.5 | 2.4 | <0.05 * | |
Pig yes | 1.5 | 0.8 | 4.6 | 1.9 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Habas, J.; Fernández-Rebollo, P.; Gallardo-Cobos, R.; Vanwalleghem, T.; Sánchez-Zamora, P. A Farmer’s Perspective on the Relevance of Grassland-Related Innovations in Mediterranean Dehesa Systems. Forests 2022, 13, 1182. https://doi.org/10.3390/f13081182
Fernández-Habas J, Fernández-Rebollo P, Gallardo-Cobos R, Vanwalleghem T, Sánchez-Zamora P. A Farmer’s Perspective on the Relevance of Grassland-Related Innovations in Mediterranean Dehesa Systems. Forests. 2022; 13(8):1182. https://doi.org/10.3390/f13081182
Chicago/Turabian StyleFernández-Habas, Jesús, Pilar Fernández-Rebollo, Rosa Gallardo-Cobos, Tom Vanwalleghem, and Pedro Sánchez-Zamora. 2022. "A Farmer’s Perspective on the Relevance of Grassland-Related Innovations in Mediterranean Dehesa Systems" Forests 13, no. 8: 1182. https://doi.org/10.3390/f13081182
APA StyleFernández-Habas, J., Fernández-Rebollo, P., Gallardo-Cobos, R., Vanwalleghem, T., & Sánchez-Zamora, P. (2022). A Farmer’s Perspective on the Relevance of Grassland-Related Innovations in Mediterranean Dehesa Systems. Forests, 13(8), 1182. https://doi.org/10.3390/f13081182