Identifying Suitable Restoration and Conservation Areas for Dracaena cinnabari Balf.f. in Socotra, Yemen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Analysis—Species Distribution
2.3. Data Analysis—Accessibility
3. Results
4. Discussion
4.1. Why Attempt Reforestation of Socotran Dragon’s Blood Trees?
4.2. Suitability Models
4.3. Reforestation and Conservation Programs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marrero, A.; Almeida, S.R.; Martín-González, M. A new species of the wild dragon tree, Dracaena (Dracaenaceae) from Gran Canaria and its taxonomic and biogeographic implications. Bot. J. Linn. Soc. 1998, 128, 291–314. [Google Scholar] [CrossRef]
- Govaerts, R.; Zonneveld, B.J.M.; Zona, S.A. World checklist of Asparagaceae. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://apps.kew.org/wcsp/ (accessed on 4 November 2021).
- Maděra, P.; Forrest, A.; Hanáček, P.; Vahalík, P.; Gebauer, R.; Plichta, R.; Jupa, R.; Van Rensburg, J.J.; Morris, M.; Nadezhdina, N.; et al. What We Know and What We Do Not Know about Dragon Trees? Forests 2020, 11, 236. [Google Scholar] [CrossRef]
- Al-Okaishi, A. Local Management System of Dragon’s Blood Tree (Dracaena cinnabari Balf. f.) Resin in Firmihin Forest, Socotra Island, Yemen. Forests 2020, 11, 389. [Google Scholar] [CrossRef]
- Miller, A.G.; Morris, M.; Diccon, A.; Atkinson, R. Ethnoflora of the Soqotra Archipelago, 1st ed.; Royal Botanic Garden: Edinburgh, UK, 2004; p. 759.
- Maděra, P.; Volařík, D.; Patočka, Z.; Kalivodová, H.; Divín, J.; Rejžek, M.; Vybíral, J.; Lvončík, S.; Jeník, D.; Hanáček, P.; et al. Sustainable Land Use Management Needed to Conserve the Dragon’s Blood Tree of Socotra Island, a Vulnerable Endemic Umbrella Species. Sustainability 2019, 11, 3557. [Google Scholar] [CrossRef]
- Adolt, R.; Habrova, H.; Madera, P. Crown age estimation of a monocotyledonous tree species Dracaena cinnabari using logistic regression. Trees-Struct. Funct. 2012, 26, 1287–1298. [Google Scholar] [CrossRef]
- Adolt, R.; Maděra, P.; Abraham, J.; Čupa, P.; Svátek, M.; Matula, R.; Šebesta, J.; Čermák, M.; Volařík, D.; Koutecký, T.; et al. Field Survey of Dracaena cinnabari Populations in Firmihin, Socotra Island: Methodology and Preliminary Results. J. Landsc. Ecol. 2013, 6, 7–34. [Google Scholar] [CrossRef]
- Adolt, R.; Pavlis, J. Age structure and growth of Dracaena cinnabari populations on Socotra. Trees-Struct. Funct. 2004, 18, 43–53. [Google Scholar] [CrossRef]
- Hubálková, I.; Maděra, P.; Volařík, D. Growth dynamics of Dracaena cinnabari under controlled conditions as the most effective way to protect endangered species. Saudi J. Biol. Sci. 2017, 24, 1445–1452. [Google Scholar] [CrossRef]
- Maděra, P.; Habrová, H.; Čermák, M.; Adolt, R.; Volařík, D. Age estimation of juvenile stages of Dracaena cinnabari Balf. F., the last stone in the mosaic of knowing its lifespan. Rend. Lincei Sci. Fis. Nat. 2020, 31, 677–686. [Google Scholar] [CrossRef]
- Maděra, P.; Habrová, H.; Šenfeldr, M.; Kholová, I.; Lvončík, S.; Ehrenbergerová, L.; Roth, M.; Nadezhdina, N.; Němec, P.; Rosenthal, J.; et al. Growth dynamics of endemic Dracaena cinnabari Balf. f. of Socotra Island suggest essential elements for a conservation strategy. Biologia 2019, 74, 339–349. [Google Scholar] [CrossRef]
- Attorre, F.; Francesconi, F.; Taleb, N.; Scholte, P.; Saed, A.; Alfo, M.; Bruno, F. Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biol. Conserv. 2007, 138, 430–439. [Google Scholar] [CrossRef]
- Miller, A. Dracaena cinnabari. The IUCN Red List of Threatened Species 2004: E.T30428A9548491. Available online: https://www.iucnredlist.org/species/30428/9548491 (accessed on 18 November 2021). [CrossRef]
- Habrova, H.; Cermak, Z.; Pavlis, J. Dragon’s blood tree–Threatened by overmaturity, not by extinction: Dynamics of a Dracaena cinnabari woodland in the mountains of Soqotra. Biol. Conserv. 2009, 142, 772–778. [Google Scholar] [CrossRef]
- Hubálková, I. Prediction of Dragon’s Blood Tree (Dracaena cinnabari Balf.) Stand Sample Density on Soqotra Island. J. Landsc. Ecol. 2011, 4, 5–17. [Google Scholar] [CrossRef]
- Rejžek, M.; Svátek, M.; Šebesta, J.; Adolt, R.; Maděra, P.; Matula, R. Loss of a single tree species will lead to an overall decline in plant diversity: Effect of Dracaena cinnabari Balf. f. on the vegetation of Socotra Island. Biol. Conserv. 2016, 196, 165–172. [Google Scholar] [CrossRef]
- Kalivodová, H.; Culek, M.; Čermák, M.; Maděra, P.; Habrová, H. Potential importance of Socotra dragon’s blood tree cloud forests and woodlands for capturing horizontal precipitation. Rend. Lincei Sci. Fis. Nat. 2020, 31, 607–621. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Al-Okaishi, A.; Madera, P. Sap Flow Measurements in a Socotra Dragon’s Blood Tree (Dracaena cinnabari) in its Area of Origin. Trop. Plant Biol. 2018, 11, 107–118. [Google Scholar] [CrossRef]
- Almeida Pérez, R.S. Dracaena draco (L.) L. In Atlas y Libro Rojo de la Flora Vascular Amenazada de España, 2nd ed.; Bañares, A., Blanca, G., Güemes, J., Moreno, J.C., Ortiz, S., Eds.; Publicaciones de O.A.P.N.: Madrid, Spain, 2004; pp. 680–681. [Google Scholar]
- Andersen, G.L.; Krzywinski, K.; Talib, M.; Musa, M.A.M. Endangered Dracaena ombet Population in the Red Sea Hills, Sudan, Recovers After Abrupt Change. Front. Environ. Sci. 2022, 10, 793583. [Google Scholar] [CrossRef]
- Bari, E. Sudan Conservation of Vegetation in Africa South of the Sahara. Acta Phytogeogr. Suec. 1968, 54, 59–64. [Google Scholar]
- Elnoby, S.K.; Moustafa, A.A.; Mansour, S.R. Impact of climate change on the endangered Nubian dragon tree (Dracaena ombet) in the South Eastern of Egypt. Catrina 2017, 16, 23–28. [Google Scholar] [CrossRef]
- Ghazaly, U. Effect of Climatic Change on the endangered Dracaena ombet tree in the Gabel Elba Protected Area in Egypt. Mt. Forum Bull. 2008, VIII, 11–12. [Google Scholar]
- Kamel, M.; Ghazaly, U.M.; Callmander, M.W. Conservation status of the Endangered Nubian dragon tree Dracaena ombet in Gebel Elba National Park, Egypt. Oryx 2015, 49, 704–709. [Google Scholar] [CrossRef]
- Habrova, H.; Pavlis, J. Dynamic response of woody vegetation on fencing protection in semi-arid areas; Case study: Pilot exclosure on the Firmihin Plateau, Socotra Island. Saudi J. Biol. Sci. 2017, 24, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Marrero, A.; Almeida, R.S.; Roca, A. Diáspora y rescate: Acciones para la conservación del Drago de Gran Canaria, Dracaena tamaranae. In Proceedings of the V Congreso de Biología de la Conservación de Plantas, Minorca, Spain, 28 September–1 October 2011; Available online: https://www.researchgate.net/profile/Rafael-S-Perez/publication/270822517_Diaspora_y_rescate_acciones_para_la_conservacion_del_drago_de_Gran_Canaria_Dracaena_tamaranae/links/54b58bbf0cf28ebe92e7913f/Diaspora-y-rescate-acciones-para-la-conservacion-del-drago-de-Gran-Canaria-Dracaena-tamaranae.pdf (accessed on 1 January 2022).
- Almeida Pérez, R.S. Sobre la presencia de Dracaena draco (L.) L. En Gran Canaria (Islas Canarias): Aportación corológica, estado actual y significación biogeográfica. Bot. Macarónesica 2003, 24, 17–38. [Google Scholar]
- Marrero, A.; Almeida, S.R. A new subspecies, Dracaena draco (L.) L. subsp. caboverdeana Marrero Rodr. & R. Almeida (Dracaenaceae) from Cape Verde Islands. Int. J. Geobot. Res. 2012, 2, 35–40. [Google Scholar] [CrossRef]
- Attorre, F.; Van Damme, K. Twenty years of biodiversity research and nature conservation in the Socotra Archipelago (Yemen). Rend. Fis. Acc. Lincei 2020, 31, 563–569. [Google Scholar] [CrossRef]
- Van Damme, K.; Banfield, L. Past and present human impacts on the biodiversity of Socotra Island (Yemen): Implications for future conservation. Zoöl. Middle East 2011, 54, 31–88. [Google Scholar] [CrossRef]
- Agrillo, E.; Filipponi, F.; Pezzarossa, A.; Casella, L.; Smiraglia, D.; Orasi, A.; Attorre, F.; Taramelli, A. Earth Observation and Biodiversity Big Data for Forest Habitat Types Classification and Mapping. Remote Sens. 2021, 13, 1231. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Chang, H.; Yeung, D.-Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; Volume 1. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Weiß, C.H. StatSoft, Inc., Tulsa, OK.: STATISTICA, Version 8. AStA Adv. Stat. Anal. 2007, 91, 339–341. [Google Scholar] [CrossRef]
- Belsley, D.A. Conditioning Diagnostics: Collinearity and Weak Data Regression, 1st ed.; Wiley-Interscience: Baltimore, MD, USA, 1991; p. 396. [Google Scholar] [CrossRef]
- Craney, T.A.; Surles, J.G. Model-Dependent Variance Inflation Factor Cutoff Values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- Etikan, I.; Kabiru, B. Sampling and Sampling Methods. Biom. Biostat. Int. J. 2017, 5, 00149. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis with Readings, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1995; pp. 352–389. [Google Scholar]
- Tay, R. Correlation, variance inflation and multicollinearity in regression model. J. East. Asia Soc. Transp. Stud. 2017, 12, 2006–2015. [Google Scholar]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites. Ecography 2019, 42, 535–548. [Google Scholar] [CrossRef]
- Ali, A.; Shamsuddin, S.M.; Ralescu, A.L. Classification with class imbalance problem. Int. J. Adv. Soft Compu. Appl. 2013, 5, 3. [Google Scholar]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Chawla, N.V.; Japkowicz, N.; Kotcz, A. Special issue on learning from imbalanced data sets. ACM SIGKDD Explor. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Grimmett, L.; Whitsed, R.; Horta, A. Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. Ecol. Model. 2020, 431, 109194. [Google Scholar] [CrossRef]
- Qiao, H.; Soberon, J.; Peterson, A.T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
- Riccardi, T.; Malatesta, L.; Van Damme, K.; Suleiman, A.S.; Farcomeni, A.; Rezende, M.; Vahalík, P.; Attorre, F. Environmental factors and human activity as drivers of tree cover and density on the Island of Socotra, Yemen. Rend. Lincei Sci. Fis. Nat. 2020, 31, 703–718. [Google Scholar] [CrossRef]
- Bobbert, A.C. Energy expenditure in level and grade walking. J. Appl. Physiol. 1960, 15, 1015–1021. [Google Scholar] [CrossRef]
- Marcaria, R. Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocita ed inclinazioni del terreno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez 1938, 3, 299–368. [Google Scholar]
- Minetti, A.E.; Moia, C.; Roi, G.S.; Susta, D.; Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 2002, 93, 1039–1046. [Google Scholar] [CrossRef]
- Páez, A.; Anjum, Z.; Dickson-Anderson, S.E.; Schuster-Wallace, C.J.; Ramos, B.M.; Higgins, C.D. Comparing distance, time, and metabolic energy cost functions for walking accessibility in infrastructure-poor regions. J. Transp. Geogr. 2020, 82, 102564. [Google Scholar] [CrossRef]
- Al-Okaishi, A. Exploring the historical distribution of Dracaena cinnabari using ethnobotanical knowledge on Socotra Island, Yemen. J. Ethnobiol. Ethnomed. 2021, 17, 22. [Google Scholar] [CrossRef]
- Mies, B.A.; Beyhl, F.E. The vegetation ecology of Soqotra. In Conservation and Sustainable Use of Biodiversity of Soqotra Archipelago, Proceedings of the First International Symposium on Soqotra Island: Present and Future, Aden, Yemen, 24–28 March 1996; Dumont, H., Ed.; UNEP/GEF Publications: New York, NY, USA, 1998; Technical Series; Volume 1, pp. 35–81. [Google Scholar]
- Vasconcelos, R.; Pujol-Buxó, E.; Llorente, G.A.; Saeed, A.; Carranza, S. Micro-Hotspots for Conservation: An Umbrella Tree Species for the Unique Socotran Reptile Fauna. Forests 2020, 11, 353. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Dong, P.; Zhang, D.; Yu, W.; Ma, Z.; Chen, G.; Liu, Z.; Du, J.; Chen, B.; et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manag. 2020, 478, 118517. [Google Scholar] [CrossRef]
- Jensen, D.A.; Rao, M.; Zhang, J.; Grøn, M.; Tian, S.; Ma, K.; Svenning, J.-C. The potential for using rare, native species in reforestation–A case study of yews (Taxaceae) in China. For. Ecol. Manag. 2021, 482, 118816. [Google Scholar] [CrossRef]
- López-Tirado, J.; Vessella, F.; Schirone, B.; Hidalgo, P.J. Trends in evergreen oak suitability from assembled species distribution models: Assessing climate change in south-western Europe. New For. 2018, 49, 471–487. [Google Scholar] [CrossRef]
- Mateo, R.G.; Gastón, A.; Aroca-Fernández, M.J.; Broennimann, O.; Guisan, A.; Saura, S.; García-Viñas, J.I. Hierarchical species distribution models in support of vegetation conservation at the landscape scale. J. Veg. Sci. 2019, 30, 386–396. [Google Scholar] [CrossRef]
- Gornish, E.; Arnold, H.; Fehmi, J. Review of seed pelletizing strategies for arid land restoration. Restor. Ecol. 2019, 27, 1206–1211. [Google Scholar] [CrossRef]
- Moore, M.-L.; Riddell, D.; Vocisano, D. Scaling Out, Scaling Up, Scaling Deep: Strategies of Non-profits in Advancing Systemic Social Innovation. J. Corp. Citizsh. 2015, 1, 67–84. [Google Scholar] [CrossRef]
- Campos-Silva, J.V.; Hawes, J.E.; Freitas, C.T.; Andrade, P.C.M.; Peres, C.A. Community-Based Management of Amazonian Biodiversity Assets. In Participatory Biodiversity Conservation: Concepts, Experiences, and Perspectives; Springer: Cham, Switzerland, 2020; pp. 99–111. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4: Data Grid. CGIAR Consortium for Spatial Information. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 10 May 2022).
- Google Maps. Available online: https://www.google.com/maps/place/12%C2%B023’31.4%22N+53%C2%B059’56.1%22E/@12.3917117,53.9986001,1078m/data=!3m1!1e3!4m6!3m5!1s0x0:0x4564d658ba0e9d14!7e2!8m2!3d12.3920582!4d53.9989207 (accessed on 27 May 2021).
Bands | Description | Unit | Scale |
---|---|---|---|
bio01 | Annual mean temperature | °C | 0.1 |
bio02 | Mean diurnal range (mean of monthly (max–min temperature)) | °C | 0.1 |
bio03 | Isothermality (bio02/bio07) | % | 0 |
bio04 | Temperature seasonality (standard deviation × 100) | °C | 0.01 |
bio05 | Max temperature of warmest month | °C | 0.1 |
bio06 | Min temperature of coldest month | °C | 0.1 |
bio07 | Annual temperature range (bio05–bio06) | °C | 0.1 |
bio08 | Mean temperature of wettest quarter | °C | 0.1 |
bio09 | Mean temperature of driest quarter | °C | 0.1 |
bio10 | Mean temperature of warmest quarter | °C | 0.1 |
bio11 | Mean temperature of coldest quarter | °C | 0.1 |
bio12 | Annual precipitation | mm | 0 |
bio13 | Precipitation of wettest month | mm | 0 |
bio14 | Precipitation of driest month | mm | 0 |
bio15 | Precipitation seasonality (coefficient of variation) | CoV | 0 |
bio16 | Precipitation of wettest quarter | mm | 0 |
bio17 | Precipitation of driest quarter | mm | 0 |
bio18 | Precipitation of warmest quarter | mm | 0 |
bio19 | Precipitation of coldest quarter | mm | 0 |
Bands | Description | Unit | Scale |
---|---|---|---|
CEC | Cation-exchange capacity (at pH 7) (0–5 cm depth) | mmol(c)/kg | 0.1 |
pH | Potential of hydrogen (0–5 cm depth) | pH*10 | 0.1 |
Sand | Sand content (0–5 cm depth) | g/kg | 0 |
Variables | Description | Tolerance | Variance | R-Squared |
---|---|---|---|---|
Aspect | Aspect | 0.9825247 | 1.0178 | 0.0174753 |
“bio01” | Annual mean temperature | 0.0004400 | 2272.7789 | 0.9995600 |
“bio02” | Mean diurnal range | 0.0073897 | 135.3231 | 0.9926103 |
“bio03” | Isothermality (bio02/bio07) | 0.0742739 | 13.4637 | 0.9257261 |
“bio04” | Max temperature of warmest month | 0.1134717 | 8.8128 | 0.8865283 |
“bio05” | Min temperature of coldest month | 0.0006309 | 1585.0028 | 0.9993691 |
“bio06” | Annual temperature range (bio05-bio06) | 0.0003536 | 2827.8492 | 0.9996464 |
“bio07” | Mean temperature of wettest quarter | 0.0000000 | ||
“bio08” | Mean temperature of driest quarter | 0.0004968 | 2012.9537 | 0.9995032 |
“bio09” | Mean temperature of warmest quarter | 0.0004151 | 2408.8149 | 0.9995849 |
“bio10” | Mean temperature of coldest quarter | 0.0000000 | ||
“bio11” | Annual precipitation | 0.0003522 | 2839.0579 | 0.9996478 |
“bio12” | Precipitation of wettest month | 0.0016195 | 617.4925 | 0.9983805 |
“bio13” | Precipitation of driest month | 0.0054004 | 185.1713 | 0.9945996 |
“bio14” | Precipitation seasonality | 0.0649898 | 15.3870 | 0.9350102 |
“bio15” | Precipitation of wettest quarter | 0.0897891 | 11.1372 | 0.9102109 |
“bio16” | Precipitation of driest quarter | 0.0016349 | 611.6759 | 0.9983651 |
“bio17” | Precipitation of warmest quarter | 0.0129514 | 77.2116 | 0.9870486 |
“bio18” | Precipitation of coldest quarter | 0.0000000 | ||
“bio19” | Precipitation of coldest quarter | 0.0026119 | 382.8649 | 0.9973881 |
CEC | Cation-exchange capacity | 0.2232478 | 4.4793 | 0.7767522 |
pH | 0.1014427 | 9.8578 | 0.8985573 | |
Sand | Sand content | 0.1351782 | 7.3976 | 0.8648218 |
Slope | 0.8471080 | 1.1805 | 0.1528920 |
Bands | Description | Tolerance | Variance | R-Squared |
---|---|---|---|---|
“bio01” | Annual mean temperature | 0.4317074 | 2.3163837 | 0.5682926 |
“bio04” | Max temperature of warmest month | 0.4734176 | 2.1123002 | 0.5265824 |
“bio15” | Precipitation of wettest quarter | 0.2625159 | 3.8092930 | 0.7374841 |
CEC | Cation-exchange capacity | 0.3358107 | 2.9778686 | 0.6641893 |
Sand | Sand content | 0.1435930 | 6.9641276 | 0.8564070 |
slope | Slope | 0.8719841 | 1.1468100 | 0.1280159 |
pH | pH | 0.1060253 | 9.4317117 | 0.8939747 |
Classified 0 | Classified 1 | |
---|---|---|
Observed 0 | 4570 | 740 |
Observed 1 | 192 | 5022 |
Variable | Importance |
---|---|
pH | 1.000000 |
bio15 | 0.875614 |
bio04 | 0.677423 |
bio01 | 0.675045 |
CEC | 0.548218 |
Sand | 0.498888 |
Slope | 0.325849 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezende, M.; Maděra, P.; Vahalík, P.; Van Damme, K.; Habrová, H.; Riccardi, T.; Attorre, F.; De Sanctis, M.; Sallemi, G.; Malatesta, L. Identifying Suitable Restoration and Conservation Areas for Dracaena cinnabari Balf.f. in Socotra, Yemen. Forests 2022, 13, 1276. https://doi.org/10.3390/f13081276
Rezende M, Maděra P, Vahalík P, Van Damme K, Habrová H, Riccardi T, Attorre F, De Sanctis M, Sallemi G, Malatesta L. Identifying Suitable Restoration and Conservation Areas for Dracaena cinnabari Balf.f. in Socotra, Yemen. Forests. 2022; 13(8):1276. https://doi.org/10.3390/f13081276
Chicago/Turabian StyleRezende, Marcelo, Petr Maděra, Petr Vahalík, Kay Van Damme, Hana Habrová, Tullia Riccardi, Fabio Attorre, Michele De Sanctis, Grazia Sallemi, and Luca Malatesta. 2022. "Identifying Suitable Restoration and Conservation Areas for Dracaena cinnabari Balf.f. in Socotra, Yemen" Forests 13, no. 8: 1276. https://doi.org/10.3390/f13081276
APA StyleRezende, M., Maděra, P., Vahalík, P., Van Damme, K., Habrová, H., Riccardi, T., Attorre, F., De Sanctis, M., Sallemi, G., & Malatesta, L. (2022). Identifying Suitable Restoration and Conservation Areas for Dracaena cinnabari Balf.f. in Socotra, Yemen. Forests, 13(8), 1276. https://doi.org/10.3390/f13081276