Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Treatments
2.3. Soil Collection and Chemical Analysis
2.4. Extraction and Sequencing of Soil Bacterial DNA
2.5. Analysis Methods
3. Results
3.1. Effects of NAR on Soil Nutrient Contents
3.2. Changes in Soil Bacterial Community Composition
3.3. Changes in Soil Bacterial Community Diversity
3.4. Response of Soil Bacterial Community to Soil Environmental Factors
4. Discussion
4.1. Effects of NAR Stress on Soil Bacterial Community Structure
4.2. Effects of NAR Stress on Bacterial Community Diversity in Forest Soil
4.3. Interactions between Soil Bacterial Communities and Soil Environmental Factors under NAR Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
AR2.5 | 0.42 | 0.47 | 0.65 | 0.66 | 0.74 | 1.57 | 1.67 | 1.30 | 0.63 | 0.47 | 0.45 | 0.28 |
AR3.5 | 0.28 | 0.31 | 0.43 | 0.44 | 0.49 | 1.05 | 1.12 | 0.87 | 0.42 | 0.31 | 0.30 | 0.19 |
AR4.5 | 0.14 | 0.16 | 0.22 | 0.22 | 0.25 | 0.52 | 0.56 | 0.43 | 0.21 | 0.16 | 0.15 | 0.09 |
References
- Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C.P.; Hao, J. Soil Acidification in CHINA: Is Controlling SO2 Emissions Enough? ACS Publications: Washington, DC, USA, 2009. [Google Scholar]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Zhang, J. Changing trends of acid rain types in the Yangtze River Delta region. J. Nanjing For. Univ. 2021, 45, 168. (In Chinese) [Google Scholar]
- Wang, C.; Fang, Y.; An, W.; Zeng, C.; Wang, W.; Sardans, J.; Fernández-Martínez, M.; Peñuelas, J. Acid rain mediated nitrogen and sulfur deposition alters soil nitrogen, phosphorus and carbon fractions in a subtropical paddy. Catena 2020, 195, 104876. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, G.G.; Tang, C.; Fang, H.; Duan, J.; Yu, X. Effects of one-year simulated nitrogen and acid deposition on soil respiration in a subtropical plantation in China. Forests 2020, 11, 235. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M. Acid rain and its ecological consequences. J. Environ. Biol. 2007, 29, 15. [Google Scholar]
- Xu, H.; Zhang, J.; Ouyang, Y.; Lin, L.; Quan, G.; Zhao, B.; Yu, J. Effects of simulated acid rain on microbial characteristics in a lateritic red soil. Environ. Sci. Pollut. Res. 2015, 22, 18260–18266. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Zhao, W.; Wang, L.; Xie, D.; Huo, W.; Wu, Y.; Zhang, J. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Sci. Total Environ. 2017, 601, 669–678. [Google Scholar] [CrossRef]
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Kurth, F.; Zeitler, K.; Feldhahn, L.; Neu, T.R.; Weber, T.; Krištůfek, V.; Wubet, T.; Herrmann, S.; Buscot, F.; Tarkka, M.T. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol. 2013, 13, 205. [Google Scholar] [CrossRef]
- Uroz, S.; Ioannidis, P.; Lengelle, J.; Cébron, A.; Morin, E.; Buee, M.; Martin, F. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS ONE 2013, 8, e55929. [Google Scholar] [CrossRef]
- Yuan, Y.; Si, G.; Wang, J.; Luo, T.; Zhang, G. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol. Ecol. 2014, 87, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Li, M.; Lu, P.; Lü, G.F.; Niu, Y.F. Bacterial community in the rhizosphere soil of Betula platyphylla in the Daqing Mountains, Hohhot. Acta Ecol. Sin. 2019, 39, 3586–3596. [Google Scholar]
- Griffiths, R.I.; Thomson, B.C.; James, P.; Bell, T.; Bailey, M.; Whiteley, A.S. The bacterial biogeography of British soils. Environ. Microbiol. 2011, 13, 1642–1654. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Yu, J.J.; Yu, H.M.; Ding, Y.; Zhang, Y.G. Diversity and community assembly of forest soil microorganisms in different climatic zones. Sci. Silv. Sin. 2022, 58, 70–79. (In Chinese) [Google Scholar]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef]
- Wang, X.T.; Lan, X.F.; An, W.L.; Xu, X.P.; Wang, W.Q. Effect of simulated acid rain on paddy soil bacterial abundance and diversity in Fuzhou Plain. Chin. J. Environ. Sci. 2019, 39, 1237–1244. [Google Scholar]
- Liu, Z.; Wei, H.; Zhang, J.; Saleem, M.; He, Y.; Zhong, J.; Ma, R. Seasonality regulates the effects of acid rain on microbial community in a subtropical agricultural soil of Southern China. Ecotoxicol. Environ. Saf. 2021, 224, 112681. [Google Scholar] [CrossRef]
- Kuypers, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Reed, S.C.; Cleveland, C.C.; Townsend, A.R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 489–512. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Res. 2017, 81, e16–e63. [Google Scholar] [CrossRef]
- Horner-Devine, M.C.; Lage, M.; Hughes, J.B.; Bohannan, B.J. A taxa–area relationship for bacteria. Nature 2004, 432, 750–753. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Sun, H.Z.; Yang, X. Structure and functional diversity of bacterial community in rhizoshere soil of typical vegetation in the riparian zone along the downstream of Songhua River. Chin. J. Environ. Sci. 2022, 43, 2182–2191. [Google Scholar]
- Lv, Y.; Wang, C.; Jia, Y.; Wang, W.; Ma, X.; Du, J.; Pu, G.; Tian, X. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Appl. Soil Ecol. 2014, 79, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.B.; Cheng, C.; Zhang, S.; Chen, J.Y.; Lu, H.L. Soil PhytOC sequestration in Quercus acutissima forest in northern subtropics. J. Zhejiang A F Univ. 2021, 38, 1–9. (In Chinese) [Google Scholar]
- Liu, X.; Zhao, W.; Meng, M.; Fu, Z.; Xu, L.; Zha, Y.; Yue, J.; Zhang, S.; Zhang, J. Comparative effects of simulated acid rain of different ratios of SO42− to NO3− on fine root in subtropical plantation of China. Sci. Total Environ. 2018, 618, 336–346. [Google Scholar] [CrossRef]
- Xia, Z.; Bai, E.; Wang, Q.; Gao, D.; Zhou, J.; Jiang, P.; Wu, J. Biogeographic distribution patterns of bacteria in typical Chinese forest soils. Front. Microbiol. 2016, 7, 1106. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [Green Version]
- Pankratov, T.A.; Kirsanova, L.A.; Kaparullina, E.N.; Kevbrin, V.V.; Dedysh, S.N. Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int. J. Syst. Evol. Microbiol. 2012, 62, 430–437. [Google Scholar] [CrossRef]
- Pankratov, T.A.; Ivanova, A.O.; Dedysh, S.N.; Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 2011, 13, 1800–1814. [Google Scholar] [CrossRef]
- He, Y.S.; He, T.H.; Feng, Y.Q.; Cui, Q.; Chen, X.Q.; Zhao, M.T.; Qiu, W.J. Characteristics and distribution of soil bacterial of salt marsh tidal wetland in Ordos Platform. Acta Ecol. Sin. 2022, 42, 3345–3355. [Google Scholar]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.U.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Kuramae, E.E.; de Hollander, M.; Pijl, A.S.; van Veen, J.A.; Tsai, S.M. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 2013, 83, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Magill, A.H.; Aber, J.D. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biol. Biochem. 2000, 32, 597–601. [Google Scholar] [CrossRef]
- Jeanbille, M.; Buée, M.; Bach, C.; Cébron, A.; Frey-Klett, P.; Turpault, M.P.; Uroz, S. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb. Ecol. 2016, 71, 482–493. [Google Scholar] [CrossRef]
- Kosolapov, D.B.; Kuschk, P.; Vainshtein, M.B.; Vatsourina, A.V.; Wiessner, A.; Kästner, M.; Müller, R.A. Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng. Life Sci. 2004, 4, 403–411. [Google Scholar] [CrossRef]
- Nacke, H.; Thürmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; Schöning, I.; Schrumpf, M.; Daniel, R. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 2011, 6, e17000. [Google Scholar] [CrossRef]
- Wang, N.; Wang, C.K.; Pan, X.C.; Bai, C.B. Effects of Simulated Acid Rain on Soil Bacterial Community Diversity in Buffer Zone of Broad-Leaved Forest Invaded by Moso Bamboo. Res. Environ. Sci. 2020, 33, 1478–1487. (In Chinese) [Google Scholar]
- Zeng, Q.; Dong, Y.; An, S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China. PLoS ONE 2016, 11, e152894. [Google Scholar]
- Bell, C.W.; Asao, S.; Calderon, F.; Wolk, B.; Wallenstein, M.D. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol. Biochem. 2015, 85, 170–182. [Google Scholar] [CrossRef]
- Qin, H.; Li, C.X.; Ren, Q.S. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro—Fluctuation zone of the Three Gorges Reservoir region. Acta Ecol. Sin. 2017, 37, 3494–3504. (In Chinese) [Google Scholar]
- Uroz, S.; Oger, P.; Lepleux, C.; Collignon, C.; Frey-Klett, P.; Turpault, M. Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res. Microbiol. 2011, 162, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Rösch, C.; Mergel, A.; Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microb. 2002, 68, 3818–3829. [Google Scholar] [CrossRef]
- Nelson, M.B.; Martiny, A.C.; Martiny, J.B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl. Acad. Sci. USA 2016, 113, 8033–8040. [Google Scholar] [CrossRef] [PubMed]
- Dalal, R.C.; Wang, W.; Robertson, G.P.; Parton, W.J. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Soil Res. 2003, 41, 165–195. [Google Scholar] [CrossRef]
- Xia, M.; Talhelm, A.F.; Pregitzer, K.S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytol. 2015, 208, 715–726. [Google Scholar] [CrossRef]
- Větrovský, T.; Steffen, K.T.; Baldrian, P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 2014, 9, e89108. [Google Scholar]
- Lladó, S.; Žifčáková, L.; Větrovský, T.; Eichlerová, I.; Baldrian, P. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol. Fertil. Soils 2016, 52, 251–260. [Google Scholar] [CrossRef]
- Zhao, P.; Bao, J.; Wang, X.; Liu, Y.; Li, C.; Chai, B. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau. PeerJ 2019, 7, e6746. [Google Scholar] [CrossRef] [Green Version]
Treatments | pH | TC g∙kg−1 | TN g∙kg−1 | C/N | DOC mg∙kg−1 | AN mg∙kg−1 | NO3−-N mg∙kg−1 | NH4+-N mg∙kg−1 |
---|---|---|---|---|---|---|---|---|
CK | 4.53 ± 0.11 a | 1.74 ± 0.08 a | 1.53 ± 0.06 a | 11.4 ± 0.2 a | 85.9 ± 10.8 b | 110 ± 5 b | 15.5 ± 1.1 ab | 7.10 ± 0.16 a |
AR2.50 | 4.36 ± 0.06 b | 1.35 ± 0.07 c | 1.23 ± 0.06 c | 11.0 ± 0.2 a | 113 ± 4.3 a | 129 ± 9 a | 17.2 ± 0.8 a | 5.81 ± 0.19 c |
AR3.50 | 4.45 ± 0.06 ab | 1.56 ± 0.08 b | 1.33 ± 0.15 bc | 11.8 ± 0.9 a | 99.9 ± 9.2 ab | 118 ± 2 b | 16.1 ± 0.9 a | 6.60 ± 0.34 b |
AR4.50 | 4.50 ± 0.08 ab | 1.76 ± 0.07 a | 1.47 ± 0.06 ab | 11.9 ± 0.3 a | 96.5 ± 10.9 ab | 114 ± 2 b | 14.2 ± 0.9 b | 6.57 ± 0.24 b |
Chao1 | Shannon | Simpson | Goods_Coverage | |
---|---|---|---|---|
CK | 2472 ± 73 c | 8.61 ± 0.07 c | 0.9930 ± 0.0006 c | 0.9937 ± 0.0002 a |
AR2.50 | 2733 ± 80 b | 8.92 ± 0.05 b | 0.9945 ± 0.0003 b | 0.9931 ± 0.0003 ab |
AR3.50 | 3027 ± 70 a | 9.25 ± 0.06 a | 0.9956 ± 0.0005 a | 0.9928 ± 0.0004 b |
AR4.50 | 2465 ± 96 c | 8.56 ± 0.05 c | 0.9920 ± 0.0003 d | 0.9936 ± 0.0005 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Hu, H.; Wang, J.; Zhu, Z.; Feng, Y. Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil. Forests 2022, 13, 1349. https://doi.org/10.3390/f13091349
Zhou M, Hu H, Wang J, Zhu Z, Feng Y. Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil. Forests. 2022; 13(9):1349. https://doi.org/10.3390/f13091349
Chicago/Turabian StyleZhou, Meijia, Haibo Hu, Jinlong Wang, Ziyi Zhu, and Yuanyuan Feng. 2022. "Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil" Forests 13, no. 9: 1349. https://doi.org/10.3390/f13091349
APA StyleZhou, M., Hu, H., Wang, J., Zhu, Z., & Feng, Y. (2022). Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil. Forests, 13(9), 1349. https://doi.org/10.3390/f13091349