Prediction of Wildfire Fuel Load for Pinus densiflora Stands in South Korea Based on the Forest-Growth Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Review of Research Trends
2.2. Data Collection
2.3. Development of the Wildfire Fuel Load Prediction Model
2.3.1. Estimation of Tree Height Growth and Site Index
2.3.2. Estimation of Diameter Distribution Model Parameters
2.3.3. Development of Mortality Model
2.4. Prediction of Wildfire Fuel Characteristics
2.5. Data Collection for Target Stands
3. Results
3.1. Parameter Estimation per Stand for Diameter Distribution and Mortality Models
3.2. Prediction of Variation in Stand Growth According to Stand Conditions
3.3. Prediction of Variation in Wildfire Fuel Load Characteristics According to Stand Conditions
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP (United Nations Environment Programme). Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires; A UNEP Rapid Response Assessment: Nairobi, Kenya, 2022; p. 126. [Google Scholar]
- Werner, J.; Lyons, S. The Size of Australia’s Bushfire Crisis Captured in Five Big Numbers. ABC News, Retrieved August 2020. Available online: https://www.abc.net.au/news/science/2020-03-05/bushfire-crisisfive-big-numbers/12007716 (accessed on 1 August 2020).
- Green, M. Australia’s Massive Fires Could Become Routine, Climate Scientists Warn, REUTERS, 2020. Available online: https://www.reuters.com/article/us-climate-change-australia-report-idUSKBN1ZD06W (accessed on 10 July 2022).
- KFS (Korea Forest Service). Annals of Forest Fire Statistics; KFS (Korea Forest Service): Daejeon, South Korea, 2020; p. 70.
- Bessie, W.D.; Johnson, E.A. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 1995, 76, 747–762. [Google Scholar] [CrossRef]
- Pollet, J.; Omi, P.N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. J. Wildland Fire 2002, 11, 1–10. [Google Scholar] [CrossRef]
- Johnson, A.S.; Hale, P.E. The historical foundations of prescribed burning for wildlife: A south-eastern perspective. In Proceedings: The Role of Fire for Non-Game Wildlife Management and Community Restoration: Traditional Uses and New Directions; General Technical Report NE-288; Mark, F.W., Russell, K.R., Moorman, C.E., Eds.; USDA Forest Service, Northeastern Research Station: Washington, DC, USA, 2002. [Google Scholar]
- U.S. Department of Agriculture. 2022 USDA Explanatory Notes-Forest Service; USDA: Washington, DC, USA, 2021; pp. 1–213.
- Mylek, M. Understanding the acceptability of fuel management strategies used to reduce wildfire risk in Australia. Environ. Manag. 2021, 65, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, T.W.; Won, H.K.; Lee, K.H.; Shin, M.Y. Estimation of timber production by thinning scenarios using a forest stand yield model. J. Korean For. Soc. 2012, 101, 592–598. [Google Scholar]
- Park, J.H.; Jung, S.Y.; Yoo, B.O.; Lee, K.S.; Park, Y.B.; Kim, H.H. The production objectives and optimal standard of density control using stand density management diagram for Pinus densiflora forests in Korea. J. Korean For. Soc. 2017, 106, 457–464. [Google Scholar]
- Lucas, W.; Francois, P.; Matt, J.; Rod, L.; William, M. Standfire: An IFT-DSS Module for Spatially Explicit, 3D Fuel Treatment Analysis. Final Report for JFSP Project 12-1-03-30. 2016. Available online: https://hal.archives-ouvertes.fr/hal-01674989 (accessed on 10 July 2022).
- Morgan, G.W.; Tolhurst, K.G.; Poynter, M.W.; Cooper, N.; McGuffog, T.; Ryan, R.; Wouters, M.A.; Stephens, N.; Black, P.; Sheehan, D. Prescribed burning in south-eastern Australia: History and future directions. Aust. For. 2020, 83, 4–28. [Google Scholar] [CrossRef]
- Jang, M.N.; Kim, S.Y.; Lee, Y.J. Estimation of forest fire fuel load models using crown structure characteristics for Pinus densiflora S. et Z. stands in Gyeongbuk province. J. Agric. Life Sci. 2021, 55, 49–56. [Google Scholar] [CrossRef]
- Kim, S.Y. A Study on the Analysis of Fuel Characteristics for Forest Fire Hazard Assessment. Ph.D. Thesis, Kongju National University, Yesan, South Korea, 2015. [Google Scholar]
- Kim, S.Y.; Lee, Y.J.; Jang, M.N.; Kwon, C.G.; Lee, B.D.; Ahn, H.Y. Comparison of fuel characteristics between Pinus densiflora and Pinus koraiensis in Gangwon province. Crisisonomy 2017, 13, 105–115. [Google Scholar] [CrossRef]
- Seo, J.H.; Son, Y.M.; Lee, K.H.; Lee, W.K.; Son, Y.H. The estimation of stand biomass and net carbon removals using dynamic stand growth model. J. Korea For. Energy 2005, 24, 37–45. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; John Wiley & Sons: Hoboken, NJ, USA, 1996; p. 769. [Google Scholar]
- Vaillant, N.M.; Fites-Kaufman, J.A.; Stephens, S.L. Effectiveness of prescribed fire as a fuel treatment in Californian coniferous forests. Int. J. Wildland Fire 2009, 18, 165–175. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Panov, P.I. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildland Fire 2001, 10, 23–27. [Google Scholar] [CrossRef]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models Of Surface and Crown Fire Behavior; Forest Service, US Department of Agriculture: Washington, DC, USA, 2001; p. 59.
- Reinhardt, E.; Duncan, L.; Scott, J. FuelCalc: A method for estimating fuel characteristics. In Proceedings of the RMRS-P-41, Portland, OR, USA, 28–30 March 2006; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 273–282. [Google Scholar]
- Scott, K.; Oswald, B.; Farrish, K.; Unger, D. Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA. Int. J. Wildland Fire 2002, 11, 85–90. [Google Scholar] [CrossRef]
- Thomas, D.J.; Tina, L.B.; Alan, Y. Predicting continuous variation in forest fuel load using biophysical models: A case study in south-eastern Australia. Int. J. Wildland Fire 2013, 22, 318–332. [Google Scholar]
- Yim, J.S.; Kim, R.H.; Lee, S.J.; Son, Y.M. Land use change assessment by permanent sample plots in national forest inventory. J. Clim. Chang. Res. 2015, 6, 33–40. [Google Scholar] [CrossRef]
- Kim, D.H. Accounting for Forest Resources Using the National Forest Inventory Data. Ph.D. Thesis, Chonbuk National University, Daejeon, South Korea, 2016. [Google Scholar]
- Son, Y.M.; Jeon, J.H.; Lee, S.J.; Yim, J.S.; Kang, J.T. Development of estimated equation for mortality rates by forest type in Korea. J. Korean For. Soc. For Sci. 2017, 106, 450–456. [Google Scholar]
- Hamilton, D.A. Event Probabilities Estimated by Regression; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1974; pp. 1–152.
- Pyo, J.K.; Lee, Y.J.; Son, Y.M.; Lee, K.H.; Moon, H.S. Estimation of site index equation for Pinus densiflora at Mt. Osu region using Schnute growth function. J. Agric. Life Sci. 2009, 43, 9–14. [Google Scholar]
- Son, Y.M.; Lee, K.H.; Kim, R.H.; Seo, J.H. Stand development estimate and carbon stocks/removals assessment using stand growth monitoring. J. Korea For. Energy 2006, 25, 42–48. [Google Scholar]
- Lee, Y.J.; Coble, D.W. A new diameter distribution model for unmanaged loblolly pine plantations in East Texas. South. J. Appl. For. 2006, 30, 13–20. [Google Scholar] [CrossRef]
- Poudel, K.P.; Cao, Q.V. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci. 2013, 59, 243–252. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar] [CrossRef]
- KFS (Korea Forest Service). The 6th National Forest Inventory Report; KFS: Daejeon, South Korea, 2012; p. 60.
- Abino, A.C.; Kim, S.Y.; Lumbres, R.I.C.; Jang, M.N.; Youn, H.J.; Park, K.H.; Lee, Y.J. Performance of Weibull function as a diameter distribution model for Pinus thunbergii stands in the eastern coast of South Korea. J. Mt. Sci. 2016, 13, 822–830. [Google Scholar] [CrossRef]
- Lumbres, R.I.C.; Lee, Y.J. Percentile-based Weibull diameter distribution model for Pinus kesiya stands in Benguet province, Philippines. South. For. 2014, 76, 117–123. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.Y.; Lee, B.D.; Lee, Y.J. Estimation of canopy fuel characteristics for Pinus densiflora stands using diameter distribution models: Forest managed stands and unmanaged stands. J. Korean Soc. For. Sci. 2018, 107, 412–421. [Google Scholar]
- Harcombe, P.A.; Marks, P.L. Five years of tree mortality in a Fagus–Magnolia forest, southeast Texas (USA). Oecologia 1983, 57, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, P.A. Stand development in a 130-year-old spruce–hemlock forest based on age structure and 50 years of mortality data. For. Ecol. Manag. 1986, 14, 41–58. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.Y.; Kwon, C.G.; Lee, B.D.; Lee, Y.J. Influence of Forest Management Activities on Forest Fire Fuels in Coarse Woody Debris for Pinus densiflora Stands in South Korea. Crisisonomy 2020, 16, 97–103. [Google Scholar] [CrossRef]
- McArdle, R.E.; Meyer, W.H.; Bruce, D. The Yield of Douglas Fir in the Pacific Northwest; USDA Forest Service: Washington, DC, USA, 1949; Volume 201, p. 71.
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Scots pine stands in Finland. For. Ecol. Manag. 2004, 201, 311–325. [Google Scholar] [CrossRef]
- Peltola, H.; Kilpeläinen, A.; Kellomäki, S. Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiol. 2002, 22, 963–972. [Google Scholar] [CrossRef]
- Bae, S.W.; Hwang, J.H.; Lee, S.T.; Kim, H.S.; Jeong, J.M. Changes in soil temperature, moisture content, light availability and diameter growth after thinning in Korean pine (Pinus koraiensis) plantation. J. Korean For. Soc. 2010, 99, 397–403. [Google Scholar]
- Son, Y.; Lee, Y.Y.; Jun, Y.C.; Kim, Z.S. Light availability and understory vegetation four years after thinning in a Larix leptolepis plantation of central Korea. J. For. Res. 2004, 9, 133–139. [Google Scholar] [CrossRef]
- Son, Y.H.; Jun, Y.C.; Lee, Y.Y.; Kim, R.H.; Yang, S.Y. Soil CO2 evolution, litter decomposition, and nitrogen availability 4 years after thinning in a Japanese larch plantation. Commun. Soil Sci. Plant Anal. 2004, 35, 1111–1122. [Google Scholar] [CrossRef]
- Mutch, R.W.; Quigley, T.M. Forest Health in the Blue Mountains: A Management Strategy for Fire-Adapted Ecosystems; USDA Forest Service, Pacific Northwest Research Station: Washington, DC, USA, 1993; p. 14.
- Sando, R.W. A Method of Evaluating Crown Fuels in Forest Stands; Research Paper NC-84; North Central Forest Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1972; p. 10.
- Juodvalkis, A.; Kairiukstis, L.; Vasiliauskas, R. Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. Eur. J. For. Res. 2005, 124, 187–192. [Google Scholar] [CrossRef]
- Williams, D.F. Fuel Properties before and after Thinning in Young Radiata Pine Plantations; Research Report 3; Fire Management Branch, Department of Conservation and Environment: Parramatta, Australia, 1978.
- Agee, J.K. The influence of forest structure on fire behavior. In Proceedings of the 17th Annual Forest Vegetation Management Conference, Redding, CA, USA, 16–18 January 1996; pp. 52–68. [Google Scholar]
- Burrows, N.; McCaw, L. Prescribed burning in southwestern Australian forests. Front. Ecol. Environ. 2013, 11, 25–34. [Google Scholar] [CrossRef]
- Bhadoria, R.S.; Pandey, M.K.; Kundu, P. RVFR: Random Vector Forest Regression Model for Integrated & Enhanced Approach in Forest Fires Predictions. Ecol. Inform. 2001, 66, 101–471. [Google Scholar]
DBH (cm) | Height (m) | No. of Dead Trees (/ha) | Volume (m3/ha) |
---|---|---|---|
Equation | Parameter | Parameter Estimate | F.I. | RMSE | C.V. |
---|---|---|---|---|---|
2 (SI) | 14.87 | 0.97 | 1.87 | 7.48 | |
0.04 | |||||
1.34 | |||||
3 (HT) | 20.43 | 0.97 | 2.29 | 8.21 | |
0.05 | |||||
1.13 | |||||
6 (Dq) | 4.39 | 0.76 | 0.15 | 4.98 | |
−10.80 | |||||
0.54 | |||||
−0.25 | |||||
5 (D0) | 1.35 | 0.58 | 2.55 | 27.96 | |
0.51 | |||||
−0.06 | |||||
5 (D25) | −1.33 | 0.90 | 1.76 | 12.06 | |
0.88 | |||||
−0.04 | |||||
5 (D50) | −1.39 | 0.96 | 1.32 | 7.15 | |
1.04 | |||||
−0.03 | |||||
5 (D95) | 3.36 | 0.86 | 2.84 | 9.60 | |
1.20 | |||||
0.06 |
Model Number | Functional Model Form |
---|---|
Model 1 | |
Model 2 | |
Model 3 | |
Model 4 | |
Model 5 |
Managed Stands (n = 84,871 Observations from 1085 Plots) | Unmanaged Stands (n = 22,966 Observations from 349 Plots) | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Mean | S.D. | Min. | Max. | Mean | S.D. | Min. | Max. |
Age (years) | 37.5 | 8.9 | 10.0 | 91.5 | 38.2 | 11.2 | 20.0 | 89.2 |
DBH (cm) | 19.1 | 5.9 | 6.3 | 41.7 | 16.6 | 5.9 | 8.2 | 47.3 |
Height (m) | 14.3 | 3.3 | 5.4 | 29.4 | 13.5 | 2.9 | 7.3 | 24.5 |
Crown height (m) | 6.2 | 2.3 | 2.1 | 15.1 | 5.5 | 2.0 | 1.6 | 13.3 |
D0 | 9.3 | 4.0 | 6.0 | 33.0 | 7.7 | 3.0 | 6.0 | 27.0 |
D25 | 14.7 | 5.5 | 6.0 | 37.0 | 12.0 | 5.2 | 6.0 | 41.0 |
D50 | 18.5 | 6.3 | 6.0 | 43.0 | 15.9 | 6.3 | 7.0 | 49.5 |
D95 | 29.7 | 7.6 | 7.0 | 66.0 | 27.4 | 8.8 | 12.0 | 66.0 |
Dq | 20.0 | 5.9 | 6.3 | 42.7 | 17.7 | 6.2 | 8.6 | 48.5 |
TPH | 961.7 | 318.4 | 200.0 | 1500.0 | 1645.1 | 1027.2 | 225.0 | 6950.0 |
Model | Parameter | S.E.E | F.I. | M.A.D | A.I.C | |||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | |||||
Model 1 | 0.52 | −0.01 | −0.48 | 0.27 | 3.93 | 0.37 | 1.33 | 151.53 | ||
Model 2 | 22.63 | −1.08 | 0.22 | –0.01 | 0.76 | 0.68 | 1.25 | 25.48 | ||
Model 3 | 3.96 | −0.07 | −0.20 | 0.01 | 3.66 | 0.45 | 1.09 | 143.84 | ||
Model 4 | −2.42 | 11.44 | 0.09 | 0.08 | 0.43 | 0.03 | 4.21 | 0.27 | 1.35 | 159.21 |
Model 5 | −0.33 | 0.08 | 0.18 | –8.93 | 3.50 | 0.50 | 1.35 | 139.04 |
Classification | Forest Type | Stand Age | ||
---|---|---|---|---|
Present | After 10 Years | After 20 Years | ||
ACFL (ton/ha) | Managed | 20.0 | 29.2 | 32.8 |
Unmanaged | 30.0 | 41.2 | 50.1 | |
ACBD (kg/m3) | Managed | 0.157 | 0.192 | 0.221 |
Unmanaged | 0.181 | 0.229 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Lee, Y.-J.; Ryu, J.-Y.; Kwon, C.-G.; Seo, K.-W.; Kim, S.-Y. Prediction of Wildfire Fuel Load for Pinus densiflora Stands in South Korea Based on the Forest-Growth Model. Forests 2022, 13, 1372. https://doi.org/10.3390/f13091372
Lee S-J, Lee Y-J, Ryu J-Y, Kwon C-G, Seo K-W, Kim S-Y. Prediction of Wildfire Fuel Load for Pinus densiflora Stands in South Korea Based on the Forest-Growth Model. Forests. 2022; 13(9):1372. https://doi.org/10.3390/f13091372
Chicago/Turabian StyleLee, Sun-Joo, Young-Jin Lee, Ju-Yeol Ryu, Chun-Geun Kwon, Kyung-Won Seo, and Sung-Yong Kim. 2022. "Prediction of Wildfire Fuel Load for Pinus densiflora Stands in South Korea Based on the Forest-Growth Model" Forests 13, no. 9: 1372. https://doi.org/10.3390/f13091372
APA StyleLee, S. -J., Lee, Y. -J., Ryu, J. -Y., Kwon, C. -G., Seo, K. -W., & Kim, S. -Y. (2022). Prediction of Wildfire Fuel Load for Pinus densiflora Stands in South Korea Based on the Forest-Growth Model. Forests, 13(9), 1372. https://doi.org/10.3390/f13091372