Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sample Pretreatment
2.3. Oil Extraction Using the Soxhlet Method
2.4. Fatty Acid Composition and Content Determination
2.5. Statistical Analysis
3. Results
3.1. Oil Content of A. truncatum from Different Producing Areas
3.2. Fatty Acid Composition and Relative Content of A. truncatum Oil from Different Producing Areas
3.3. Relative Content of Total Nervonic Acid in the Kernel Oil of A. truncatum from Producing Areas
3.4. Correlation Analysis between Oil Content and Main Fatty Acids in Kernel Oil of A. truncatum from Different Producing Areas
3.5. Correlation Analysis of Relative Contents of Kernel Oil and Nervonic Acid and Geographical and Ecological Factors in A. truncatum from Different Producing Areas
3.6. Hierarchical Cluster Analysis and Principal Component Analysis of A. truncatum from Different Producing Areas
4. Discussion
4.1. Differences in Oil Content of A. truncatum Kernel from Different Producing Areas
4.2. Differences in the Fatty Acid Composition and Content of A. truncatum Kernel Oil from Different Producing Areas
4.3. Correlation Difference between Oil Content and Main Fatty Acids in the Kernel of A. truncatum from Different Producing Areas
4.4. Correlation Differences between Oil Content, Nervonic Acid Content and Environmental Factors of A. truncatum from Different Producing Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, W.H.; Gao, C.C.; Ma, X.F.; Bai, X.Y.; Zhang, Y.X. The isolation of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from Acer truncatum Bunge by high-speed counter-current chromatography. J. Chromatogr. B 2007, 850, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Manning, W.J.; Tong, L.; Wang, X.K. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environ. Pollut. 2015, 201, 34–41. [Google Scholar] [CrossRef]
- Ma, X.F.; Wu, L.H.; Ito, Y.; Tian, W.X. Application of preparative high-speed counter- current chromatography for separation of methyl gallate from Acer truncatum Bunge. J. Chromatogr. A 2005, 1076, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.X.; Xu, J.M.; Yin, Z.X.; Lin, N.; Kong, W.B. Advance in active components of Acer truncatum Bunge. China Oils Fats 2021, 1–11. [Google Scholar]
- Wang, K.; Liu, S.B.; Zhang, N.; Wang, X.L. Research Progress on Acer truncatum. J. Northwest For. Univ. 2021, 36, 152–157. [Google Scholar]
- Wei, J.J.; Zhao, S.T. Progress on Active Ingredients and Application of Acer truncatum Bunge. Prog. Vet. Med. 2021, 42, 100–105. [Google Scholar]
- Wang, L.; Li, W.Q.; Liu, D.; Yu, M.; Zhao, Z.F.; Xie, X.M.; Han, C.J.; Wu, D.; Bai, Z.G.; Zhao, Y.J. Discussion on Utilization and Industrialization Development of Woody Oil Plants in Shandong Province. J. Anhui Agric. Sci. 2020, 48, 146–151. [Google Scholar]
- Qiao, Q.; Wang, X.; Feng, Z. Variability of seed oil content, fatty acid composition, and nervonic acid concent in Acer truncatum, native to 14 regions of China. Grasas Y Aceites 2018, 69, 1–10. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, S.Q. A new resource of nervonic acid: Purpleblow maple oil. China Oils Fats 2005, 30, 62–64. [Google Scholar]
- Wang, X.Y.; Xie, S.J.; Wang, G.H. Application research status and prospects of Acer truncatum Bunge. seed oil rich in nervonic acid in China. China Oils Fats 2018, 43, 93–95. [Google Scholar]
- He, X.; Li, D.Z.; Tian, B. Diversity in seed oil content and fatty acid composition in Acer species with potential as sources of nervonic acid. Plant Divers 2021, 43, 86–92. [Google Scholar] [CrossRef]
- Tu, X.H.; Wan, J.Y.; Xie, Y.; Wei, F.; Ouek, S.Y.; Lv, X.; Du, L.Q.; Chen, H. Lipid analysis of three special nervonic acid resources in China. Oil Crop Sci. 2020, 5, 180–186. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Yu, X.Z.; Gao, J.M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 2019, 301, 125286. [Google Scholar] [CrossRef] [PubMed]
- Amminger, G.P.; Schäfer, M.R.; Klier, C.M.; Slavik, J.M.; Holzer, I.; Holub, M.; Goldstone, S.; Whitford, T.J.; McGorry, P.D.; Berk, M. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol. Psychiatry 2012, 17, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y. Acer Truncatum of China; Sichuan Nationalities Publishing House: Chengdu, China, 2003. [Google Scholar]
- Sun, J.Y.; Wang, X.K.; Smith, M.A. Identification of n—6 Monounsaturated Fatty Acids in Acer Seed Oils. J. Am. Oil Chem. Soc. 2018, 95, 21–27. [Google Scholar] [CrossRef]
- Huang, L.H. Research status and prospects of Acer truncatum industry. For. Sci. Technol. 2020, 45, 30–32. [Google Scholar]
- Liu, X.Y.; Fu, H.; Zhang, J.Y. Components analysis of Unsaturated fatty acid of pure oil from Acer truncatum Bunge in Yunnan. Nat. Prod. Res. Dev. 2003, 15, 38–39. [Google Scholar]
- Wei, M.; Liao, C.H. Component analysis of oil in Acer truncatum Bunge kernel in Mianyang. Sci. Technol. Food Ind. 2011, 32, 127–128. [Google Scholar]
- Dai, Y.M.; Wang, Y.; Niu, L.X. Changes of oil yield and fatty acid composition of Acer truncatum Bunge fruit during ripening. J. Food Saf. Qual. 2021, 12, 2893–2897. [Google Scholar]
- Chang, P.; Gu, X.T.; Ma, J.W.; Fan, J.S.; Zhang, B.Y.; Lu, Y.Z.; Li, L.L. Dynamics of oil and fatty acid accumulation during fruit development of Acer truncatum Bunge used for oil. J. Northwest A&F Univ. 2022, 50, 1–12. [Google Scholar]
- Wei, Y.C.; Fan, J.S.; L, J.J.; Zhang, S.J.; Cheng, R.R. Oil Content and Fatty Acid Composition in Acer truncatum Bunge Kernel from Different Production Places. J. Chin. Cereals Oils Assoc. 2018, 33, 69–73. [Google Scholar]
- Qiao, Q.; Si, F.F.; Ye, M.J.; Ren, H.J.; An, K.; Feng, Z.; Cheng, T.T.; Sun, Z.K. Diversity Analysis on Seed Oil Content and Fatty Acids Composition of Acer truncatum. J. Chin. Cereals Oils Assoc. 2018, 33, 56–63. [Google Scholar]
- Wang, R.K.; Liu, P.; Fan, J.S.; Li, L.L. Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation. Sci. Rep. 2018, 8, 15504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Q.; Feng, Z.; Ren, H.J.; An, K.; Du, X.X.; Xu, C.; Zhang, L.; Sun, Z.K. Variation of seed oil content and fatty acid components among different individuals in Acer truncarum. J. Cent. South Univ. For. Technol. 2018, 38, 76–82. [Google Scholar]
- Huai, D.X.; Zhang, Y.Y.; Zhang, C.Y.; Cahoon, E.B. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa. PLoS ONE 2015, 10, e0131755. [Google Scholar] [CrossRef]
- Wei, Y.C. Studies on the Phenotypic Traits and Chemical Components of Acer truncatum Bunge from Different Locations; Northwest A&F University: Xianyang, China, 2018. [Google Scholar]
- Hu, P.; Xu, X.B.; Yu, L.L. Physicochemical Properties of Acer truncatum Seed Oil Extracted Using Supercritical Carbon Dioxide. J. Am. Oil Chem. Soc 2017, 94, 779–786. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, C.; Feng, Y.; Su, S.C.; Ao, Y.; Zhang, R. Development and quality formation of Acer truncatum Bunge fruit. J. Northwest A&F Univ. 2020, 48, 69–80. [Google Scholar]
- Hu, P. Research on Acer Truncatum Oil Extraction and Its Functional Characteristics; Shanghai Jiao Tong University: Shanghai, China, 2017. [Google Scholar]
- Liu, P. Study of Acer truncatum characters of Shaanxi Province; Northwest A&F University: Xianyang, China, 2016. [Google Scholar]
- Ma, Y.; Li, J.M.; Tian, M.J.; Liu, Y.L.; Wei, A.Z. Authentication of Chinese prickly ash by ITS2 sequencing and the influence of environmental factors on pericarp quality traits. Ind. Crops Prod. 2020, 155, 112770. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, X.; Ren, H.J.; An, K.; Feng, Z.; Cheng, T.T.; Sun, Z.K. Oil Content and Nervonic Acid Content of Acer truncatum Seeds from 14 Regions in China. Hortic. Plant J. 2019, 5, 24–30. [Google Scholar] [CrossRef]
- Millar, A.A.; Kunst, L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. Cell Mol. Biol. 1997, 12, 121–131. [Google Scholar] [CrossRef]
- Xia, J.J. Construction and Optimization of Fermentation Conditions for High-Yielding Engineered Nervonic Acid Bacteria; Beijing University of Chemical Technology: Beijing, China, 2020. [Google Scholar]
- Liu, S.S.; Zhou, Q.L.; Sun, H.; Y, G.M. Advance in function and purification technology of nervonic acid. China Oils Fats 2019, 44, 142–146. [Google Scholar]
- Durazzo, A.; Fawzy Ramadan, M.; Lucarini, M. Editorial: Cold Pressed Oils: A Green Source of Specialty Oils. Front. Nutr. 2022, 18, 836651. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.M.; Mietkiewska, E.; Francis, T.; Katavic, V.; Brost, J.M.; Gibin, M.; Barton, D.L.; Taylor, D.C. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS)gene. Plant Mol. Biol. 2009, 69, 565–575. [Google Scholar] [CrossRef]
- Li, Z.W.; Ma, S.J.; S, H.; Yang, Z.; Zhao, C.Z.; Taylor, D.; Zhang, M. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-Eicosenoic acid. Tree Physiol. 2021, 41, 331–342. [Google Scholar] [CrossRef]
- Wang, R.K.; Fan, J.S.; Chang, P.; Zhu, L.; Zhao, M.R. Genome Survey Sequencing of Acer truncatum Bunge to Identify Genomic Information, Simple Sequence Repeat (SSR) Markers and Complete Chloroplast Genome. Forests 2019, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.Y.; Sun, T.L.; Li, S.S.; Wen, J.; Zhu, L.; Yin, T.M.; Yan, K.Y.; Xu, X.; Li, S.X.; Mao, J.F.; et al. The Acer truncatum genome provides insights into the nervonic acid biosynthesis. Plant J. 2020, 104, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.W.; Gu, X.T.; Wang, S.; Chen, Z.X.; Zhang, B.Y.; Li, L.L. Identification and spatio-temporal expression profiles of the KCS gene family in Acer truncatum. Non-Wood For. Res. 2022, 40, 201–214. [Google Scholar]
Producing Areas | Oil Content (X ± SD)/% | Variation Range/% | Coefficient of Variation/% |
---|---|---|---|
YZ | 42.52 ± 1.36 B | 41.55–43.48 | 3.21 |
WD | 42.77 ± 1.31 B | 40.82–43.85 | 3.06 |
WN | 40.17 ± 2.01 C | 37.29–42.97 | 5.01 |
CF | 38.13 ± 3.48 D | 35.32–42.02 | 9.12 |
ZW | 43.35 ± 0.00 B | - | - |
FX | 36.54 ± 0.00 E | - | - |
JP | 32.10 ± 1.95 F | 30.59–34.30 | 6.08 |
KZ | 38.52 ± 1.67 D | 37.34–39.70 | 4.33 |
KS | 51.22 ± 0. 86 A | 50.61–51.83 | 1.68 |
FF | 40.33 ± 2.46 C | 35.98–42.73 | 6.09 |
YL | 50.54 ± 0.76 A | 50.00–51.08 | 1.51 |
Mean | 40.67 | 30.39–51.83 | 11.36 |
Peak Number | Chemical Compound | Retention Time/Min | Molecular Formula | Molecular Weight | Possibility | Cas# Number | Area/% |
---|---|---|---|---|---|---|---|
1 | Methyl palmitate | 8.38 | C17H3402 | 270 | 75.82 | 112-39-0 | 3.68 |
2 | Methyl hexadecenoate | 8.71 | C17H3202 | 268 | 8.16 | 1120-25-8 | 0.02 |
3 | Methyl heptadecanoate | 9.65 | C18H36O2 | 284 | 34.75 | 1731-92-6 | 0.01 |
4 | Methyl stearate | 11.19 | C19H38O2 | 298 | 73.02 | 112-61-8 | 1.58 |
5 | Methyl oleate | 11.55 | C19H36O2 | 296 | 11.61 | 112-62-9 | 17.31 |
6 | Methyl linoleate | 12.39 | C19H34O2 | 294 | 24.42 | 112-63-0 | 32.13 |
7 | Methyl linolenate | 13.66 | C19H32O2 | 292 | 45.86 | 301-00-8 | 1.19 |
8 | Methyl arachidonate | 15.13 | C21H42O2 | 326 | 34.72 | 1120-28-1 | 0.03 |
9 | Cis-11-eicosenoic acid methyl ester | 15.59 | C21H40O2 | 324 | 26.02 | 2390-09-2 | 6.64 |
10 | Cis-11,14-eicosadienoic acid methyl ester | 16.74 | C21H38O2 | 322 | 24.05 | 2463-02-7 | 0.15 |
11 | Methyl behenate | 19.65 | C23H46O2 | 354 | 72.97 | 929-77-1 | 0.59 |
12 | Methyl erucate | 20.07 | C23H44O2 | 352 | 23.76 | 1120-34-9 | 21.85 |
13 | Methyl lignocerate | 23.51 | C25H50O2 | 382 | 77.30 | 2442-49-1 | 0.17 |
14 | Methyl neurate | 23.99 | C25H48O2 | 380 | 47.05 | 2733-88-2 | 9.92 |
Producing Areas | Relative Content of Fatty Acids/% | ||||||
C16:0 | C18:0 | C18∶1 | C18:2 | C18:3 | C20:1 | C22:1 | |
YZ | 3.51 AB | 1.99 B | 22.33 AB | 32.19 AB | 1.65 A | 8.31 ABC | 18.64 B |
WD | 3.30 ± 0.31 B | 1.97 ± 0.17 B | 21.64 ± 1.03 ABC | 30.10 ± 1.36 AB | 1.20 ± 0.40 A | 8.25 ± 0.26 ABC | 19.75 ± 0.78 AB |
WN | 3.50 ± 0.27 AB | 1.97 ± 0.14 B | 22.76 ± 1.36 AB | 31.04 ± 2.22 AB | 0.87 ± 0.16 A | 8.12 ± 0.34 BC | 19.68 ± 1.03 AB |
CF | 3.74 ± 0.05 AB | 1.84 ± 0.23 B | 17.52 ± 1.02 C | 32.86 ± 1.37 AB | 1.14 ± 0.16 A | 6.93 ± 0.26 D | 21.84 ± 0.04 A |
ZW | 3.46 AB | 1.92 B | 22.62 AB | 32.48 AB | 1.54 A | 7.81 CD | 18.04 B |
FX | 3.51 AB | 1.46 B | 20.91 ABC | 34.15 A | 1.31 A | 8.07 ABC | 18.34 B |
JP | 3.99 ± 0.54 A | 1.87±0.42 B | 20.28 ± 1.27 ABC | 30.74 ± 2.52 AB | 1.54 ± 0.92 A | 7.68 ± 0.61 CD | 19.32 ± 1.78 AB |
KZ | 4.15 ± 0.22 A | 2.03 ± 0.11 B | 24.16 ± 2.49 A | 28.65 ± 1.15 BC | 0.92 ± 0.05 A | 6.89±0.06 D | 19.70 ± 0.92 AB |
KS | 3.37 AB | 2.85 A | 21.57 ABC | 31.51 AB | 1.88 A | 9.04A | 19.36 AB |
FF | 3.98 ± 0.20 AB | 1.78 ± 0.34 B | 22.54 ± 2.32 AB | 30.09 ± 1.59 AB | 1.51 ± 0.34 A | 7.68 ± 0.47 CD | 18.80 ± 1.72 B |
YL | 3.80 AB | 2.06 B | 19.24 BC | 24.14 C | 1.81 | 8.85 AB | 19.42 AB |
Mean | 3.66 | 1.93 | 21.68 | 30.67 | 1.25 | 7.89 | 19.56 |
Variation range | 2.87–4.61 | 1.35–2.85 | 16.62–25.97 | 24.14–34.44 | 0.63–2.60 | 6.64–9.04 | 16.12–21.87 |
Coefficient of variation/% | 10.30 | 15.01 | 9.88 | 6.39 | 35.27 | 7.56 | 6.92 |
Producing areas | Relative content of fatty acids / % | ||||||
C24:1 | TFA | SFA | UFA | MUFA | PUFA | ||
YZ | 6.47 CD | 96.00 AB | 6.4 ABC | 89.60 A | 55.76 A | 33.84 AB | |
WD | 7.52 ± 0.23 B | 94.84 ± 2.27 B | 6.26 ± 0.48 ABC | 88.58 ± 2.52 A | 57.18 ± 1.75 A | 31.40 ± 1.63 ABC | |
WN | 7.22 ± 0.94 BC | 96.24 ± 0.60 AB | 6.44 ± 0.30 ABC | 89.80 ± 0.72 A | 57.80 ± 2.49 A | 32.00 ± 2.31 AB | |
CF | 8.83 ± 1.01 A | 95.78 ± 0.45 AB | 6.49 ± 0.38 ABC | 89.29 ± 0.08 A | 55.14 ± 1.50 A | 34.15 ± 1.49 AB | |
ZW | 6.75 BC | 95.37 AB | 6.06 BC | 89.31 A | 55.22 A | 34.09 AB | |
FX | 7.30 BC | 95.84 AB | 5.58 C | 90.26 A | 54.64 A | 35.62 A | |
JP | 8.73 ± 1.23 A | 95.29 ± 0.71 AB | 6.84 ± 1.36 AB | 88.46 ± 2.07 A | 56.05 ± 1.30 A | 32.41 ± 1.72 AB | |
KZ | 6.93 ± 0.54 BC | 94.21 ± 0.29 AB | 6.95 ± 0.40 ABC | 87.26 ± 0.11 A | 57.70 ± 1.00 A | 29.56 ± 1.10 BC | |
KS | 5.84 D | 97.19 A | 7.78 A | 89.41 A | 55.84 A | 33.57 AB | |
FF | 6.94 ± 1.02 BC | 94.08 ± 1.14 AB | 6.47 ± 0.47 ABC | 87.61 ± 0.69 A | 56.00 ± 1.60 A | 31.62 ± 1.79 AB | |
YL | 6.84 BC | 88.32 C | 7.80 A | 80.52 B | 54.40 A | 26.12 C | |
Mean | 7.40 | 95.30 | 6.49 | 88.56 | 56.56 | 32.00 | |
Variation range | 5.20–9.92 | 88.32–97.19 | 5.58–8.41 | 84.27–91.00 | 53.24–61.98 | 26.12–35.85 | |
Coefficient of variation/% | 14.19 | 1.47 | 9.15 | 1.73 | 3.37 | 6.39 |
Producing Areas | Oil Content (X ± SD)/% | Nervonic Acid Content/% | Total Nervonic Acid Content/% |
---|---|---|---|
YZ | 42.52 ± 1.36 B | 6.47 CD | 2.75 CD |
WD | 42.77 ± 1.31 B | 7.52 ± 0.23 B | 3.22 ± 0.16 AB |
WN | 40.17 ± 2.01 C | 7.22 ± 0.94 BC | 2.90 ± 0.39 BCD |
CF | 38.13 ± 3.48 D | 8.83 ± 1.01 A | 3.35 ± 0.15 A |
ZW | 43.35 ± 0.00 B | 6.75 BC | 2.93 BCD |
FX | 36.54 ± 0.00 E | 7.30 BC | 2.67 D |
JP | 32.10 ± 1.95 F | 8.73 ± 1.23 A | 2.81 ± 0.47 ABC |
KZ | 38.52 ± 1.67 D | 6.93 ± 0.54 BC | 2.67 ± 0.32 D |
KS | 51.22 ± 0. 86 A | 5.84 D | 2.99 BCD |
FF | 40.33 ± 2.46 C | 6.94 ± 1.02 BC | 2.80 ± 0.45 CD |
YL | 50.54 ± 0.76 A | 6.84 BC | 3.46 A |
Index | Oil Content | Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Linolenic Acid | Cis-11-eicosenoic Acid | Behenic Acid | Erucic Acid |
---|---|---|---|---|---|---|---|---|---|
Oil content | 1 | ||||||||
Palmitic acid | −0.385 * | 1 | |||||||
Stearic acid | 0.426 * | −0.025 | 1 | ||||||
Oleic acid | 0.027 | 0.024 | 0.106 | 1 | |||||
Linoleic acid | −0.241 | −0.238 | −0.062 | −0.303 | 1 | ||||
Linolenic acid | 0.143 | 0.284 | 0.319 | −0.209 | −0.110 | 1 | |||
Cis-11-eicosenoic acid | 0.548 ** | −0.353 * | 0.463 ** | 0.254 | −0.193 | 0.267 | 1 | ||
Behenic acid | 0.526 ** | −0.057 | 0.658 ** | −0.143 | −0.484 ** | 0.376 * | 0.534 ** | 1 | |
Erucic acid | 0.033 | −0.276 | −0.186 | −0.522 ** | −0.025 | −0.239 | −0.269 | 0.202 | 1 |
Nervonic acid | −0.473 ** | −0.075 | −0.513 ** | −0.541 ** | −0.003 | −0.214 | −0.541 ** | −0.193 | 0.614 ** |
Index | Latitude/°N | Longitude/°E | Altitude/m | Annual Mean Temperature/°C | Annual Rainfall/mm | Frost Free Period/d | Annual Average Sunshine Hours/h |
---|---|---|---|---|---|---|---|
Oil content | −0.452 | −0.652 * | 0.162 | 0.490 | −0.432 | 0.633 * | −0.048 |
Nervonic acid | 0.195 | 0.444 | −0.144 | −0.287 | 0.383 | −0.429 | 0.079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.; Ma, J.; Xin, H.; Wang, S.; Chen, Z.; Hong, X.; Zhang, B.; Li, L. Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas. Forests 2022, 13, 1409. https://doi.org/10.3390/f13091409
Chang P, Ma J, Xin H, Wang S, Chen Z, Hong X, Zhang B, Li L. Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas. Forests. 2022; 13(9):1409. https://doi.org/10.3390/f13091409
Chicago/Turabian StyleChang, Pan, Jianwen Ma, Haodong Xin, Shan Wang, Zhuanxiang Chen, Xinyue Hong, Boyong Zhang, and Lingli Li. 2022. "Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas" Forests 13, no. 9: 1409. https://doi.org/10.3390/f13091409
APA StyleChang, P., Ma, J., Xin, H., Wang, S., Chen, Z., Hong, X., Zhang, B., & Li, L. (2022). Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas. Forests, 13(9), 1409. https://doi.org/10.3390/f13091409