Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data Preprocessing and Analysis
2.2.1. Defining Polygon Samples of Different Mangrove Stages on Google Earth Pro
2.2.2. Sentinel-2 Data
2.2.3. Sentinel-1 Data
2.2.4. Discrimination of Mangrove Stages using Vegetation Indices and SAR Backscatter Variables
Discrimination of Mangrove Stages from Previous Studies
Rule-Based Discrimination of Mangrove Stages
2.2.5. Analysis of Rule-Based Correlation and Capacity
Correlation of Mangrove Stage Discrimination Analysis
Capacity of Rule-Based Mangrove Stage Discrimination Analysis
2.2.6. Most Frequently Correlated Variables in Discriminating Mangrove Stages Analysis
3. Results and Discussions
3.1. Comparison of the Values of Vegetation Indices and SAR Variables in Each Mangrove Stage
3.2. Correlation Analysis: Investigating Capacity in Discriminating Mangrove Stages
3.2.1. Correlation Analysis between Vegetation Indices and SAR Variables
3.2.2. Investigating Capacity of Vegetation Indices in Discriminating Mangrove Changes
3.3. Rule-Based Analysis of the Highest Correlation Variable and the Capacity for Discriminating Mangrove Stages
3.3.1. Rule-Based Analysis on NDVI Time-Series of Different Mangrove Stages
3.3.2. Analysis of the Capacity of NDVI and VH from Multiple-Incidence Angles in Discriminating Mangrove Stage Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D. The Energetics of Mangrove Forests; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- McNally, C.G.; Uchida, E.; Gold, A.J. The Effect of a Protected Area on the Tradeoffs between Short-Run and Long-Run Benefits from Mangrove Ecosystems. Proc. Natl. Acad. Sci. USA 2011, 108, 13945–13950. [Google Scholar] [CrossRef] [PubMed]
- Feller, I.C.; Friess, D.A.; Krauss, K.W.; Lewis, R.R. The State of the World’s Mangroves in the 21st Century under Climate Change. Hydrobiologia 2017, 803, 1–12. [Google Scholar] [CrossRef]
- Mangrove for the Future (MFF). Thailand National Strategy and Action Plan 2011–2013. 2011. Available online: http://www.mangrovesforthefuture.org/assets/Repository/Documents/MFF-Thailand-NSAP.pdf (accessed on 8 January 2020).
- Pranchai, A.; Jenke, M.; Berger, U. Well-Intentioned, but Poorly Implemented: Debris from Coastal Bamboo Fences Triggered Mangrove Decline in Thailand. Mar. Pollut. Bull. 2019, 146, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.D.-U.; Bhuiyan, M.A.H. Sundarbans Mangrove Forest of Bangladesh: Causes of Degradation and Sustainable Management Options. Environ. Sustain. 2018, 1, 113–131. [Google Scholar] [CrossRef]
- Paul, A.K.; Ray, R.; Kamila, A.; Jana, S. Mangrove Degradation in the Sundarbans. In Coastal Wetlands: Alteration and Remediation; Springer: Cham, Switzerland, 2017; pp. 357–392. [Google Scholar]
- Zhang, K.; Thapa, B.; Ross, M.; Gann, D. Remote Sensing of Seasonal Changes and Disturbances in Mangrove Forest: A Case Study from South Florida. Ecosphere 2016, 7, e01366. [Google Scholar] [CrossRef]
- Lee, C.K.F.; Duncan, C.; Nicholson, E.; Fatoyinbo, T.E.; Lagomasino, D.; Thomas, N.; Worthington, T.A.; Murray, N.J. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sens. 2021, 13, 2047. [Google Scholar] [CrossRef]
- Akbar, M.R.; Arisanto, P.A.A.; Sukirno, B.A.; Merdeka, P.H.; Priadhi, M.M.; Zallesa, S. Mangrove Vegetation Health Index Analysis by Implementing NDVI (Normalized Difference Vegetation Index) Classification Method on Sentinel-2 Image Data Case Study: Segara Anakan, Kabupaten Cilacap. IOP Conf. Ser. Earth Environ. Sci. 2020, 584, 012069. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K.; Atzberger, C. Towards Red-edge Positions Less Sensitive to Canopy Biophysical Parameters for Leaf Chlorophyll Estimation Using Properties Optique Spectrales des Feuilles (PROSPECT) and Scattering by Arbitrarily Inclined Leaves (SAILH) Simulated Data. Int. J. Remote Sens. 2008, 29, 2241–2255. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Munawar, S.; Khan, W.R. Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. Forests 2021, 12, 52. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wang, M.; Jia, M.; Wang, W. Estimating Mangrove Leaf Area Index Based on Red-Edge Vegetation Indices: A Comparison among UAV, WorldView-2 and Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102493. [Google Scholar] [CrossRef]
- Sukuryadi, S.; Johari, H.I.; Rochayati, N.; Mas’ad, M.; Hadi, A.P. Comparison of several red edge band sentinel satellite imagery for mangrove mapping in lembar bay lombok Indonesia. Geogr. J. Kaji. Penelit. Dan Pengemb. Pendidik. 2021, 9, 51–61. [Google Scholar]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A Review of Remote Sensing for Mangrove Forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Anand, A.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Sharma, J.K.; Malhi, R.K.M. Use of Hyperion for Mangrove Forest Carbon Stock Assessment in Bhitarkanika Forest Reserve: A Contribution Towards Blue Carbon Initiative. Remote Sens. 2020, 12, 597. [Google Scholar] [CrossRef]
- Pandey, P.C.; Anand, A.; Srivastava, P.K. Spatial Distribution of Mangrove Forest Species and Biomass Assessment Using Field Inventory and Earth Observation Hyperspectral Data. Biodivers. Conserv. 2019, 28, 2143–2162. [Google Scholar] [CrossRef]
- Osei Darko, P.; Kalacska, M.; Arroyo-Mora, J.P.; Fagan, M.E. Spectral Complexity of Hyperspectral Images: A New Approach for Mangrove Classification. Remote Sens. 2021, 13, 2604. [Google Scholar] [CrossRef]
- Dou, Z.; Cui, L.; Li, J.; Zhu, Y.; Gao, C.; Pan, X.; Lei, Y.; Zhang, M.; Zhao, X.; Li, W. Hyperspectral Estimation of the Chlorophyll Content in Short-Term and Long-Term Restorations of Mangrove in Quanzhou Bay Estuary, China. Sustainability 2018, 10, 1127. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Cárdenas, N.Y.; Joyce, K.E.; Maier, S.W. Monitoring Mangrove Forests: Are We Taking Full Advantage of Technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef]
- Hauser, L.T.; An Binh, N.; Viet Hoa, P.; Hong Quan, N.; Timmermans, J. Gap-Free Monitoring of Annual Mangrove Forest Dynamics in Ca Mau Province, Vietnamese Mekong Delta, Using the Landsat-7-8 Archives and Post-Classification Temporal Optimization. Remote Sens. 2020, 12, 3729. [Google Scholar] [CrossRef]
- Otero, V.; van de Kerchove, R.; Satyanarayana, B.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. An Analysis of the Early Regeneration of Mangrove Forests Using Landsat Time Series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sens. 2019, 11, 774. [Google Scholar] [CrossRef]
- Mandal, M.S.H.; Kamruzzaman, M.; Hosaka, T. Elucidating the Phenology of the Sundarbans Mangrove Forest Using 18-Year Time Series of MODIS Vegetation Indices. Tropics 2020, 29, 41–55. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Bílek, L. An Integrated GIS and Remote Sensing Approach for Monitoring Harvested Areas from Very High-Resolution, Low-Cost Satellite Images. Remote Sens. 2019, 11, 2539. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Lucas, R.; Rebelo, L.-M.; Fatoyinbo, L.; Rosenqvist, A.; Itoh, T.; Shimada, M.; Simard, M.; Souza-Filho, P.W.; Thomas, N.; Trettin, C.; et al. Contribution of L-Band SAR to Systematic Global Mangrove Monitoring. Mar. Freshw. Res. 2014, 65, 589. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; van der Stocken, T. Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and Drivers of Global Mangrove Forest Change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground Biomass Retrieval in Tropical Forests—The Potential of Combined X- and L-Band SAR Data Use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Mermoz, S.; Réjou-Méchain, M.; Villard, L.; le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-Band SAR Backscatter with Biomass of Dense Forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E.; et al. Combining Satellite Data for Better Tropical Forest Monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.; Dubovyk, O.; Abou El-Magd, I.; Menz, G. Mapping Mangroves Extents on the Red Sea Coastline in Egypt Using Polarimetric SAR and High Resolution Optical Remote Sensing Data. Sustainability 2018, 10, 646. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote Sensing Techniques: Mapping and Monitoring of Mangrove Ecosystem—A Review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Nasirzadehdizaji, R.; Sanli, F.B.; Cakir, Z. Application of sentinel-1 multi-temporal data for crop monitoring and mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W18, 803–807. [Google Scholar] [CrossRef]
- Rüetschi, M.; Schaepman, M.; Small, D. Using Multitemporal Sentinel-1 C-Band Backscatter to Monitor Phenology and Classify Deciduous and Coniferous Forests in Northern Switzerland. Remote Sens. 2017, 10, 55. [Google Scholar] [CrossRef]
- Marine Knowledge Hub Marine Knowledge Hub. Available online: http://mkh.in.th/index.php?lang=th (accessed on 8 January 2020).
- Phonphan, W.; Thanakunwutthirot, M. Mapping of Mangrove Change with Remote Sensing in Samut Songkhram Province, Thailand. In International Conference on Human Interaction and Emerging Technologies; Springer: Cham, Switzerland, 2020; pp. 191–197. [Google Scholar]
- Dorais, A.; Cardille, J. Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo. Remote Sens. 2011, 3, 1157–1176. [Google Scholar] [CrossRef]
- Calva, L.G.; Golubov, J.; Mandujano, M.C.; Lara-Domínguez, L.; López-Portillo, J. Assessing Google Earth Pro Images for Detailed Conservation Diagnostics of Mangrove Communities. J. Coast. Res. 2019, 92, 33. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S.; Johansen, K. Characterizing the Spatial Structure of Mangrove Features for Optimizing Image-Based Mangrove Mapping. Remote Sens. 2014, 6, 984–1006. [Google Scholar] [CrossRef]
- Moity, N.; Delgado, B.; Salinas-de-León, P. Correction: Mangroves in the Galapagos Islands: Distribution and Dynamics. PLoS ONE 2019, 14, e0212440. [Google Scholar] [CrossRef]
- Arjasakusuma, S.; Pratama, A.P.; Lestari, I. Assessment of Gap-Filling Interpolation Methods for Identifying Mangrove Trends at Segara Anakan in 2015 by Using Landsat 8 OLI and Proba-V. Indones. J. Geogr. 2020, 52, 341. [Google Scholar] [CrossRef]
- Cougo, M.; Souza-Filho, P.; Silva, A.; Fernandes, M.; Santos, J.; Abreu, M.; Nascimento, W.; Simard, M. Radarsat-2 Backscattering for the Modeling of Biophysical Parameters of Regenerating Mangrove Forests. Remote Sens. 2015, 7, 17097–17112. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B. Using SAR Data for Mapping Deforestation and Forest Degradation. In The SAR Handbook. Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; ServirGlobal: Hunstville, AL, USA, 2019; pp. 65–79. [Google Scholar]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. In Proceedings of the 3rd International Electronic Conference on Remote Sensing, 22 May–5 June 2019; MDPI: Basel, Switzerland, 2019; p. 11. [Google Scholar]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia—Aiming for a Regional View through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Umroh; Adi, W.; Sari, S.P. Detection of Mangrove Distribution in Pongok Island. Procedia Environ. Sci. 2016, 33, 253–257. [Google Scholar] [CrossRef]
- Hu, L.; Li, W.; Xu, B. Monitoring Mangrove Forest Change in China from 1990 to 2015 Using Landsat-Derived Spectral-Temporal Variability Metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Satyanarayana, B.; Mohamad, K.A.; Idris, I.F.; Husain, M.-L.; Dahdouh-Guebas, F. Assessment of Mangrove Vegetation Based on Remote Sensing and Ground-Truth Measurements at Tumpat, Kelantan Delta, East Coast of Peninsular Malaysia. Int. J. Remote Sens. 2011, 32, 1635–1650. [Google Scholar] [CrossRef]
- Adan, M.S. Integrating Sentinel-2 Derived Vegetation Indices and Terrestrial Laser Scanner to Estimate above-Ground Biomass/Carbon in Ayer Hitam Tropical Forest Malaysia. Masters’ Thesis, University of Twente, Enschede, The Netherlands, 2017. [Google Scholar]
- Kang, Y.; Özdoğan, M.; Zipper, S.; Román, M.; Walker, J.; Hong, S.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L.; et al. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Baghdadi, N.; Boyer, N.; Todoroff, P.; El Hajj, M.; Bégué, A. Potential of SAR Sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for Monitoring Sugarcane Crops on Reunion Island. Remote Sens. Environ. 2009, 113, 1724–1738. [Google Scholar] [CrossRef]
- Molijn, R.; Iannini, L.; Vieira Rocha, J.; Hanssen, R. Sugarcane Productivity Mapping through C-Band and L-Band SAR and Optical Satellite Imagery. Remote Sens. 2019, 11, 1109. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC Report of the Conference of the Parties on Its Nineteenth Session, Held in Warsaw from 11 to 23 November 2013; United Nations Framework Convention on Climate Change: New York, NY, USA, 2014.
- Blaes, X.; Defourny, P.; Wegmuller, U.; della Vecchia, A.; Guerriero, L.; Ferrazzoli, P. C-Band Polarimetric Indexes for Maize Monitoring Based on a Validated Radiative Transfer Model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 791–800. [Google Scholar] [CrossRef]
- Banks, S.; White, L.; Behnamian, A.; Chen, Z.; Montpetit, B.; Brisco, B.; Pasher, J.; Duffe, J. Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests. Remote Sens. 2019, 11, 670. [Google Scholar] [CrossRef]
- Xu, S.; Qi, Z.; Li, X.; Yeh, A.G.-O. Investigation of the Effect of the Incidence Angle on Land Cover Classification Using Fully Polarimetric SAR Images. Int. J. Remote Sens. 2019, 40, 1576–1593. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Doblas, J.; Shimabukuro, Y.; Sant’Anna, S.; Carneiro, A.; Aragão, L.; Almeida, C. Optimizing Near Real-Time Detection of Deforestation on Tropical Rainforests Using Sentinel-1 Data. Remote Sens. 2020, 12, 3922. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Ballère, M.; Koleck, T.; Le Toan, T. Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sens. 2018, 10, 1250. [Google Scholar] [CrossRef]
- Lewis, R.R.; Milbrandt, E.C.; Brown, B.; Krauss, K.W.; Rovai, A.S.; Beever, J.W.; Flynn, L.L. Stress in Mangrove Forests: Early Detection and Preemptive Rehabilitation Are Essential for Future Successful Worldwide Mangrove Forest Management. Mar. Pollut. Bull. 2016, 109, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.; Ganade, G.; Luiz de Attayde, J. Restoration versus Natural Regeneration in a Neotropical Mangrove: Effects on Plant Biomass and Crab Communities. Ocean Coast. Manag. 2015, 110, 38–45. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual Polarimetric Radar Vegetation Index for Crop Growth Monitoring Using Sentinel-1 SAR Data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
Name of Vegetation Indices | Formula |
---|---|
• Normalized Difference Red (NIR)/Normalized Difference Vegetation Index (NDVI) | (NIR − Red)/(NIR + Red) or (B8 − B4)/(B8 + B4) |
• Normalized Difference Moisture Index (NDMI) | (SWIR − NIR)/(SWIR + NIR) or (B11 − B8)/(B11 + B8) |
• Normalized Difference Red edge/Red ) | (NIR − Red edge)/(NIR + Red edge) or (B8 − B5)/(B8 + B5) |
• Chlorophyll Index Green () | (NIR/Green) − 1 or (B8/B3) − 1 |
Mangrove Stages | NDVI | References | NDMI | References | References | References | ||
---|---|---|---|---|---|---|---|---|
Disturbance | ≤0.30 | [50,51,52] | - | - | - | - | - | - |
Healthy | >0.70 | [53,54] | 0.10–0.80 | [8,9] | 0.07–0.16 | [55] | 1.50–7.00 | [56] |
Recovery | 0.10–0.30 | [50,51,52] | - | - | - | - | - | - |
Mangrove Stages | VH | References | VV | References |
---|---|---|---|---|
Disturbance | −16 to −26 | [47] | - | - |
Healthy | −14 to −10 | [47] | −8 to −10 | [57] |
−14 to −15 | [57] | - | - | |
Recovery | −16 to −26 | [47] | - | - |
Mangrove Stage | Vegetation Index | |||||||
---|---|---|---|---|---|---|---|---|
NDVI | STD (±) | NDMI | STD (±) | STD (±) | STD (±) | |||
Disturbance | 0.08 | 0.11 | 0.28 | 0.20 | 0.00 | 0.04 | 1.06 | 0.22 |
Recovery | 0.19 | 0.09 | 0.27 | 0.16 | 0.01 | 0.04 | 1.22 | 0.21 |
Healthy | 0.53 | 0.16 | 0.32 | 0.11 | 0.08 | 0.04 | 2.05 | 0.40 |
Mangrove Stage | VV | VH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ascn. | STD (±) | Descn. | STD (±) | Ascn. and Descn. | STD (±) | Ascn. | STD (±) | Descn. | STD (±) | Ascn. and Descn. | STD (±) | |
Degradation | −11.42 | 2.83 | −12.86 | 3.20 | −12.26 | 2.71 | −17.21 | 2.24 | −18.53 | 2.69 | −17.98 | 2.34 |
Recovery | −9.84 | 2.13 | −10.48 | 2.10 | −10.23 | 1.67 | −16.10 | 1.71 | −16.65 | 1.95 | −16.43 | 1.59 |
Healthy | −8.24 | 1.15 | −8.36 | 1.09 | −8.32 | 0.86 | −13.30 | 1.21 | −13.63 | 1.30 | −13.40 | 1.07 |
The Correlation between SAR Variables and Vegetation Indices Using Linear Regression Model | ||||||
---|---|---|---|---|---|---|
Vegetation Indices | SAR Variables | |||||
VV(Ascn.) | VV(Descn.) | VV(Ascn. and Descn.) | VH(Ascn.) | VH(Descn.) | VH(Ascn. and Descn.) | |
NDVI | 0.21 | 0.33 | 0.35 | 0.26 | 0.36 | 0.38 |
NDMI | - | - | - | −0.01 | −0.10 | −0.01 |
0.10 | 0.20 | 0.20 | 0.12 | 0.22 | 0.22 | |
0.14 | 0.25 | 0.25 | 0.18 | 0.25 | 0.26 | |
The correlation between SAR variables and vegetation indices using polynomial regression model | ||||||
Vegetation Indices | SAR variables | |||||
VV(Ascn.) | VV(Descn.) | VV(Ascn. and Descn.) | VH(Ascn.) | VH(Descn.) | VH(Ascn. and Desc.) | |
NDVI | 0.28 | 0.41 | 0.45 | 0.34 | 0.44 | 0.48 |
NDMI | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 | 0.06 |
0.04 | 0.27 | 0.28 | 0.22 | 0.30 | 0.31 | |
0.26 | 0.40 | 0.43 | 0.32 | 0.41 | 0.44 | |
The correlation between SAR variables and vegetation indices using Pearson’s model | ||||||
Vegetation Indices | SAR variables | |||||
VV(Ascn.) | VV(Descn.) | VV(Ascn. and Descn.) | VH(Ascn.) | VH(Descn.) | VH(Ascn. and Descn.) | |
NDVI | 0.45 | 0.57 | 0.59 | 0.51 | 0.60 | 0.62 |
NDMI | 0.01 | 0.00 | 0.01 | 0.08 | 0.10 | 0.10 |
0.31 | 0.45 | 0.44 | 0.37 | 0.47 | 0.47 | |
0.38 | 0.48 | 0.50 | 0.42 | 0.50 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upakankaew, K.; Ninsawat, S.; Virdis, S.G.P.; Sasaki, N. Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand. Forests 2022, 13, 1433. https://doi.org/10.3390/f13091433
Upakankaew K, Ninsawat S, Virdis SGP, Sasaki N. Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand. Forests. 2022; 13(9):1433. https://doi.org/10.3390/f13091433
Chicago/Turabian StyleUpakankaew, Kamonporn, Sarawut Ninsawat, Salvatore G. P. Virdis, and Nophea Sasaki. 2022. "Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand" Forests 13, no. 9: 1433. https://doi.org/10.3390/f13091433
APA StyleUpakankaew, K., Ninsawat, S., Virdis, S. G. P., & Sasaki, N. (2022). Discrimination of Mangrove Stages Using Multitemporal Sentinel-1 C-Band Backscatter and Sentinel-2 Data—A Case Study in Samut Songkhram Province, Thailand. Forests, 13(9), 1433. https://doi.org/10.3390/f13091433