The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Woody Debris
3.2. Soil Moisture Availability
3.3. Soil Quality
4. Discussion
4.1. Downed Woody Debris
4.2. Soil Moisture Availability
4.3. Soil Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrahamson, W.G.; Hartnett, D.C. Pine flatwoods and dry prairies. In Ecosystems of Florida; University of Central Florida Press: Orlando, FL, USA, 1990; pp. 103–149. [Google Scholar]
- Myers, R.L. Scrub and high pine. In Ecosystems of Florida; Myers, R.L., Ewel, J.J., Eds.; The University of Central Florida Press: Gainesveille, FL, USA, 1990; pp. 150–193. [Google Scholar]
- Van Lear, D.H.; Jones, S.M. An Example of Site Classification in the Southeastern Coastal Plain Based on Vegetation and Land Type¹. South. J. Appl. For. 1987, 11, 23–28. [Google Scholar] [CrossRef]
- Peet, R.K.; Allard, D.J. Longleaf pine vegetation of the southern Atlantic and eastern Gulf Coast regions: A preliminary clas-sification. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 30 May 1993; Volume 18, pp. 45–81. [Google Scholar]
- Frost, C.C. Four centuries of changing landscape patterns in the longleaf pine ecosystem. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 30 May 1993; Volume 18, pp. 17–43. [Google Scholar]
- Longleaf Pine Ecosystem Fact Sheet–U.S. Fish and Wildlife Service 2003. Available online: http://www.southeast.fws.gov/pfwpine.html (accessed on 5 November 2021).
- Christensen, N.L. Fire regimes in southeastern ecosystems. Fire Regimes Ecosyst. Prop. 1981, 112, 136. [Google Scholar]
- Cox, A.; Gordon, D.; Slapcinsky, J.; Seamon, G. Understory restoration in longleaf pine Sandhills. Nat. Areas J. 2004, 24, 4–14. [Google Scholar]
- Engstrom, R.T. Characteristic mammals and birds of longleaf pine forests. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 30 May 1993; Volume 18, pp. 127–138. [Google Scholar]
- Stambaugh, M.C.; Guyette, R.P.; Marschall, J.M. Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. J. Veg. Sci. 2011, 22, 1094–1104. [Google Scholar] [CrossRef]
- Reinhart, K.O.; Menges, E.S. Effects of re-introducing fire to a central Florida sandhill community. Appl. Veg. Sci. 2004, 7, 141–150. [Google Scholar] [CrossRef]
- Wade, D.D.; Lundsford, J. Fire as a forest management tool: Prescribed burning in the southern United States. Unasylva 1990, 41, 28–38. [Google Scholar]
- Walker, J.; Peet, R. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Plant Ecol. 1984, 55, 163–179. [Google Scholar] [CrossRef]
- Walker, J.L.; Silletti, A.M. Restoring the ground layer of longleaf pine ecosystems. In The Longleaf Pine Ecosystem; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2007; pp. 297–333. [Google Scholar] [CrossRef]
- Brockway, D.G. Restoration of Longleaf Pine Ecosystems; USDA Forest Service, Southern Research Station: Gainesville, FL, USA, 2005; Volume 83. [Google Scholar]
- Sharma, A.; Jose, S.; Bohn, K.K.; Andreu, M.G. Effects of reproduction methods and overstory species composition on un-derstory light availability in longleaf pine–slash pine ecosystems. For. Ecol. Manag. 2012, 284, 23–33. [Google Scholar] [CrossRef]
- Brockway, D.G.; Outcalt, K.W.; Estes, B.L.; Rummer, R. Vegetation response to midstorey mulching and prescribed burning for wildfire hazard reduction and longleaf pine (Pinus palustris Mill.) ecosystem restoration. For. Int. J. For. Res. 2009, 82, 299–314. [Google Scholar] [CrossRef]
- Outcalt, K.W. Factors affecting wiregrass (Aristida stricta Michx.) cover on uncut and site prepared sandhills areas in Central Florida. Ecol. Eng. 1992, 1, 245–251. [Google Scholar] [CrossRef]
- Outcalt, K.W.; Lewis, C.E. Response of wiregrass (Aristida stricta) to mechanical site preparation. In Wiregrass Biology and Management Symposium Proceedings; KBN Engineering and Applied Science: Gainesville, FL, USA, 1990. [Google Scholar]
- Provencher, L.; Herring, B.J.; Gordon, D.R.; Rodgers, H.L.; Galley, K.E.M.; Tanner, G.W.; Hardesty, J.L.; Brennan, L.A. Effects of Hardwood Reduction Techniques on Longleaf Pine Sandhill Vegetation in Northwest Florida. Restor. Ecol. 2001, 9, 13–27. [Google Scholar] [CrossRef]
- Walker, J.L.; van Eerden, B.P.; Robinson, D.; Hausch, M. Burning and chopping for woodpeckers and wiregrass? In Red-Cockaded Woodpecker: Road to Recovery; Costa, R., Daniels, S.J., Eds.; Hancock House Publishers: Blaine, WA, USA, 2004; pp. 683–686. [Google Scholar]
- Knapp, B.O.; Wang, G.G.; Walker, J.L.; Cohen, S. Effects of site preparation treatments on early growth and survival of planted longleaf pine (Pinus palustris Mill.) seedlings in North Carolina. For. Ecol. Manag. 2006, 226, 122–128. [Google Scholar] [CrossRef]
- Knapp, B.O.; Walker, J.L.; Wang, G.G.; Hu, H.; Addington, R.N. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine. For. Ecol. Manag. 2014, 320, 149–160. [Google Scholar] [CrossRef]
- Hagan, D.L.; Jose, S.; Thetford, M.; Bohn, K. Production physiology of three native shrubs intercropped in a young longleaf pine plantation. Agrofor. Syst. 2009, 76, 283–294. [Google Scholar] [CrossRef]
- Van Eerden, B.P. Studies on the Reproductive Biology of Wiregrass (Aristida stricta Michaux) in the Carolina Sandhills. Doc-toral dissertation, University of Georgia, Athens, GA, USA, 1997. [Google Scholar]
- MLRA 137: Carolina and Georgia Sand Hills. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ga/soils/surveys/?cid=nrcs144p2_021884 (accessed on 21 October 2021).
- South Carolina Encyclopedia—Sandhills. Available online: https://www.scencyclopedia.org/sce/entries/Sandhills/ (accessed on 8 July 2021).
- USDA-NRCS. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Ba-sin. In US Department of Agriculture Handbook; USDA: Washington, DC, USA, 2006; p. 296. [Google Scholar]
- Aguilar, F.X.; Mirzaee, A.; McGarvey, R.G.; Shifley, S.R.; Burtraw, D. Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Costanza, J.K.; Abt, R.C.; McKerrow, A.J.; Collazo, J.A. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios. AIMS Environ. Sci. 2015, 2, 180–202. [Google Scholar] [CrossRef]
- North, B.W.; Pienaar, E.F. Continued obstacles to wood-based biomass production in the southeastern United States. GCB Bioenergy 2021, 13, 1043–1053. [Google Scholar] [CrossRef]
- U.S. Department of Energy. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; ORNL/TM-2016/727; Efroymson, R.A., Langholtz, M.H., Johnson, K.E., Stokes, B.J., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 640. [Google Scholar] [CrossRef]
- Janowiak, M.K.; Webster, C.R. Promoting ecological sustainability in woody biomass harvesting. J. For. 2010, 108, 16–23. [Google Scholar] [CrossRef]
- Richardson, J.; Björheden, R.; Hakkila, P.; Lowe, A.T.; Smith, C.T. Bioenergy from Sustainable Forestry: Guiding Principles and Practice; Springer Science & Business Media: Berlin, Germany, 2006; Volume 71. [Google Scholar]
- Vance, E.D.; Aust, W.M.; Strahm, B.D.; Froese, R.E.; Harrison, R.B.; Morris, L.A. Biomass Harvesting and Soil Productivity: Is the Science Meeting our Policy Needs? Soil Sci. Soc. Am. J. 2014, 78, S95–S104. [Google Scholar] [CrossRef]
- Walker, T.; Cardellichio, P.; Colnes, A.; Gunn, J.; Kittler, B.; Perschel, B.; Initiative, N.C. Biomass Sustainability and Carbon Policy Study; Manomet Center for Conservation Sciences: Plymouth, MA, USA, 2010. [Google Scholar]
- Wang, J.; LeDoux, C.B.; Edwards, P.; Jones, M. Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia. For. Prod. J. 2005, 55, 37–40. [Google Scholar]
- Kane, J.M.; Varner, J.M.; Knapp, E.E. Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and south-western Oregon, USA. Int. J. Wildland Fire 2009, 18, 686–697. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Knapp, E.E. Moisture desorption in mechanically masticated fuels: Effects of particle fracturing and fuelbed compaction. Int. J. Wildland Fire 2012, 21, 894–904. [Google Scholar] [CrossRef]
- Kreye, J.K.; Kobziar, L.N.; Camp, J.M. Immediate and short-term response of understory fuels following mechanical mastication in a pine flatwoods site of Florida, USA. For. Ecol. Manag. 2014, 313, 340–354. [Google Scholar] [CrossRef]
- Hood, S.; Wu, R. Estimating fuel bed loadings in masticated areas. In Proceedings of the Fuels Management-How to Measure Success Conference, Portland, OR, USA, 28–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 41, pp. 333–340. [Google Scholar]
- Kreye, J.; Varner, J.M. Moisture dynamics in masticated fuelbeds: A preliminary analysis. In Proceedings of the fire environment--innovations, management, and policy conference, Destin, FL, USA, 26–30 March 2007; Butler, B.W., Cook, W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; Volume 46, pp. 173–186. [Google Scholar]
- Overby, S.; Gottfries, G. Does mastication residue alter soil nitrogen dynamics in woodlands of Southwest Colorado? In Proceedings of the North American Forest Ecology Workshop conference, Logan, UT, USA, 22–26 June 2009. [Google Scholar]
- Jain, T.; Sikkink, P.; Keefe, R.; Byrne, J. To masticate or not: Useful tips for treating forest, woodland, and shrubland vegetation. Gen. Technol. Rep. 2018, 381, 5–32. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Knapp, E.E. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory. Int. J. Wildland Fire 2011, 20, 308–317. [Google Scholar] [CrossRef]
- Rhoades, C.; Battaglia, M.; Rocca, M.; Ryan, M. Short- and medium-term effects of fuel reduction mulch treatments on soil nitrogen availability in Colorado conifer forests. For. Ecol. Manag. 2012, 276, 231–238. [Google Scholar] [CrossRef]
- Young, K.; Roundy, B.A.; Eggett, D.L. Plant Establishment in Masticated Utah Juniper Woodlands. Rangel. Ecol. Manag. 2013, 66, 597–607. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors affecting nitrification in soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef]
- Kershaw County Climate—South Carolina State Climatology Office 2022. Available online: https://www.dnr.sc.gov/climate/sco/ClimateData/countyData/county_kershaw.php (accessed on 29 June 2022).
- Benjamin, J.G.; Seymour, R.S.; Meacham, E.; Wilson, J. Impact of whole-tree and cut-to-length harvesting on postharvest condition and logging costs for early commercial thinning in maine. North. J. Appl. For. 2013, 30, 149–155. [Google Scholar] [CrossRef]
- Newcome, R. Ground-Water Resources of Kershaw County, South Carolina; South Carolina State Documents Depository: Columbia, SC, USA, 2002. [Google Scholar]
- Briedis, J.I.; Wilson, J.S.; Benjamin, J.G.; Wagner, R.G. Logging residue volumes and characteristics following integrated roundwood and energy-wood whole-tree harvesting in central maine. North. J. Appl. For. 2011, 28, 66–71. [Google Scholar] [CrossRef]
- Fraver, S.; Ringvall, A.; Jonsson, B.G. Refining volume estimates of down woody debris. Can. J. For. Res. 2007, 37, 627–633. [Google Scholar] [CrossRef]
- Waddell, K.L. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol. Indic. 2002, 1, 139–153. [Google Scholar] [CrossRef]
- De Vries, P.G. A General Theory on Line Intersect Sampling: With Application to Logging Residue Inventory; Forest Mensura-tion Department, Agricultural University: Wageningen, NL, USA, 1973; No. 73-11. [Google Scholar]
- Woodall, C.W.; Monleon, V.J. Sampling, Estimation, and Analysis Procedures for the Down Woody Materials Indicator; USDA Forest Service General Technical Report NRS-22 Northern Research Station: Newtown Square, PA, USA, 2008. [Google Scholar]
- Waldrop, T.; Phillips, R.A.; Simon, D.A. Fuels and predicted fire behavior in the southern Appalachian Mountains after fire and fire surrogate treatments. For. Sci. 2010, 56, 32–45. [Google Scholar] [CrossRef]
- Agricultural Service Laboratory Soil Testing Results—Clemson University Agricultural Service Laboratory. 2014. Available online: http://psaweb.clemson.edu/soils/htdocs/understandingreport.pdf (accessed on 12 October 2021).
- Klimas, K.B. Prescribed Fire Effects on Water Quality Variables in the Southern Appalachian Region. Doctoral Dissertation, Clemson University, Clemson, SC, USA, 2020. [Google Scholar]
- Microsoft Corporation. Microsoft Excel. 2018. Available online: https://office.microsoft.com/excel (accessed on 11 June 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 22 September 2021).
- Brown, J.K. Handbook for Inventorying Downed Woody Material; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1974; p. 16. [Google Scholar]
- Wiebe, S.; Morris, D.; Luckai, N.; Reid, D. Coarse Woody Debris Dynamics Following Biomass Harvesting: Tracking Carbon and Nitrogen Patterns During Early Stand Development in Upland Black Spruce Ecosystems. Int. J. For. Eng. 2012, 23, 25–32. [Google Scholar] [CrossRef]
- Rhoades, C.; Battaglia, M.; Ryan, M.G.; Rocca, M.E. Woody Mulch Effects on Soil Nitrogen Availability in Mechanical Fuel Reduction Treatments. In Proceedings of the North American Forest Ecology Workshop conference, Logan, UT, USA, 22–26 June 2009. [Google Scholar]
- Faust, W.Z. A vegetation analysis of the Georgia fall-line Sandhills. Rhodora 1976, 78, 525–531. [Google Scholar]
- Qin, S.; Li, S.; Kang, S.; Du, T.; Tong, L.; Ding, R. Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? Agric. Water Manag. 2016, 177, 128–137. [Google Scholar] [CrossRef]
- Brendemuehl, R.H. Research progress in the use of fertilizers to increase pine growth on the Florida Sandhills. For. Fertil. -Zation-Theory Pract. 1968, 1, 191–196. [Google Scholar]
- Linn, D.M.; Doran, J.W. Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef]
- McCaskill, G.L.; Jose, S.; Chauhan, A.; Ogram, A.V. Soil nitrogen dynamics as an indicator for longleaf pine restoration. Restor. Ecol. 2017, 26, 264–274. [Google Scholar] [CrossRef]
- Wilson, C.A.; Mitchell, R.J.; Boring, L.R.; Hendricks, J.J. Soil nitrogen dynamics in a fire-maintained forest ecosystem: Results over a 3-year burn interval. Soil Biol. Biochem. 2002, 34, 679–689. [Google Scholar] [CrossRef]
- Nutrients Plants Require for Growth—University of Idaho College of Agricultural and Life Sciences 2004. Available online: https://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1124.pdf (accessed on 17 August 2021).
- McKenzie, N.; Coughlan, K.; Cresswell, H. Soil Physical Measurement and Interpretation for Land Evaluation; Csiro Publishing: Clayton, Australia, 2002; Volume 5. [Google Scholar]
- Bulk Density Measurement—Fact Sheets. Available online: https://soilquality.org.au/factsheets/bulk-density-measurement (accessed on 14 September 2021).
- Burns, R.M.; Hebb, E.A. Site Preparation and Reforestation of Droughty, Acid Sands; US Department of Agriculture, Forest Ser-vice: Washington, DC, USA, 1972. [Google Scholar]
- Donovan, L.A.; West, J.B.; McLeod, K.W. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat. Tree Physiol. 2000, 20, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, M.; Mack, M.C.; Hiers, J.K.; Pokswinski, S.; Barnett, A.; Provencher, L. Effects of Restoration Techniques on Soil Carbon and Nitrogen Dynamics in Florida Longleaf Pine (Pinus palustris) Sandhill Forests. Forests 2014, 5, 498–517. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Jacobsen, K.L. Effects of Fire on Forest Nutrient Cycles Joan Romanya and Isabel Serrasolses. In Fire Effects on Soils and Restoration Strategies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 241–272. [Google Scholar]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a Prescribed Fire on Understory Vegetation, Carbon Pools, and Soil Nutrients in a Longleaf Pine-Slash Pine Forest in Florida. Nat. Areas J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2018, 187, 85–91. [Google Scholar] [CrossRef]
- Sulfur—The 4th Major Nutrient. 2010. Available online: www.ipni.net/pnt (accessed on 27 September 2021).
- Coates, T.A.; Shelburne, V.B.; Waldrop, T.A.; Smith, B.R.; Hoke, S.; Hill, J.; Simon, D.M. Forest soil response to fuel reduction treatments in the southern Appalachian Mountains. In Proceedings of the 14th Biennial Southern Silvicultural Research Conference, Asheville, NC, USA, 26 February–1 March 2010; Stanturf, J.A., Ed.; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2010; Volume 121, pp. 283–287. [Google Scholar]
- Kobziar, L.N.; Long, A.J.; Zipperer, W.C.; Kreye, J.K. Characterization of Masticated Fuelbeds and Fuel Treatment Effectiveness in Southeastern US Pine Ecosystems. Jt. Fire Sci. Program, UNL Digital Commons 2014. Available online: https://digitalcommons.unl.edu/jfspresearch/35/ (accessed on 4 September 2021).
- Overby, S.T.; Gottfried, G.J. Microbial and nitrogen pool response to fuel treatments in Pinyon-Juniper woodlands of the southwestern USA. For. Ecol. Manag. 2017, 406, 138–146. [Google Scholar] [CrossRef]
Moisture Block | Treatment | Soil pH | P (kg/ha) | K (kg/ha) | Ca (kg/ha) | Mg (kg/ha) | Zn (kg/ha) | Mn (kg/ha) | Cu (kg/ha) | B (kg/ha) | Na (kg/ha) | S (kg/ha) | CEC (mmhos/cm) | OM % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mesic | Conventional | 5 | 11.2 | 28.0 | 89.7 | 12.3 | 1.2 | 13.5 | 0.2 | 0.2 | 5.6 | 7.8 | 0.03 | 0 | 1.12 |
4.9 | 3.4 | 43.7 | 100.9 | 28.0 | 0.7 | 11.2 | 0.1 | 0.3 | 6.7 | 12.3 | 0.03 | 0 | 1.83 | ||
5 | 3.4 | 61.6 | 244.3 | 35.9 | 1.5 | 22.4 | 0.2 | 0.3 | 11.2 | 11.2 | 0.05 | 1 | 2.28 | ||
Biomass | 5 | 15.7 | 26.9 | 96.4 | 12.3 | 0.7 | 10.1 | 0.2 | 0.2 | 4.5 | 7.8 | 0.03 | 1 | 1.96 | |
4.9 | 3.4 | 30.3 | 68.4 | 15.7 | 0.8 | 7.8 | 0.1 | 0.2 | 6.7 | 13.5 | 0.05 | 0 | 1.39 | ||
5.2 | 7.8 | 96.4 | 358.7 | 53.8 | 1.9 | 42.6 | 0.4 | 0.4 | 10.1 | 12.3 | 0.05 | 0 | 2.98 | ||
Mastication | 5.2 | 4.5 | 42.6 | 107.6 | 19.1 | 0.4 | 15.7 | 0.2 | 0.3 | 6.7 | 9.0 | 0.04 | 1 | 2.17 | |
5.2 | 6.7 | 40.4 | 97.5 | 23.5 | 0.9 | 44.8 | 0.3 | 0.3 | 9.0 | 9.0 | 0.03 | 0 | 1.74 | ||
4.5 | 13.5 | 42.6 | 154.7 | 26.9 | 1.6 | 9.0 | 0.2 | 0.2 | 5.6 | 7.8 | 0.05 | 0 | 2.84 | ||
Submesic | Conventional | 5 | 13.5 | 19.1 | 103.1 | 10.1 | 0.8 | 15.7 | 0.3 | 0.2 | 4.5 | 9.0 | 0.03 | 0 | 1.26 |
4.7 | 17.9 | 44.8 | 130.0 | 23.5 | 1.3 | 19.1 | 0.3 | 0.3 | 7.8 | 9.0 | 0.06 | 0 | 1.52 | ||
4.9 | 5.6 | 37.0 | 60.5 | 24.7 | 0.6 | 5.6 | 0.3 | 0.3 | 9.0 | 38.1 | 0.04 | 0 | 1.78 | ||
Biomass | 4.6 | 11.2 | 26.9 | 70.6 | 12.3 | 0.7 | 5.6 | 0.2 | 0.2 | 7.8 | 6.7 | 0.05 | 0 | 1.21 | |
4.8 | 39.2 | 37.0 | 49.3 | 10.1 | 0.8 | 6.7 | 0.2 | 0.2 | 5.6 | 6.7 | 0.05 | 0 | 1.19 | ||
4.8 | 20.2 | 29.1 | 94.2 | 14.6 | 0.8 | 14.6 | 0.2 | 0.2 | 6.7 | 11.2 | 0.04 | 0 | 1.2 | ||
Mastication | 5.1 | 5.6 | 57.2 | 191.7 | 29.1 | 1.6 | 10.1 | 0.1 | 0.3 | 5.6 | 12.3 | 0.04 | 0 | 2.01 | |
5 | 11.2 | 67.3 | 233.1 | 33.6 | 2.5 | 26.9 | 0.3 | 0.3 | 9.0 | 10.1 | 0.05 | 0 | 1.79 | ||
4.8 | 4.5 | 42.6 | 178.2 | 26.9 | 1.2 | 24.7 | 0.1 | 0.2 | 4.5 | 9.0 | 0.03 | 1 | 2.38 | ||
Subxeric | Conventional | 4.8 | 2.2 | 16.8 | 34.7 | 7.8 | 0.7 | 5.6 | 0.2 | 0.2 | 5.6 | 14.6 | 0.03 | 0 | 1.66 |
4.7 | 3.4 | 23.5 | 57.2 | 16.8 | 0.8 | 7.8 | 0.2 | 0.4 | 13.5 | 14.6 | 0.04 | 0 | 1.68 | ||
4.9 | 3.4 | 41.5 | 146.8 | 31.4 | 1.1 | 15.7 | 0.3 | 0.3 | 13.5 | 14.6 | 0.04 | 0 | 1.63 | ||
Biomass | 4.6 | 5.6 | 91.9 | 520.1 | 78.5 | 3.0 | 52.7 | 0.3 | 0.4 | 17.9 | 11.2 | 0.07 | 0 | 3.89 | |
4.8 | 5.6 | 81.8 | 378.8 | 74.0 | 2.6 | 46.0 | 0.3 | 0.4 | 17.9 | 13.5 | 0.07 | 0 | 2.92 | ||
4.7 | 5.6 | 44.8 | 134.5 | 19.1 | 1.3 | 28.0 | 0.3 | 0.3 | 6.7 | 14.6 | 0.09 | 5 | 2.39 | ||
Mastication | 5.3 | 5.6 | 50.4 | 274.6 | 48.2 | 1.0 | 32.5 | 0.2 | 0.3 | 10.1 | 11.2 | 0.04 | 0 | 2.17 | |
5 | 5.6 | 47.1 | 182.7 | 32.5 | 1.5 | 42.6 | 0.2 | 0.3 | 11.2 | 10.1 | 0.03 | 0 | 1.40 | ||
4.6 | 4.5 | 66.1 | 130.0 | 26.9 | 0.9 | 13.5 | 0.2 | 0.3 | 7.8 | 9.0 | 0.05 | 0 | 2.15 | ||
Xeric | Conventional | 4.9 | 3.4 | 49.3 | 68.4 | 19.1 | 0.6 | 6.7 | 0.2 | 0.4 | 11.2 | 15.7 | 0.05 | 1 | 1.35 |
4.7 | 5.6 | 60.5 | 171.5 | 31.4 | 1.8 | 21.3 | 0.2 | 0.3 | 5.6 | 11.2 | 0.05 | 0 | 2.58 | ||
4.8 | 3.4 | 43.7 | 108.7 | 25.8 | 1.0 | 12.3 | 0.2 | 0.2 | 6.7 | 9.0 | 0.04 | 0 | 1.88 | ||
Biomass | 4.9 | 22.4 | 58.3 | 288.1 | 47.1 | 1.7 | 26.9 | 0.3 | 0.3 | 5.6 | 9.0 | 0.04 | 0 | 1.7 | |
5 | 17.9 | 33.6 | 95.3 | 16.8 | 0.9 | 31.4 | 0.4 | 0.3 | 6.7 | 9.0 | 0.03 | 0 | 1.32 | ||
5.1 | 7.8 | 30.3 | 156.9 | 22.4 | 0.9 | 26.9 | 0.2 | 0.3 | 5.6 | 12.3 | 0.03 | 0 | 1.34 | ||
Mastication | 4.6 | 4.5 | 32.5 | 80.7 | 14.6 | 0.9 | 14.6 | 0.3 | 0.2 | 7.8 | 10.1 | 0.05 | 0 | 2.5 | |
4.8 | 12.3 | 48.2 | 193.9 | 25.8 | 1.1 | 51.6 | 0.3 | 0.3 | 11.2 | 14.6 | 0.04 | 0 | 1.92 | ||
5.1 | 7.8 | 81.8 | 404.6 | 78.5 | 2.0 | 58.3 | 0.3 | 0.4 | 10.1 | 10.1 | 0.06 | 1 | 2.05 |
Moisture Group | Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predicted Peak | Average | Max | Predicted Peak | Average | Max | Predicted Peak | Average | Max | ||
Mesic | Mastication | 0.56 (0.03) | 0.43 (0.17) | 0.58 | 0.21 (0.34) | 0.17 (0.24) | 0.61 | 0.24 (0.16) | 1.11 (1.84) | 6.35 |
Biomass | 0.56 (0.01) | 0.52 (0.10) | 0.62 | 0.03 (0.02) | 0.04 (0.06) | 0.19 | 1.14 (1.57) | 5.51 (13.40) | 44.94 | |
Conventional | 0.74 (0.05) | 0.65 (0.12) | 0.79 | 0.19 (0.18) | 0.29 (0.18) | 0.66 | 0.23 (0.04) | 0.57 (1.06) | 2.83 | |
Submesic | Mastication | 0.91 (0.35) | 0.87 (0.40) | 1.27 | 0.04 (0.02) | 0.05 (0.03) | 0.13 | 0.63 (0.75) | 3.68 (9.75) | 33.55 |
Biomass | 0.67 (0.19) | 0.59 (0.18) | 0.89 | 0.01 (0.01) | 0.01 (0.04) | 0.14 | 0.38 (0.35) | 1.20 (2.84) | 10.01 | |
Conventional | 0.65 (0.13) | 0.52 (0.18) | 0.8 | 0.01 (0.01) | 0.03 (0.05) | 0.16 | 0.17 (0.06) | 0.33 (0.36) | 1.34 | |
Subxeric | Mastication | 3.35 (2.88) | 3.33 (2.59) | 6.32 | 0.01 (0.01) | 0.03 (0.06) | 0.19 | 0.26 (0.14) | 0.77 (1.97) | 5.01 |
Biomass | 2.13 (1.23) | 2.03 (1.15) | 3.16 | 0.01 (0.01) | 0.04 (0.07) | 0.24 | 0.18 (0.08) | 0.94 (2.12) | 7.48 | |
Conventional | 2.17 (2.56) | 2.07 (2.35) | 5.12 | 0.05 (0.04) | 0.05 (0.04) | 0.12 | 0.41 (0.46) | 0.92 (2.36) | 8.08 | |
Xeric | Mastication | 0.57 (0.02) | 0.52 (0.11) | 0.64 | 0.07 (0.08) | 0.08 (0.1) | 0.35 | 0.27 (0.21) | 1.71 (4.47) | 15.74 |
Biomass | 0.75 (0.32) | 0.65 (0.31) | 1.11 | 0.03 (0.04) | 0.01 (0.04) | 0.08 | 0.19 (0.08) | 0.39 (1.50) | 4.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murray, J.; Hagan, D.; Hiesl, P.; Baldwin, R. The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests. Forests 2022, 13, 1449. https://doi.org/10.3390/f13091449
Murray J, Hagan D, Hiesl P, Baldwin R. The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests. Forests. 2022; 13(9):1449. https://doi.org/10.3390/f13091449
Chicago/Turabian StyleMurray, Jacob, Donald Hagan, Patrick Hiesl, and Robert Baldwin. 2022. "The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests" Forests 13, no. 9: 1449. https://doi.org/10.3390/f13091449
APA StyleMurray, J., Hagan, D., Hiesl, P., & Baldwin, R. (2022). The Influence of Slash Management Practices on Water and Nutrient Dynamics in Longleaf Pine Forests. Forests, 13(9), 1449. https://doi.org/10.3390/f13091449