Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Distribution of the Spongy Moth to Extract Climate Data
2.2. Global Meteorological Data from Areas of Spongy Moth Occurrence
2.3. Domestic Weather Data
2.4. Domestic Occurrence Data and Field Survey
2.5. Statistical Analysis for Global Climatic and Domestic Weather Factors
3. Results
3.1. Characterizing Climatic Conditions Suitable for Spongy Moth Occurrence
3.2. Spatial Analysis of Domestic Weather Conditions
3.3. Temporal Analysis of Domestic Weather Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montgomery, M.E.; Wallner, W.E. The gypsy moth. A westward migrant. In Dynamics of Forest Insect Populations: Patterns, Causes, Implications; Berryman, A.A., Ed.; Plenum Press: New York, NY, USA, 1988; pp. 353–376. ISBN 978-1-4899-0789-9. [Google Scholar]
- APHIS, U. Pest Alert: Asian Gypsy Moth. Agriculture USDo, Ed. 2016. Available online: https://www.aphis.usda.gov/publications/plant_health/content/printable_version/fs_phasiangm.pdf (accessed on 9 March 2022).
- Leonard, D.E. Recent developments in ecology and control of the gypsy moth. Annu. Rev. Entomol. 1974, 19, 197–229. [Google Scholar] [CrossRef]
- Elkinton, J.S.; Liebhold, A.M. Population dynamics of gypsy moth in North America. Ann. Rev. Entomol. 1990, 35, 571–596. [Google Scholar] [CrossRef]
- Keena, M.A.; Cote, M.J.; Grinberg, P.S.; Wallner, W.E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2014, 37, 636–649. [Google Scholar] [CrossRef]
- Tuthill, R.W.; Canada, A.T.; Wilcock, K.; Etkind, P.H.; O’Dell, T.M.; Shama, S.K. An epidemiologic study of gypsy moth rash. Am. J. Public Health 1984, 74, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and Recent Climate Change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Williams, D.W.; Liebhold, A.M. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England. Environ. Entomol. 1995, 24, 987–995. [Google Scholar] [CrossRef]
- Summers, J.N. Effect of Low Temperature on the Hatching of Gipsy-Moth Eggs; US Department of Agriculture: Washington, DC, USA, 1922. [CrossRef]
- D’Amico, V.; Elkinton, J.S. Rainfall Effects on Transmission of Gypsy Moth (Lepidoptera: Lymantriidae) Nuclear Polyhedrosis Virus. Environ. Entomol. 1995, 24, 1144–1149. [Google Scholar] [CrossRef]
- Thompson, L.M.; Faske, T.M.; Banahene, N.; Grim, D.; Agosta, S.J.; Parry, D.; Tobin, P.C.; Johnson, D.M.; Grayson, K.L. Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiol. Entomol. 2017, 42, 181–190. [Google Scholar] [CrossRef]
- Fält-Nardmann, J.J.J.; Ruohomäki, K.; Tikkanen, O.P.; Neuvonen, S. Cold hardiness of Lymantria monacha and L. dispar (Lepidoptera: Erebidae) eggs to extreme winter temperatures: Implications for predicting climate change impacts. Ecol. Entomol. 2018, 43, 422–430. [Google Scholar] [CrossRef]
- Ananko, G.G.; Kolosov, A.V. Asian gypsy moth (Lymantria dispar L.) populations: Tolerance of eggs to extreme winter temperatures. J. Therm. Biol. 2021, 102, 103123. [Google Scholar] [CrossRef]
- Logan, J.A.; Casagrande, P.A.; Liebhold, A.M. Modeling environment for simulation of gypsy moth (Lepidoptera: Lymantriidae) larval phenology. Environ. Entomol. 1991, 20, 1516–1525. [Google Scholar] [CrossRef]
- Limbu, S.; Keena, M.; Chen, F.; Cook, G.; Nadel, H.; Hoover, K. Effects of temperature on development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae). Environ. Entomol. 2017, 46, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.K.; Nam, Y.W.; Kim, D.S.; Lee, S.H.; Lim, J.H.; Choi, W.I.; Kim, E.S. Tree-crown defoliation caused by outbreak of forest insect pests in Korea during 2020. Korean J. Appl. Entomol. 2020, 59, 409–410. [Google Scholar] [CrossRef]
- Choi, W.I.; Kim, E.S.; Yun, S.J.; Lim, J.H.; Kim, Y.E. Quantification of one-year gypsy moth defoliation extent in Wonju, Korea, Using Landsat Satellite Images. Forests 2021, 12, 545. [Google Scholar] [CrossRef]
- GBIF. Available online: https://doi.org/10.15468/dl.3mny9k (accessed on 28 April 2021).
- CABI. Available online: https://www.cabi.org/isc/datasheet/31807 (accessed on 3 May 2021).
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Brown, J.L.; Anderson, B. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.H. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Schaefer, P.W. Betula platyphylla: The preferred oviposition host of Lymantria dispar japonica in Hokkaido, Japans. Environ. Entomol. 1974, 7, 168–170. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Gottschalk, K.W.; Muzika, R.M.; Montgomery, M.E.; Young, R.; O’Day, K.; Kelley, B. Suitability of North American Tree Species to the Gypsy Moth: A Summary of Field and Laboratory Tests; General Technical Report NE-211; USDA Forest Service: Radnor, PA, USA, 1995. [CrossRef]
- Pogue, M.; Schaefer, P.W. A Review of Selected Species of Lymantria Hübner (1819) (Lepidoptera: Noctuidae: Lymantriinae) from Subtropical and Temperate Regions of Asia, Including the Descriptions of Three New Species, Some Potentially Invasive to North America; USDA, Forest Health Technology Enterprise Team: Washington, DC, USA, 2007.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 17 December 2021).
- Liebhold, A.; Elkinton, J.; Williams, D.; Muzika, R.M. What causes outbreaks of the gypsy moth in North America? Popul. Ecol. 2000, 42, 257–266. [Google Scholar] [CrossRef]
- Keena, M.A. Inheritance and world variation in thermal requirements for egg hatch in Lymantria dispar (Lepidoptera: Erebidae). Environ. Entomol. 2016, 45, 1–10. [Google Scholar] [CrossRef]
- Wei, J.; Luo, Y.Q.; Shi, J.; Wang, D.P.; Shen, S.W. Impact of temperature on postdiapause and diapause of the Asian gypsy moth, Lymantria dispar asiatica. J. Insect Sci. 2014, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.E.; Elkinton, J.S.; Witcosky, J.J. Introduction and spread of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) along the leading edge of gypsy moth (Lepidoptera: Lymantriidae) spread. Environ. Entomol. 1996, 25, 1235–1247. [Google Scholar] [CrossRef]
- Alalouni, U.; Schadler, M.; Brandl, R. Natural enemies and environmental factors affecting the population dynamics of the gypsy moth. J. Appl. Entomol. 2013, 137, 721–738. [Google Scholar] [CrossRef]
- Berryman, A.A. What causes population cycles of forest Lepidoptera? Trends Ecol. Evol. 1996, 11, 28–32. [Google Scholar] [CrossRef]
- Murúa, G.; Molina-Ochoa, J.; Coviella, C. Population dynamics of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) and its parasitoids in northwestern Argentina. Fla. Entomol. 2006, 89, 175–182. [Google Scholar] [CrossRef]
- Stanley, J.; Chandrasekaran, S.; Preetha, G. Conogethes punctiferalis (Lepidoptera: Pyralidae) its biology and field parasitization. Indian J. Agric. Sci. 2009, 79, 906–909. [Google Scholar]
- Mahadi, N.A.; Muhamad, R.; Adam, N.A. Relationship between bagworm Pteroma pendula Joannis (Lepidoptera: Psychidae) populations, parasitoids, and weather parameters in oil palm plantation. J. Agric. Sci. 2012, 4, 13–17. [Google Scholar] [CrossRef]
- Paini, D.R.; Mwebaze, P.; Kuhnert, P.M.; Kriticos, D.J. Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Sci. Rep. 2018, 8, 13723. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, D.E.; Lee, H.; Jung, S.; Lee, W.H. Ensemble evaluation of the potential risk areas of yellow-legged hornet distribution. Environ. Monit. Assess. 2021, 193, 601. [Google Scholar] [CrossRef]
Weather Factor | Density | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly average temperature (°C) | High | 1.1 a | 2.1 a | 6.9 a | 10 a | 17.1 a | 22.5 a | 22.4 a | 25.3 a | 19 a | 11.9 a | 6.8 a | −2 a | 11.9 a |
Low | 3.9 b | 4.6 b | 8.3 a | 10.9 a | 17.8 a | 22.6 a | 22.7 a | 27.2 a | 20.7 a | 14.8 a | 9.8 b | 2 b | 13.8 a | |
Monthly maximum temperature (°C) | High | 6.4 a | 7.7 a | 13.7 a | 16.9 a | 23 a | 28.1 a | 26.4 a | 29.5 a | 24.1 a | 18.8 a | 12.9 a | 3.9 a | 17.6 a |
Low | 8.5 a | 10.2 b | 14.8 a | 17.7 a | 23.4 a | 28 a | 26.5 a | 31.5 b | 25.7 a | 21.2 b | 15.4 b | 7.7 b | 19.2 a | |
Monthly minimum temperature (°C) | High | −3.3 a | −3.1 a | 0.2 a | 2.8 a | 11.6 a | 17.4 a | 19 a | 22.2 a | 14.9 a | 6 a | 1.3 a | −7.1 a | 6.8 a |
Low | 0.2 b | −0.3 a | 2.1 a | 4.6 a | 12.9 a | 18.1 a | 20.1 a | 24 a | 16.8 a | 9.5 a | 5 b | −2.6 b | 9.2 a | |
Precipitation (mm) | High | 59.7 a | 60.1 a | 20 a | 20.3 a | 93.7 a | 95.6 a | 277.9 a | 516.9 a | 156.5 a | 10.5 a | 36.6 a | 4.7 a | 112.7 a |
Low | 79.1 a | 41.8 b | 45.6 b | 53.1 a | 126.5 a | 252.3 a | 463.9 b | 448.5 a | 225.5 b | 20 a | 32.3 a | 11.1 b | 150 a |
Weather Factor | Year | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly average temperature (°C) | 2019 | −2.2 a | 0.6 a | 5.9 a | 10.7 a | 17.6 a | 20.7 a | 24.1 a | 24.9 a | 20.4 a | 14 a | 6.4 a | 0.6 a | 12 a |
2020 | 1.1 b | 2.1 a | 6.9 a | 10 a | 17.1 a | 22.5 a | 22.4 a | 25.3 a | 19 a | 11.9 a | 6.8 a | −2 b | 11.9 a | |
2021 | −3.4 a | 1.6 a | 7.6 a | 12.2 a | 15.1 a | 20.7 a | 25 a | 23.2 a | 19.8 a | 13.2 a | 6.6 a | 0.2 a | 11.8 a | |
Monthly maximum temperature (°C) | 2019 | 4.3 a | 6.7 a | 12.9 a | 17.7 a | 25.4 a | 26.9 a | 28.8 a | 30.3 a | 25.6 a | 20.1 a | 13.5 a | 6.1 a | 18.2 a |
2020 | 6.4 b | 7.7 a b | 13.7 a | 16.9 a | 23 a b | 28.1 a | 26.4 a | 29.5 a | 24.1 a | 18.8 a | 12.9 a | 3.9 b | 17.6 a | |
2021 | 2.6 c | 8.1 b | 14 a | 18.5 a | 20.9 b | 26 a | 30.2 a | 27.7 a | 24.7 a | 19.5 a | 13.2 a | 5.9 a | 17.6 a | |
Monthly minimum temperature (°C) | 2019 | −8.3 a | −4.8 a | −0.5 a | 3.9 a | 9.5 a | 15 a | 20.2 a | 20.5 a | 16 a | 8.5 a | 0.6 a | −4.1 a | 6.4 a |
2020 | −3.3 b | −3.1 a | 0.2 a | 2.8 a | 11.6 a | 17.4 a | 19 a | 22.2 a | 14.9 a | 6 a | 1.3 a | −7.1 a | 6.8 a | |
2021 | −9.2 a | −4.4 a | 1.5 a | 5.6 a | 9.5 a | 16 a | 20.7 a | 19.8 a | 15.5 a | 8.4 a | 1.5 a | −4.8 a | 6.7 a | |
Precipitation (mm) | 2019 | 2.3 a | 26.8 a | 34.5 a | 49.2 a b | 23.9 a | 103.2 a | 189.6 a | 116.7 a | 151.4 a | 81.3 a | 80.4 a | 15.2 a | 72.9 a |
2020 | 59.7 b | 60.1 b | 20 a | 20.3 a | 93.7 b | 95.6 a | 277.9 a | 516.9 b | 156.5 a | 10.5 b | 36.6 a | 4.7 b | 112.7 a | |
2021 | 12.8 c | 8.3 c | 82 b | 78.6 b | 156.7 c | 82.8 a | 164.8 a | 210.4 a | 198 a | 45.6 a b | 55.9 a | 4.4 b | 91.7 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.-W.; Jung, J.-M.; Nam, Y.-W.; Byun, H.-M.; Yoon, S.-H.; Jung, S.-H.; Lee, W.-H. Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks. Forests 2022, 13, 1474. https://doi.org/10.3390/f13091474
Song J-W, Jung J-M, Nam Y-W, Byun H-M, Yoon S-H, Jung S-H, Lee W-H. Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks. Forests. 2022; 13(9):1474. https://doi.org/10.3390/f13091474
Chicago/Turabian StyleSong, Jae-Woo, Jae-Min Jung, Young-Woo Nam, Hye-Min Byun, Sun-Hee Yoon, Sung-Hoon Jung, and Wang-Hee Lee. 2022. "Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks" Forests 13, no. 9: 1474. https://doi.org/10.3390/f13091474
APA StyleSong, J. -W., Jung, J. -M., Nam, Y. -W., Byun, H. -M., Yoon, S. -H., Jung, S. -H., & Lee, W. -H. (2022). Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks. Forests, 13(9), 1474. https://doi.org/10.3390/f13091474