Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar (Populus× tomentosa Carrière) Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Materials
2.3. Determination of Moisture Content and Chemical Composition of the Chinese White Poplar
2.4. Statistical Analysis
3. Results
3.1. Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar
3.2. Effect of Clonal and Initial Planting Density × Clone Interaction on the Moisture Content and Chemical Compositions of the Triploid Chinese White Poplar
3.3. Phenotypic Correlations between the Growth Traits, Basic Wood Density, Moisture Content, and Chemical Compositions within the Initial Planting Density Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.T. Genetic Improvement of Populus tomentosa; Chinese Forestry Press: Beijing, China, 2006. [Google Scholar]
- Yao, C.L.; Pu, J.W. Timber characteristics and pulp properties of the triploid clones of Populus tomentosa. J. Beijing For. Univ. 1998, 20, 18–21. [Google Scholar]
- Yang, S.; Lu, L.; Ni, Y. Cloned poplar as a new fiber resource for the Chinese pulp and paper industry. Pulp Pap. Can. Ont. 2006, 107, 34–37. [Google Scholar]
- Zhu, Z.T.; Kang, X.Y.; Zhang, Z.Y. Studies on selection of natural triploids of Populus tomentosa. Sci. Silv. Sin. 1998, 34, 22–31. [Google Scholar]
- Wang, M.; Kane, M.; Zhao, D. SAGS Culture/Density Study: Age 15 Results; Plantation Management Research Cooperative: Chicago, IL, USA, 2014. [Google Scholar]
- Binkley, D.; José, L.S.; Bauerle, W.L.; Ryan, M.G. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For. Ecol. Manag. 2010, 259, 1704–1713. [Google Scholar] [CrossRef]
- Harrington, T.B.; Harrington, C.A.; De, B.D.S. Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). For. Ecol. Manag. 2009, 258, 18–25. [Google Scholar] [CrossRef]
- Chen, S.X.; Yang, M.S.; Wang, L.P. Effect of spacing on volume, storm-resistance and wood quality of Eucalyptus urophylla. For. Res. 1990, 11, 435–438. [Google Scholar]
- Xu, Y.M.; Wei, B.S.; Yang, Z.D.; Zhou, Z.X.; Zhou, M.H.; Zhou, L. Effects of Initial Densities on Wood Quality of Exotic Slash Pine Plantation. J. Northeast For. Univ. 2002, 1, 6–9. [Google Scholar] [CrossRef]
- Liu, X.F.; He, S.E.; Ouyang, L.N.; Zhang, L.; Zhang, W.Y.; Chen, S.X. Effect of initial planting density on growth, stem-form and main wood chemical compositions of Eucalyptus urophylla × E. grandis. Eucalypt Sci. Technol. 2020, 37, 16–21. [Google Scholar] [CrossRef]
- Liziniewicz, M.; Ekö, P.M.; Agestam, E. Effect of spacing on 23-year-old lodgepole pine (Pinus contorta Dougl. var. latifolia) in southern Sweden. Scand. J. For. Res. 2012, 27, 361–371. [Google Scholar] [CrossRef]
- Erasmus, J.; Drew, D.M.; Wessels, C.B. The flexural lumber properties of Pinus patula Schiede ex Schltdl. & Cham. improve with decreasing initial tree spacing. Ann. For. Sci. 2020, 77, 73. [Google Scholar] [CrossRef]
- Melo, L.E.D.L.; Silva, C.D.J.; Protásio, T.D.P.; Mota, G.D.S.; Santos, I.S.; Urbinati, C.V.; Trugilho, P.F.; Mori, F.A. Planting density effect on some properties of Schizolobium parahyba wood. Maderas Cienc. Tecnol. 2018, 20, 381–394. [Google Scholar] [CrossRef]
- Bo, H.J.; Zhu, J.L.; Zhang, R.Z.; Nie, L.S.; Song, L.J. Effects of planting density and clone type on growth and wood volume of Populus tomentosa stands. J. For. Res. 2020, 25, 444–449. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Q.; Song, L.J.; Kang, X.Y.; Zhang, P.D. Effects of spacing on the diameter at breast height and bark thickness of triploid hybrid clones in white poplar, J. Northest For. Univ. 2020, 35, 79–86. [Google Scholar] [CrossRef]
- Sang, Y.R.; Gao, P.; Kang, X.Y.; Zhang, P.D. Effect of initial planting density on growth traits and wood properties of triploid Chinese white poplar (Populus tomentosa) plantation. Forests 2021, 12, 1676. [Google Scholar] [CrossRef]
- Wang, L.B.; Zhang, Z.Y.; Kang, X.Y.; Song, L.J.; Shang, F.H. Effects of planting density on the early growth traits of white poplar hybrid clones. J. Beijing For. Univ. 2012, 34, 25–30. [Google Scholar] [CrossRef]
- Zhang, P.D.; Kang, X.Y.; Zhao, G.R.; Meng, H.J. Relationship between growth and spacing of intensive short-rotation pulpwood stand of triploid Chinese white poplar. J. Northwest For. Univ. 2009, 24, 121–124. [Google Scholar] [CrossRef]
- Zhang, P.D.; Yao, S.; Kang, X.Y.; Pu, J.W. Wood basic density and chemical components in intensive short-rotation pulpwood plantations of triploid hybrids of Populus tomentosa. Sci. Silv. Sin. 2011, 47, 133–137. [Google Scholar] [CrossRef]
- Chen, Z.S. The establishment of binomial stock volume tables of poplar. J. Foramin. Res. 1989, 2, 78–83. [Google Scholar]
- Liu, S.Q.; Chu, Y.; Zhang, Y.C.; Wang, W.S. Studies on variation of moisture content in green wood of poplar 69 in the benches of Changjiang River. J. Anhui Agric. Univ. 1999, 4, 384–387. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, K.Y.; Yu, Y.B.; Liu, X.G. Effect of flooding on the moisture content and ring width of Pterocarya stenoptera Grown in the Beaches. J. Anhui Agric. Univ. 2005, 4, 101–104. [Google Scholar] [CrossRef]
- Sopushynskyy, I.; Vintoniv, I.; Teischinger, A.; Michalak, R. The influence of site factors on wood density and moisture content of beech in the Ukrainian Carpathians. Wood Res. 2005, 50, 43–49. [Google Scholar]
- Zhang, Y.H.; Chen, Y.G.; Liang, J.S.; Tan, Y.M. Primary study on relationship between moisture content and water-absorption of stumpage of E.urophylla clone u6. For. Constr. 2017, 2, 23–28. [Google Scholar]
- Miranda, I.; Pereira, H. Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Ann. Forest Sci. 2002, 59, 283–291. [Google Scholar] [CrossRef]
- Wang, W.Q.; Wang, S.J.; Liu, Y.R.; Zhu, C.Q. Analysis of the characteristics of density function on P. euramericana plantation. J. Nanjing For. Univ. 1997, 21, 4. [Google Scholar]
- Fujimoto, T.; Koga, S. An application of mixed-effects model to evaluate the effects of initial spacing on radial variation in wood density in Japanese Larch (Larix kaempferi). J. Wood Sci. 2010, 56, 7–14. [Google Scholar] [CrossRef]
- Hebert, F.; Krause, C.; Ploured, P.Y.; Achim, A.; Pregent, G.; Menetrier, J. Effect of tree spacing on tree level volume growth, morphology, and wood properties in a 25-Year-Old Pinus banksiana plantation in the Boreal Forest of Quebec. Forests 2016, 7, 276. [Google Scholar] [CrossRef]
- Saffian, H.A.; Tahir, P.M.; Harum, J.; Jawaid, M.; Hakeem, K.R. Influence of planting density on the fiber morphology and chemical composition of a new latex-timber clone tree of Rubber wood (Hevea brasiliensis Muell. Arg.). Bioresources 2014, 9, 2593–2608. [Google Scholar] [CrossRef]
- Zanuncio, A.J.V.; Colodette, J.L.; Gomes, F.J.B.; Carneiro, A.D.O.; Vital, B.R. Chemical composition of Eucalipt wood with different levels of thining. Cinec. Florest. 2013, 23, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.F.V.; Vital, B.R.; Garneiro, A.C.O.; Carvalho, A.M.M.L.; Cardoso, M.T.; Hein, P.R.G. Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J. Trop. For. Sci. 2016, 28, 243–248. [Google Scholar]
- Liu, N.; Ding, C.J.; Li, B.; Ding, M.I.; Su, X.H.; Huang, Q.J. Effect of planting density on growth and wood property of three Populus × euramericana cultivars. For. Res. 2020, 33, 10. [Google Scholar] [CrossRef]
- Ahmed, A.K.M.; Fu, Z.X.; Ding, C.J.; Jiang, L.P.; Han, X.D.; Yang, A.G.; Ma, Y.H.; Zhao, X.Y. Growth and wood properties of a 38-year-old Populus simonii × P. nigra plantation established with different densities in semi-arid areas of northeastern China. J. For. Res. 2020, 31, 497–506. [Google Scholar] [CrossRef]
- Pu, J.W.; Song, J.L.; Yao, C.L. Studies on variations of chemical components of triploid clones in Populus tomentosa Carr. Paper Sci. Technol. 2002, 21, 1–4. [Google Scholar] [CrossRef]
- Chai, X.W.; Lu, X.X.; Xiang, Y.M.; Huang, L.H. Effect of fertilization on the wood properties of Populus ‘I-214’. For. Res. 1991, 4, 297–301. [Google Scholar] [CrossRef]
- Gonçalves, P.D.S.; Bortoletto, N.; Cardinal, Á.B.B.; Gouvea, L.R.L.; Costa, R.B.D.; Moreas, M.L.T.D. Age-age correlation for early selection of rubber tree genotypes in São Paulo State, Brazil. Genet. Mol. Biol. 2005, 28, 758–764. [Google Scholar] [CrossRef]
- Lee, S.J.; Woolliams, J.; Samuel, C.J.A.; Malcolm, D.C. A study of population variation and inheritance in Sitka spruce III. Age trends in genetic parameters and optimum selection ages for wood density, and genetic correlations with vigour traits. Silvae Genet. 2002, 51, 143–151. [Google Scholar] [CrossRef]
- Yin, S.P.; Xiao, Z.H.; Zhao, G.H.; Zhao, X.; Sun, X.Y.; Zhang, Y.; Wang, F.; Li, S.C.; Zhao, X.Y.; Qu, G.Z. Variation analyses of growth and wood properties of Larix olgensis clones in China. J. For. Res. 2016, 28, 687–697. [Google Scholar] [CrossRef]
- Ji, K.; Fan, M.; Xu, L. Variation analysis and fine family selection on half-sib progenies from clonal seed orchard of Pinus massoniana. Front. For. China 2007, 2, 340–346. [Google Scholar] [CrossRef]
No. | Clone Identity | Parents | Level of Ploidy | Sex |
---|---|---|---|---|
1 | B301 | (P. tomentosa × P. bolleana) × P. tomentosa | Triploid | ♀ |
2 | B331 | (P. alba × P. glandulosa) × P. tomentosa | Triploid | ♀ |
3 | S86 | (P. tomentosa × P. bolleana) × (P. alba × P. glandulosa) | Triploid | ♂ |
4 | 1316 | P. tomentosa × P. tomentosa | Diploid | ♂ |
Planting Density (Trees/hm2) | Trait | Triploid Clones | Diploid Clone | |||
---|---|---|---|---|---|---|
Mean ± SE | Range | CVp (%) | Mean ± SE | Range | ||
2490 | MC (%) | 7.70 ± 0.86 | 6.68–8.98 | 11.21 | 8.44 ± 0.64 | 7.70–8.85 |
BA (%) | 1.61 ± 0.47 | 1.27–2.70 | 29.21 | 1.48 ± 0.27 | 1.32–1.79 | |
HC (%) | 82.84 ± 1.73 | 79.93–85.33 | 2.09 | 79.67 ± 1.23 | 78.37–80.81 | |
AC (%) | 50.86 ± 1.65 | 48.42–53.40 | 3.25 | 46.00 ± 2.05 | 43.78–47.81 | |
KL (%) | 19.64 ± 1.80 | 17.17–21.32 | 9.17 | 24.31 ± 0.18 | 24.10–24.43 | |
1665 | MC (%) | 7.11 ± 0.26 | 6.74–7.51 | 3.73 | 7.54 ± 0.18 | 7.33–7.66 |
BA (%) | 1.44 ± 0.42 | 0.99–2.23 | 29.16 | 1.42 ±0.28 | 1.16–1.72 | |
HC (%) | 81.32 ± 1.98 | 78.41–84.10 | 2.44 | 78.20 ± 0.94 | 77.22–79.10 | |
AC (%) | 50.83 ± 2.02 | 47.62–53.45 | 3.98 | 47.56 ± 1.09 | 46.33–48.40 | |
KL (%) | 19.39 ± 2.22 | 16.26–22.26 | 11.46 | 24.30 ± 0.74 | 23.45–24.79 | |
1110 | MC (%) | 6.89 ± 0.73 | 5.66–7.68 | 10.56 | 7.30 ± 0.88 | 6.42–8.18 |
BA (%) | 1.40 ± 0.28 | 1.06–1.95 | 19.94 | 1.59 ± 0.12 | 1.48–1.71 | |
HC (%) | 81.98 ± 0.95 | 80.69–83.28 | 1.16 | 79.98 ± 1.07 | 79.06–81.15 | |
AC (%) | 51.70 ± 1.87 | 48.32–54.37 | 3.62 | 48.22 ± 0.74 | 47.58–49.03 | |
KL (%) | 19.94 ± 1.46 | 17.69–21.31 | 7.34 | 24.25 ± 0.23 | 24.01–24.46 | |
832 | MC (%) | 6.40 ± 0.56 | 5.64–7.20 | 8.79 | 6.84 ± 0.34 | 6.60–7.23 |
BA (%) | 1.46 ± 0.31 | 1.09–2.09 | 21.14 | 1.53 ± 0.02 | 1.51–1.55 | |
HC (%) | 82.00 ± 1.36 | 80.53–84.32 | 1.66 | 80.16 ± 0.84 | 79.38–81.05 | |
AC (%) | 52.15 ± 1.68 | 49.35–54.32 | 3.23 | 48.86 ± 0.41 | 48.48–49.30 | |
KL (%) | 20.03 ± 1.84 | 17.48–21.88 | 9.19 | 24.62 ± 0.45 | 24.16–25.05 | |
624 | MC (%) | 6.88 ± 0.66 | 6.23–8.29 | 9.55 | 7.13 ± 0.73 | 6.60–7.96 |
BA (%) | 1.33 ± 0.31 | 0.97–1.92 | 23.50 | 1.45 ± 0.14 | 1.36–1.62 | |
HC (%) | 81.98 ± 1.63 | 78.92–84.13 | 1.99 | 80.31 ± 0.73 | 79.56–81.02 | |
AC (%) | 52.01 ± 2.57 | 46.76–55.29 | 4.94 | 48.97 ± 1.18 | 48.00–50.28 | |
KL (%) | 19.84 ± 1.84 | 17.31–21.64 | 9.29 | 24.66 ± 0.14 | 24.50–24.77 | |
499 | MC (%) | 7.34 ± 0.47 | 7.05–8.53 | 6.37 | 7.65 ± 0.22 | 7.42–7.85 |
BA (%) | 1.51 ± 0.49 | 1.10–2.39 | 32.45 | 1.53 ± 0.09 | 1.43–1.60 | |
HC (%) | 81.70 ± 1.49 | 80.23–84.26 | 1.82 | 80.15 ± 0.09 | 80.09–80.25 | |
AC (%) | 51.68 ± 2.61 | 48.07–55.57 | 5.06 | 49.12 ± 0.42 | 48.63–49.38 | |
KL (%) | 20.09 ± 2.14 | 16.84–22.02 | 10.66 | 24.95 ± 0.10 | 24.89–25.07 | |
416 | MC (%) | 7.36 ± 0.32 | 6.88–7.82 | 4.34 | 7.48 ± 0.11 | 7.35–7.55 |
BA (%) | 1.47 ± 0.25 | 1.19–2.03 | 17.11 | 1.61 ± 0.06 | 1.55–1.66 | |
HC (%) | 82.07 ± 1.27 | 79.50–83.96 | 1.54 | 80.21 ± 0.78 | 79.35–80.88 | |
AC (%) | 51.39 ± 1.38 | 49.41–53.28 | 2.69 | 49.65 ± 0.36 | 49.31–50.02 | |
KL (%) | 20.11 ± 1.44 | 17.39–21.33 | 7.16 | 24.41 ± 0.15 | 24.24–24.52 |
Trait | Planting Density (Trees/hm2) | Clone | Planting Density × Clone | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
MC | 4.351 | 0.002 | 0.795 | 0.459 | 0.522 | 0.888 |
BA | 0.536 | 0.777 | 4.171 | 0.023 | 0.694 | 0.748 |
HC | 1.123 | 0.367 | 14.811 | <0.001 | 0.304 | 0.985 |
AC | 1.076 | 0.393 | 23.405 | <0.001 | 0.740 | 0.705 |
KL | 0.755 | 0.609 | 90.017 | <0.001 | 0.450 | 0.932 |
Planting Density (Trees/hm2) | p | ||||
---|---|---|---|---|---|
MC | BA | HC | AC | KL | |
2490 | 0.189 | 0.514 | 0.067 | 0.668 | <0.001 |
1665 | 0.660 | 0.737 | 0.512 | 0.264 | 0.287 |
1110 | 0.233 | 0.043 | 0.091 | 0.071 | 0.008 |
832 | 0.651 | 0.407 | 0.356 | 0.020 | <0.001 |
624 | 0.438 | 0.116 | 0.044 | 0.020 | <0.001 |
499 | 0.250 | 0.357 | 0.039 | 0.026 | <0.001 |
416 | 0.671 | 0.280 | 0.152 | 0.083 | 0.024 |
Planting Density (Trees/hm2) | Traits | H | SV | BWD | MC | BA | HC | AC | KL |
---|---|---|---|---|---|---|---|---|---|
2490 | DBH | 0.836 ** | 0.984 ** | −0.307 | 0.671 * | 0.014 | 0.258 | 0.280 | −0.291 |
H | 0.891 ** | −0.025 | 0.571 | −0.055 | 0.494 | 0.465 | −0.481 | ||
SV | −0.281 | 0.704 * | −0.012 | 0.324 | 0.289 | −0.309 | |||
BWD | −0.451 | 0.231 | 0.225 | 0.466 | −0.459 | ||||
MC | −0.225 | 0.295 | −0.178 | −0.262 | |||||
BA | −0.758 * | 0.282 | 0.530 | ||||||
HC | 0.266 | −0.877 ** | |||||||
AC | −0.394 | ||||||||
1665 | DBH | 0.627 | 0.969 ** | 0.328 | 0.400 | 0.474 | 0.214 | 0.186 | −0.448 |
H | 0.796 * | 0.508 | −0.232 | −0.273 | 0.785 * | 0.628 | −0.117 | ||
SV | 0.401 | 0.251 | 0.271 | 0.399 | 0.324 | −0.346 | |||
BWD | −0.021 | 0.036 | 0.802 ** | 0.829 ** | −0.215 | ||||
MC | 0.642 | −0.443 | −0.335 | −0.383 | |||||
BA | −0.463 | −0.396 | −0.540 | ||||||
HC | 0.936 ** | −0.006 | |||||||
AC | −0.098 | ||||||||
1110 | DBH | 0.919 ** | 0.992 ** | 0.101 | −0.042 | 0.535 | 0.222 | 0.569 | −0.168 |
H | 0.934 ** | 0.213 | −0.289 | 0.488 | 0.156 | 0.588 | −0.271 | ||
SV | 0.111 | −0.122 | 0.566 | 0.167 | 0.592 | −0.161 | |||
BWD | 0.065 | −0.158 | 0.567 | 0.556 | −0.774 * | ||||
MC | 0.210 | 0.348 | −0.026 | −0.069 | |||||
BA | −0.376 | 0.154 | 0.201 | ||||||
HC | 0.630 | −0.753 * | |||||||
AC | −0.723 * | ||||||||
832 | DBH | 0.900 ** | 0.995 ** | 0.305 | 0.502 | 0.532 | 0.203 | 0.582 | −0.028 |
H | 0.909 ** | 0.507 | 0.681 * | 0.186 | 0.283 | 0.656 | −0.221 | ||
SV | 0.269 | 0.534 | 0.541 | 0.171 | 0.590 | −0.016 | |||
BWD | 0.316 | −0.440 | 0.633 | 0.585 | −0.795 * | ||||
MC | −0.138 | 0.490 | 0.558 | −0.092 | |||||
BA | −0.452 | −0.083 | 0.436 | ||||||
HC | 0.561 | −0.405 | |||||||
AC | −0.656 | ||||||||
624 | DBH | 0.959 ** | 0.997 ** | 0.194 | −0.239 | 0.310 | 0.366 | 0.441 | −0.288 |
H | 0.951 ** | 0.217 | −0.213 | 0.373 | 0.243 | 0.334 | −0.352 | ||
SV | 0.179 | −0.266 | 0.324 | 0.336 | 0.415 | −0.273 | |||
BWD | 0.499 | 0.342 | 0.526 | 0.647 | −0.778 * | ||||
MC | 0.523 | 0.064 | 0.056 | 0.082 | |||||
BA | −0.144 | −0.087 | 0.106 | ||||||
HC | 0.971 ** | −0.508 | |||||||
AC | −0.640 | ||||||||
499 | DBH | 0.841 ** | 0.987 ** | 0.562 | −0.033 | −0.190 | 0.544 | 0.825 ** | −0.718 * |
H | 0.892 ** | 0.523 | −0.097 | 0.178 | 0.365 | 0.605 | −0.579 | ||
SV | 0.558 | −0.097 | −0.192 | 0.578 | 0.815 ** | −0.743 * | |||
BWD | −0.172 | −0.033 | 0.298 | 0.540 | −0.664 | ||||
MC | 0.325 | −0.379 | −0.278 | 0.238 | |||||
BA | −0.685 * | −0.474 | 0.483 | ||||||
HC | 0.877 ** | −0.895 ** | |||||||
AC | −0.922 ** | ||||||||
416 | DBH | 0.943 ** | 0.994 ** | 0.410 | −0.042 | 0.147 | 0.004 | 0.326 | −0.373 |
H | 0.954 ** | 0.489 | −0.017 | 0.060 | 0.283 | 0.455 | −0.538 | ||
SV | 0.491 | −0.122 | 0.131 | 0.057 | 0.348 | −0.416 | |||
BWD | −0.723 * | 0.111 | 0.384 | 0.460 | −0.534 | ||||
MC | −0.378 | −0.096 | −0.159 | 0.104 | |||||
BA | −0.305 | 0.306 | 0.215 | ||||||
HC | 0.634 | −0.719 * | |||||||
AC | −0.768 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Y.; Kang, X.; Zhang, P. Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar (Populus× tomentosa Carrière) Plantation. Forests 2022, 13, 1494. https://doi.org/10.3390/f13091494
Sang Y, Kang X, Zhang P. Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar (Populus× tomentosa Carrière) Plantation. Forests. 2022; 13(9):1494. https://doi.org/10.3390/f13091494
Chicago/Turabian StyleSang, Yaru, Xiangyang Kang, and Pingdong Zhang. 2022. "Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar (Populus× tomentosa Carrière) Plantation" Forests 13, no. 9: 1494. https://doi.org/10.3390/f13091494
APA StyleSang, Y., Kang, X., & Zhang, P. (2022). Effect of Initial Planting Density on the Moisture Content and Chemical Composition of the Triploid Chinese White Poplar (Populus× tomentosa Carrière) Plantation. Forests, 13(9), 1494. https://doi.org/10.3390/f13091494