Morphological Characteristics of Bamboo Panel Milling Dust Derived from Different Average Chip Thicknesses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Milling Methods
2.3. Sieving and Image Scanning Analysis
2.4. Dust Morphological Characterization
3. Results and Discussion
3.1. PSD
3.2. Inner Diameter and Area-Equivalent Diameter
3.3. Aspect Ratio
3.4. Roundness
3.5. Convexity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, T.; Rahbar, N.; Allameh, S.; Kwofie, S.; Dissmore, D.; Ghavami, K.; Soboyejo, W. Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomater. 2011, 7, 3796–3803. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Hu, N.; Wu, Y.Q. Study on the Processing Technology of Bamboo Mat/Bamboo Particle Composite Board. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2010; Volume 150–151, pp. 1433–1437. [Google Scholar]
- Feng, Q.; Bu, X.; Wan, Z.; Feng, K.; Deng, Q.; Chen, C.; Li, D. An efficient torrefaction Bamboo-based evaporator in interfacial solar steam generation. Sol. Energy 2021, 230, 1095–1105. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.; Long, L.; Liu, B.; Xu, J. Tensile behavior and water absorption of innovative composites from natural cork granules and bamboo particles. Compos. Struct. 2021, 258, 113376. [Google Scholar] [CrossRef]
- Vorontsova, M.S.; Clark, L.G.; Dransfield, J.; Govaerts, R.; Baker, J.W. World Checklist of Bamboos and Rattans; Technical Reports; International Network of Bamboo and Rattan: Beijing, China, 2016. [Google Scholar]
- Tan, W.; Hao, X.; Fan, Q.; Sun, L.; Xu, J.; Wang, Q.; Ou, R. Bamboo particle reinforced polypropylene composites made from different fractions of bamboo culm: Fiber characterization and analysis of composite properties. Polym. Compos. 2019, 40, 4619–4628. [Google Scholar] [CrossRef]
- Pang, Z.; Zhu, N.; Cui, Y.; Li, W.; Xu, C. Experimental investigation on explosion flame propagation of wood dust in a semi-closed tube. J. Loss Prev. Process Ind. 2020, 63, 104028. [Google Scholar] [CrossRef]
- Gu, J.; Kirsch, I.; Schripp, T.; Froning-Ponndorf, F.; Berthold, D.; Salthammer, T. Human exposure to airborne particles during wood processing. Atmos. Environ. 2018, 193, 101–108. [Google Scholar] [CrossRef]
- Jacobsen, G.; Schlünssen, V.; Schaumburg, I.; Sigsgaard, T. Increased incidence of respiratory symptoms among female woodworkers exposed to dry wood. Eur. Respir. J. 2009, 33, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Schlünssen, V.; Schaumburg, I.; Andersen, N.T.; Sigsgaard, T.; Pedersen, O.F. Nasal patency is related to dust exposure in woodworkers. Occup. Environ. Med. 2002, 59, 23–29. [Google Scholar] [CrossRef]
- Jacobsen, G.; Schlunssen, V.; Schaumburg, I.; Taudorf, E.; Sigsgaard, T. Longitudinal lung function decline and wood dust exposure in the furniture industry. Eur. Respir. J. 2008, 31, 334–342. [Google Scholar] [CrossRef]
- Mez Yepes, M.E.; Cremades, L.V. Characterization of Wood Dust from Furniture by Scanning Electron Microscopy and Energy-dispersive X-ray Analysis. Ind. Health 2011, 49, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Buck, D.; Ekevad, M.; Marklund, B.; Guo, X.; Cao, P.; Zhu, N. Cutting forces and chip formation revisited based on orthogonal cutting of Scots pine. Holzforschung 2019, 73, 131–138. [Google Scholar] [CrossRef]
- Cui, Y.; Yin, J.; Cai, Y.; Wang, H.; Zhu, N.; Ding, T. Spatial distribution characteristics of the dust emitted at different cutting speeds during MDF milling by image analysis. J. Wood Sci. 2022, 68, 17. [Google Scholar] [CrossRef]
- Rogoziński, T.; Wilkowski, J.; Górski, J.; Czarniak, P.; Podziewski, P.; Szymanowski, K. Dust Creation in CNC Drilling of Wood Composites. BioResources 2015, 10, 3657–3665. [Google Scholar] [CrossRef]
- Piernik, M.; Rogoziński, T.; Krauss, A.; Pinkowski, G. The influence of the thermal modification of pine (Pinus sylvestris L.) wood on the creation of fine dust particles in plane milling: Fine dust creation in the plane milling of thermally modified pine wood. J. Occup. Health 2019, 61, 481–488. [Google Scholar] [CrossRef]
- Kminiak, R.; Kučerka, M.; Kristak, L.; Reh, R.; Antov, P.; Očkajová, A.; Rogoziński, T.; Pędzik, M. Granulometric Characterization of Wood Dust Emission from CNC Machining of Natural Wood and Medium Density Fiberboard. Forests 2021, 12, 1039. [Google Scholar] [CrossRef]
- Rogoziński, T.; Chuchala, D.; Pędzik, M.; Orlowski, K.A.; Dzurenda, L.; Muzinski, T. Influence of drying mode and feed per tooth rate on the fine dust creation in pine and beech sawing on a mini sash gang saw. Eur. J. Wood Wood Prod. 2020, 79, 91–99. [Google Scholar] [CrossRef]
- Pędzik, M.; Stuper-Szablewska, K.; Sydor, M.; Rogoziński, T. Influence of Grit Size and Wood Species on the Granularity of Dust Particles during Sanding. Appl. Sci. 2020, 10, 8165. [Google Scholar] [CrossRef]
- Okajová, A.; Kučerka, M.; Banski, A.; Rogoziński, T. Factors affecting the granularity of wood dust particles. Chip Chipless Woodwork. Processes 2016, 10, 137–144. [Google Scholar]
- Palmqvist, J.; Gustafsson, S.I. Emission of dust in planing and milling of wood. Holz Als Roh Und Werkst. 1999, 57, 164–170. [Google Scholar] [CrossRef]
- Rautio, S.; Hynynen, P.; Welling, I.; Hemmilä, P.; Usenius, A.; Närhi, P. Modelling of airborne dust emissions in CNC MDF milling. Holz Als Roh-Und Werkst. 2007, 65, 335–341. [Google Scholar] [CrossRef]
- Sinn, G.; Chuchała, D.; Orlowski, K.A.; Taube, P. Cutting model parameters from frame sawing of natural and impregnated Scots pine (Pinus sylvestris L.). Eur. J. Wood Wood Prod. 2020, 78, 777–784. [Google Scholar] [CrossRef]
- Ockajova, A.; Kučerka, M.; Kminiak, R.; Krišťák, Ľ.; Igaz, R.; Réh, R. Occupational Exposure to Dust Produced when Milling Thermally Modified Wood. Int. J. Environ. Res. Public Health 2020, 17, 1478. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Takano, T.; Okumura, S. Difference in mass concentration of airborne dust during circular sawing of five wood-based materials. J. Wood Sci. 2010, 57, 149–154. [Google Scholar] [CrossRef]
- Harries, K.A.; Bumstead, J.; Richard, M.; Trujillo, D. Geometric and material effects on bamboo buckling behaviour. Proc. Inst. Civ. Eng.-Struct. Build. 2017, 170, 236–249. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Scholz, F. Dust emission characteristics in the bamboo and rattan furniture manufacturing industries. Eur. J. Wood Wood Prod. 2015, 73, 561–562. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, X.; Liu, H. Experimental research on shape and size distribution of biomass particle. Fuel 2012, 94, 551–555. [Google Scholar] [CrossRef]
- Benthien, J.T.; Heldner, S.; Ohlmeyer, M. Size distribution of wood particles for extruded particleboard production determined by sieve analysis and image analysis-based particle size measurement. Eur. J. Wood Wood Prod. 2017, 76, 375–379. [Google Scholar] [CrossRef]
- Ding, T.; Zhao, J.; Zhu, N.; Wang, C. A comparative study of morphological characteristics of medium-density fiberboard dust by sieve and image analyses. J. Wood Sci. 2020, 66, 55. [Google Scholar] [CrossRef]
- Fu, X.; Huck, D.; Makein, L.; Armstrong, B.; Willen, U.; Freeman, T. Effect of particle shape and size on flow properties of lactose powders. Particuology 2012, 10, 203–208. [Google Scholar] [CrossRef]
- Očkajová, A.; Kučerka, M.; Krišťák, L.; Igaz, R. Granulometric Analysis of Sanding Dust from Selected Wood Species. BioResources 2018, 13, 7481–7495. [Google Scholar] [CrossRef]
- Palubicki, B.; Hlásková, L.; Frömel-Frybort, S.; Rogoziński, T. Feed Force and Sawdust Geometry in Particleboard Sawing. Materials 2021, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Igathinathane, C.; Pordesimo, L.; Columbus, E.; Batchelor, W.; Sokhansanj, S. Sieveless particle size distribution analysis of particulate materials through computer vision. Comput. Electron. Agric. 2009, 66, 147–158. [Google Scholar] [CrossRef]
- Saad, M.; Sadoudi, A.; Rondet, E.; Cuq, B. Morphological characterization of wheat powders, how to characterize the shape of particles? J. Food Eng. 2011, 102, 293–301. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; Barringer, S.A.; Iqbal, T. Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. J. Food Eng. 2004, 61, 399–405. [Google Scholar] [CrossRef]
- Souza, D.O.C.; Menegalli, F.C. Image analysis: Statistical study of particle size distribution and shape characterization. Powder Technol. 2011, 214, 57–63. [Google Scholar] [CrossRef]
- Robinson, D.A.; Friedman, S.P. Observations of the effects of particle shape and particle size distribution on avalanching of granular media. Phys. A Stat. Mech. Its Appl. 2002, 311, 97–110. [Google Scholar] [CrossRef]
- Pędzik, M.; Rogoziński, T.; Majka, J.; Stuper-Szablewska, K.; Antov, P.; Kristak, L.; Kminiak, R.; Kučerka, M. Fine Dust Creation during Hardwood Machine Sanding. Appl. Sci. 2021, 11, 6602. [Google Scholar] [CrossRef]
- Chung, K.Y.K.; Cuthbert, R.J.; Revell, G.S.; Wassel, S.G.; Summers, N. A study on dust emission, particle size distribution and formaldehyde concentration during machining of medium density fibreboard. Ann. Occup. Hyg. 2000, 44, 455–466. [Google Scholar] [CrossRef]
- American Conference of Governmental Industrial Hygienists (ACGIH). 2015 TLVs and BEIs (Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices); ACGIH: Cincinnati, OH, USA, 2015; ISBN 978-1-607260-77-6. [Google Scholar]
- Mattsson, J.E.; Kofman, P.D. Influence of particle size and moisture content on tendency to bridge in biofuels made from willow shoots. Biomass Bioenergy 2003, 24, 429–435. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yoon, W.B. Flow behavior and hopper design for black soybean powders by particle size. J. Food Eng. 2015, 144, 10–19. [Google Scholar] [CrossRef]
- Cheng, X.; Tao, D.; Zhi, L.; YiJun, G.; Liang, W.; Chen, Z. Size and shape distribution of particles from particleboard drilling based on image analysis. J. For. Eng. 2018, 3, 21–25. [Google Scholar]
- Gil, M.; Teruel, E.; Arauzo, I. Analysis of standard sieving method for milled biomass through image processing. Effects of particle shape and size for poplar and corn stover. Fuel 2014, 116, 328–340. [Google Scholar] [CrossRef]
Cutting Width, mm | Cutting Depth, mm | Average Chip Thickness, mm | Group I | Group II | Total Removed Volume, m3 | ||
---|---|---|---|---|---|---|---|
Spindle Speed, r/min | Feed Rate, m/min | Feed Rate, m/min | Spindle Speed, r/min | ||||
4 | 4 | 0.05 | 16,000 | 3.394 | 4.000 | 18,856 | 7.2 × 10−4 |
0.08 | 5.431 | 11,785 | |||||
0.11 | 7.467 | 8571 | |||||
0.14 | 9.504 | 6734 | |||||
0.17 | 11.540 | 5546 | |||||
0.20 | 13.576 | 4714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Yin, J.; Cai, Y.; Wang, H.; Ding, T.; Zhu, N. Morphological Characteristics of Bamboo Panel Milling Dust Derived from Different Average Chip Thicknesses. Forests 2022, 13, 1510. https://doi.org/10.3390/f13091510
Cui Y, Yin J, Cai Y, Wang H, Ding T, Zhu N. Morphological Characteristics of Bamboo Panel Milling Dust Derived from Different Average Chip Thicknesses. Forests. 2022; 13(9):1510. https://doi.org/10.3390/f13091510
Chicago/Turabian StyleCui, Yunqi, Jian Yin, Yitong Cai, Huimin Wang, Tao Ding, and Nanfeng Zhu. 2022. "Morphological Characteristics of Bamboo Panel Milling Dust Derived from Different Average Chip Thicknesses" Forests 13, no. 9: 1510. https://doi.org/10.3390/f13091510
APA StyleCui, Y., Yin, J., Cai, Y., Wang, H., Ding, T., & Zhu, N. (2022). Morphological Characteristics of Bamboo Panel Milling Dust Derived from Different Average Chip Thicknesses. Forests, 13(9), 1510. https://doi.org/10.3390/f13091510