Modeling Number of Trees per Hectare Dynamics for Uneven-Aged, Mixed-Species Stands Using the Copula Approach
Abstract
:1. Introduction
1.1. Background
1.2. Research Motivation
1.3. Research Objectives
2. Materials and Methods
2.1. Stochastic Differential Equation Framework
2.2. Study Area and Data
3. Results and Discussion
3.1. Parameter Estimates
3.2. Analysis of Tree Growth
3.3. Evolution of the Number of Trees
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zeide, B. Analysis of Growth Equations. For. Sci. 1993, 39, 594–616. [Google Scholar] [CrossRef]
- Petrauskas, E.; Rupšys, P.; Narmontas, M.; Aleinikovas, M.; Beniušienė, L.; Šilinskas, B. Stochastic Models to Qualify Stem Tapers. Algorithms 2020, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P.; Petrauskas, E. Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters. Symmetry 2021, 13, 1457. [Google Scholar] [CrossRef]
- Suzuki, T. Forest transition as a stochastic process (I). J. Jpn. For. Sci. 1966, 48, 436–439. [Google Scholar]
- Sloboda, B. Kolmogorow–Suzuki und die stochastische Differentialgleichung als Beschreibungsmittel der Bestandesevolution. Mitt Forstl Bundes Vers. Wien 1977, 120, 71–82. [Google Scholar]
- Garcia, O. Modelling stand development with stochastic differential equations. In Mensuration for Management Planning of Exotic Forest Plantations; Elliot, D.A., Ed.; New Zealand Forest Service, Forest Research Institute Symposium: Rotorua, New Zealand, 1979; 20, pp. 315–333. [Google Scholar]
- Tanaka, K. A stochastic model of height growth in an even-aged pure forest stand—why is the coefficient of variation of the height distribution smaller than that of the diameter distribution. J. Jpn. For. Soc. 1988, 70, 20–29. [Google Scholar]
- Rennolls, K. Forest height growth modelling. For. Ecol. Manag. 1995, 71, 217–225. [Google Scholar] [CrossRef]
- Rupšys, P. New insights into tree height distribution based on mixed-effects univariate diffusion processes. PLoS ONE 2016, 11, e0168507. [Google Scholar] [CrossRef]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Construction of Reducible Stochastic Differential Equation Systems for Tree Height–Diameter Connections. Mathematics 2020, 8, 1363. [Google Scholar] [CrossRef]
- Rupšys, P.; Petrauskas, E. Analysis of Longitudinal Forest Data on Individual-Tree and Whole-Stand Attributes Using a Stochastic Differential Equation Model. Forests 2022, 13, 425. [Google Scholar] [CrossRef]
- Rupšys, P. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling. Math. Probl. Eng. 2015, 2015, 375270. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Understanding the Evolution of Tree Size Diversity within the Multivariate nonsymmetrical Diffusion Process and Information Measures. Mathematics 2019, 7, 761. [Google Scholar] [CrossRef] [Green Version]
- Petrauskas, E.; Bartkevičius, E.; Rupšys, P.; Memgaudas, R. The use of stochastic differential equations to describe stem taper and volume. Baltic For. 2013, 19, 43–151. [Google Scholar]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Models for Tree Taper Form: The Gompertz and Vasicek Diffusion Processes Framework. Symmetry 2020, 12, 80. [Google Scholar] [CrossRef]
- Rupšys, P. Generalized fixed-effects and mixed-effects parameters height–diameter models with diffusion processes. Int. J. Biomath. 2015, 8, 1550060. [Google Scholar] [CrossRef]
- Rupšys, P. Modeling Dynamics of Structural Components of Forest Stands Based on Trivariate Stochastic Differential Equation. Forests 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P.; Petrauskas, E. On the Construction of Growth Models via Symmetric Copulas and Stochastic Differential Equations. Symmetry 2022, 14, 2127. [Google Scholar] [CrossRef]
- Wang, M.; Upadhyay, A.; Zhang, L. Trivariate distribution modeling of tree diameter, height, and volume. For. Sci. 2010, 56, 290–300. [Google Scholar]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Rupšys, P.; Petrauskas, E. Evolution of Bivariate Tree Diameter and Height Distribution via Stand Age: Von Bertalanffy Bivariate Diffusion Process Approach. J. For. Res. 2019, 24, 16–26. [Google Scholar] [CrossRef]
- Rupšys, P.; Narmontas, M.; Petrauskas, E. A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics 2020, 8, 2230. [Google Scholar] [CrossRef]
- Rupšys, P.; Petrauskas, E. A Linkage among Tree Diameter, Height, Crown Base Height, and Crown Width 4-variate Distribution and Their Growth Models: A 4-variate Diffusion Process Approach. Forests 2017, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.I.; Konno, Y.; Umeki, K.; Ohno, Y.; Kikuzawa, K. A new model for size-dependent tree growth in forests. PLoS ONE 2016, 11, e0152219. [Google Scholar] [CrossRef] [Green Version]
- Itô, K. Stochastic integral. Proc. Imp. Acad. 1944, 20, 519–524. [Google Scholar] [CrossRef]
- Yuancai, L.; Marques, C.; Macedo, F. Comparison of Schnute’s and Bertalanffy-Richards’ growth functions. For. Ecol. Manag. 1997, 96, 283–288. [Google Scholar] [CrossRef]
- Monti, C.A.U.; Oliveira, R.M.; Roise, J.P.; Scolforo, H.F.; Gomide, L.R. Hybrid Method for Fitting Nonlinear Height–Diameter Functions. Forests 2022, 13, 1783. [Google Scholar] [CrossRef]
- Rodrigo, M.; Zulkarnaen, D. Mathematical Models for Population Growth with Variable Carrying Capacity: Analytical Solutions. AppliedMath 2022, 2, 466–479. [Google Scholar] [CrossRef]
- Gómez-García, E.; Crecente-Campo, F.; Tobin, B.; Hawkins, M.; Nieuwenhuis, M.; Diéguez-Aranda, U. A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe. Forestry 2014, 87, 165–176. [Google Scholar] [CrossRef]
- Clutter, J.L.; Bennett, F.A. Diameter Distributions in Old-Field Slash Pine Plantations; Georgia Forest Research Council: Atlanta, GA, USA, 1965; Volume 13, p. 9. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for evenaged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Rupšys, P. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models. AIP Conf. Proc. 2015, 1684, 080011. [Google Scholar]
- Rupšys, P. Univariate and Bivariate Diffusion Models: Computational Aspects and Applications to Forestry. In Stochastic Differential Equations: Basics and Applications; Tony, G.D., Ed.; Nova Science Publisher’s: New York, NY, USA, 2018; pp. 1–77. [Google Scholar]
Species | Data | Number of Trees | Min | Max | Mean | St. Dev. | Number of Trees | Min | Max | Mean | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|---|
Estimation | Validation | ||||||||||
Pine | t (year) | 24,176 | 12.0 | 211.0 | 56.49 | 26.75 | 1531 | 25.0 | 119.0 | 51.88 | 20.73 |
d (cm) | 24,176 | 0.1 | 61.0 | 19.30 | 10.32 | 1531 | 5.50 | 52.80 | 19.60 | 7.53 | |
p (m2) | 24,176 | 0.09 | 124.19 | 10.50 | 8.98 | 1531 | 1.20 | 46.81 | 9.98 | 6.48 | |
h (m) | 5346 | 0.20 | 37.90 | 17.29 | 9.12 | 1531 | 6.20 | 37.50 | 19.38 | 5.39 | |
Spruce | t (year) | 13,360 | 12.0 | 207.0 | 64.42 | 25.27 | 664 | 7.0 | 101.0 | 49.89 | 16.90 |
d (cm) | 13,360 | 0.20 | 72.20 | 12.93 | 8.70 | 664 | 3.60 | 44.80 | 10.93 | 5.58 | |
p (m2) | 13,360 | 0.11 | 160.24 | 10.16 | 8.94 | 664 | 0.61 | 31.15 | 7.37 | 5.24 | |
h (m) | 2843 | 0.50 | 38.0 | 12.56 | 8.52 | 664 | 1.0 | 31.00 | 11.84 | 5.34 | |
Birch | t (year) | 1761 | 12.0 | 127.82 | 57,49 | 23.22 | 133 | 25.0 | 75.0 | 43.24 | 10.32 |
d (cm) | 1761 | 0.90 | 50.0 | 15.17 | 9.42 | 133 | 5.10 | 35.10 | 16.12 | 6.59 | |
p (m2) | 1761 | 0.33 | 173.82 | 10.37 | 8.87 | 133 | 1.51 | 32.55 | 7.59 | 4.87 | |
h (m) | 388 | 0.50 | 31.90 | 14.85 | 8.43 | 133 | 7.80 | 31.0 | 18.69 | 5.19 | |
All | t (year) | 39,437 | 12.0 | 211.0 | 59.25 | 26.36 | 2329 | 7.0 | 119.0 | 50.81 | 19.35 |
d (cm) | 39,437 | 0.1 | 72.20 | 16.95 | 10.22 | 2329 | 3.6 | 52.8 | 16.93 | 7.98 | |
p (m2) | 39,437 | 0.09 | 173.82 | 10.37 | 8.95 | 2329 | 0.61 | 46.81 | 9.10 | 6.19 | |
h (m) | 8604 | 0.20 | 38.00 | 15.62 | 9.16 | 2329 | 1.0 | 37.50 | 17.19 | 6.34 |
Species | A | Β | ɣ | σ | δ | τj |
---|---|---|---|---|---|---|
Diameter | ||||||
Pine | 0.0878 | 0.0169 | −23.5098 | 0.0006 | - | 0.0162 |
Spruce | 0.0926 | 0.0291 | −1.5524 | 0.0102 | - | 0.0146 |
Birch | 0.2725 | 0.1060 | −0.2137 | 0.0337 | - | 0.0679 |
All | 0.0850 | 0.0226 | −7.1108 | 0.0042 | - | 0.0069 |
Potentially available area | ||||||
Pine | 0.0538 | 0.0157 | −1.8435 | 0.0071 | 1.5478 | 0.0076 |
Spruce | 0.0696 | 0.0230 | −0.7630 | 0.0160 | 1.7467 | 0.0125 |
Birch | 0.0669 | 0.0207 | −2.3395 | 0.0088 | 1.6375 | 0.0099 |
All | 0.0617 | 0.0186 | −1.3260 | 0.0102 | 1.6151 | 0.0094 |
Height | ||||||
Pine | 0.0903 | 0.0213 | −36.7486 | 0.0001 | - | 0.0021 |
Spruce | 0.0914 | 0.0264 | −2.1743 | 0.0062 | - | 0.0085 |
Birch | 0.2025 | 0.0577 | −12.0370 | 0.0032 | - | 0.0147 |
All | 0.0827 | 0.0213 | −13.3459 | 0.0013 | - | 0.0043 |
Species | 𝝆12 | 𝝆13 | 𝝆23 |
---|---|---|---|
Pine | 0.1476 | 0.6964 | 0.0446 |
Spruce | 0.2083 | 0.8786 | 0.1512 |
Birch | 0.1612 | 0.7854 | 0.1261 |
All | 0.1513 | 0.8528 | 0.0877 |
Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Pine Tree Diameter | Pine Tree Height | ||||||||||
Equation (7) (t) | −0.0523 (−6.76) | 3.7676 (21.31) | 4.8276 (24.63) | 0.5891 | 0.6716 | Equation (7) (t) | 0.0094 (−2.28) | 2.0417 (11.65) | 2.7259 (14.06) | 0.7441 | 0.8921 |
Equation (13) (t, p) | −0.0525 (−6.72) | 3.7081 (20.99) | 4.8127 (24.56) | 0.5916 | 0.6693 | Equation (13) (t, d) | 0.0201 (−1.07) | 1.3732 (7.59) | 1.8684 (9.64) | 0.8798 | 0.6733 |
Equation (13) (t, h) | −0.0586 (−3.08) | 2.4951 (13.16) | 3.3515 (17.10) | 0.8019 | 0.4941 | Equation (13) (t, p) | 0.0081 (−2.30) | 2.0428 (11.67) | 2.7290 (14.08) | 0.7435 | 0.9040 |
Equation (13) (t, p, h) | −0.0598 (−3.07) | 2.4439 (12.84) | 3.3119 (16.90) | 0.8066 | 0.4866 | Equation (13) (t, d, p) | 0.0214 (−1.03) | 1.3647 (7.52) | 1.8553 (9.57) | 0.8815 | 0.6508 |
Pine Tree Potentially Available Area | Spruce Tree Diameter | ||||||||||
Equation (7) (t) | −0.1330 (−27.75) | 3.6345 (49.64) | 4.8685 (48.79) | 0.4358 | 0.2852 | Equation (7) (t) | −0.7109 (−14.84) | 3.1111 (32.20) | 4.3715 (39.97) | 0.3702 | 0.0001 |
Equation (13) (t, d) | −0.1270 (−27.22) | 3.6019 (49.05) | 4.8270 (48.37) | 0.4454 | 0.3034 | Equation (13) (t, p) | −0.5898 (−13.70) | 2.8473 (29.85) | 4.0189 (36.75) | 0.4702 | 0.0002 |
Equation (13) (t, h) | −0.0864 (−36.59) | 3.8832 (60.09) | 5.9846 (63.67) | 0.4445 | 0.1800 | Equation (13) (t, h) | −0.2101 (−3.12) | 1.4505 (14.29) | 2.1234 (19.42) | 0.8538 | 0.0110 |
Equation (13) (t, d, h) | −0.0775 (−35.72) | 3.8191 (59.12) | 5.9044 (62.82) | 0.4593 | 0.2229 | Equation (13) (t, p, h) | −0.2032 (−3.05) | 1.3917 (13.77) | 2.0059 (18.34) | 0.8695 | 0.0092 |
Spruce Tree Height | Spruce Tree Potentially Available Area | ||||||||||
Equation (7) (t) | −0.4554 (−13.65) | 3.0009 (31.30) | 4.0033 (33.82) | 0.4309 | 0.0035 | Equation (7) (t) | −0.0902 (−50.87) | 3.6998 (5.0414) | 5.0114 (68.39) | 0.0737 | 0.6448 |
Equation (13) (t, d) | 0.0029 (−4.52) | 1.4286 (15.20) | 1.8768 (15.85) | 0.8765 | 0.9682 | Equation (13) (t, d) | −0.0370 (−47.16) | 3.5327 (73.93) | 4.7696 (64.70) | 0.1711 | 0.8416 |
Equation (13) (t, p) | −0.3581 (−13.11) | 2.8746 (30.40) | 3.8185 (32.26) | 0.4844 | 0.0160 | Equation (13) (t, h) | −0.0558 (−49.12) | 3.6247 (76.41) | 4.9000 (66.47) | 0.1251 | 0.7691 |
Equation (13) (t, d, p) | 0.0024 (−4.49) | 1.4145 (15.07) | 1.8656 (15.76) | 0.8780 | 0.9732 | Equation (13) (t, d, h) | −0.0366 (−46.64) | 3.5100 (73.27) | 4.7422 (64.33) | 0.1806 | 0.8425 |
Birch Tree Diameter | Birch Tree Height | ||||||||||
Equation (7) (t) | −0.1782 (−13.61) | 3.91.9 (31.24) | 4.8552 (30.11) | 0.4568 | 0.6739 | Equation (7) (t) | −0.0788 (−5.45) | 2.7530 (17.44) | 3.5389 (18.93) | 0.5293 | 0.7984 |
Equation (13) (t, p) | −0.1535 (−13.27) | 3.8440 (30.73) | 4.8083 (29.79) | 0.4683 | 0.7140 | Equation (13) (t, d) | −0.1668 (−1.93) | 1.3747 (7.92) | 1.7571 (9.40) | 0.8830 | 0.2772 |
Equation (13) (t, h) | 0.0969 (−3.92) | 2.1346 (14.93) | 2.7308 (16.93) | 0.8282 | 0.6839 | Equation (13) (t, p) | −0.0735 (−5.42) | 2.7269 (17.33) | 3.5634 (19.06) | 0.5228 | 0.8129 |
Equation (13) (t, p, h) | 0.1013 (−3.87) | 2.1098 (14.76) | 2.7082 (16.79) | 0.8310 | 0.6679 | Equation (13) (t, d, p) | −0.1668 (−1.93) | 1.3745 (7.92) | 1.7569 (9.40) | 0.8830 | 0.2771 |
Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Pine Tree Diameter | Pine Tree Height | ||||||||||
Equation (7) (t) | 0.0137 (0.02) | 0.9450 (4.23) | 1.4187 (6.38) | 0.9318 | 0.9489 | Equation (7) (t) | −0.1262 (−0.52) | 0.5926 (2.76) | 0.8655 (4.08) | 0.9620 | 0.3385 |
Equation (13) (t, p) | −0.1319 (−0.63) | 0.9479 (4.18) | 1.3652 (6.14) | 0.9363 | 0.5247 | Equation (13) (t, d) | −0.2203 (−1.02) | 0.3980 (1.85) | 0.5834 (2.75) | 0.9807 | 0.0160 |
Equation (13) (t, h) | 0.2499 (1.00) | 0.5783 (2.61) | 0.8827 (3.97) | 0.9715 | 0.0669 | Equation (13) (t, p) | −0.1513 (−0.64) | 0.5889 (2.73) | 0.8621 (4.07) | 0.9620 | 0.2505 |
Equation (13) (t, p, h) | 0.1306 (0.46) | 0.5367 (2.47) | 0.8347 (3.75) | 0. 9758 | 0.3051 | Equation (13) (t, d, p) | −0.1879 (−0.86) | 0.3918 (1.83) | 0.5776 (2.72) | 0.9817 | 0.0364 |
Pine Tree Potentially Available Area | Spruce Tree Diameter | ||||||||||
Equation (7) (t) | −0.1371 (−1.43) | 0.8767 (8.01) | 1.2111 (11.03) | 0.9265 | 0.4567 | Equation (7) (t) | −0.7202 (−5.74) | 1.1156 (9.56) | 1.1587 (9.20) | 0.8837 | 0.0047 |
Equation (13) (t, d) | −0.1622 (−1.62) | 0.8050 (7.43) | 1.1211 (10.21) | 0.9365 | 0.3423 | Equation (13) (t, p) | −0.9502 (−7.81) | 1.3568 (11.19) | 1.2785 (10.15) | 0.8415 | 0.0010 |
Equation (13) (t, h) | −0.1294 (−1.36) | 0.8629 (7.91) | 1.1905 (10.85) | 0.9290 | 0.4745 | Equation (13) (t, h) | −0.0306 (−0.14) | 0.8023 (6.40) | 1.0270 (8.15) | 0.9340 | 0.8713 |
Equation (13) (t, d, h) | −0.1906 (−35.72) | 0.7973 (7.32) | 1.1201 (10.20) | 0.9361 | 0.2650 | Equation (13) (t, p, h) | −0.1389 (−1.02) | 0.8442(6.61) | 1.0505 (8.34) | 0.9299 | 0.5145 |
Spruce Tree Height | Spruce Tree Potentially Available Area | ||||||||||
Equation (7) (t) | −0.6456 (−5.18) | 1.0927 (8.50) | 1.4656 (11.56) | 0.7857 | 0.0371 | Equation (7) (t) | 0.1726 (−1.81) | 1.3916 (13.67) | 1.9892 (19.75) | 0.8789 | 0.6689 |
Equation (13) (t, d) | −0.3298 (−3.01) | 0.7273 (5.79) | 0.9914 (7.82) | 0.9089 | 0.1086 | Equation (13) (t, d) | 0.1667 (−2.07) | 1.3726 (13.52) | 1.9766 (19.63) | 0.8803 | 0.6767 |
Equation (13) (t, p) | −0.8052 (−9.57) | 1.1729 (9.19) | 1.5147 (11.94) | 0.7541 | 0.0135 | Equation (13) (t, h) | 0.1931 (−1.77) | 1.4267 (14.02) | 2.0112 (19.98) | 0.8758 | 0.6353 |
Equation (13) (t, d, p) | −0.2877 (−2.66) | 0.7246 (5.73) | 0.9878 (7.79) | 0.9116 | 0.1577 | Equation (13) (t, d, h) | 0.1511 (−2.24) | 1.3364 (13.15) | 1.9744 (19.61) | 0.8807 | 0.7051 |
Birch Tree Diameter | Birch Tree Height | ||||||||||
Equation (7) (t) | 0.3437 (1.72) | 1.1631 (6.86) | 1.4458 (8.03) | 0.8958 | 0.2556 | Equation (7) (t) | 0.1826 (0.61) | 0.8385 (4.53) | 0.9437 (4.90) | 0.9412 | 0.3526 |
Equation (13) (t, p) | 0.0591 (0.03) | 1.2562 (7.27) | 1.4959 (8.31) | 0.8943 | 0.8481 | Equation (13) (t, d) | −0.5721 (−3.38) | 0.7000 (3.94) | 0.6981 (3.63) | 0.9476 | 0.0004 |
Equation (13) (t, h) | 0.5554 (3.24) | 0.9046 (5.14) | 1.0379 (5.77) | 0.9344 | 0.0151 | Equation (13) (t, p) | 0.0041 (−0.42) | 0.8570 (4.67) | 0.9856 (5.12) | 0.9382 | 0.9836 |
Equation (13) (t, p, h) | 0.4326 (2.54) | 0.8625 (4.87) | 1.0415 (5.78) | 0.9400 | 0.0530 | Equation (13) (t, d, p) | −0.5783 (−3.37) | 0.6992 (3.94) | 0.6980 (3.63) | 0.9477 | 0.0001 |
Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of All Trees per ha | Number of Pine Trees per ha | ||||||||||
Equation (25) (t) | 25.21 (2.48) | 83.19 (7.78) | 103.01 (9.09) | 0.9423 | 0.1116 | Equation (25) (t) | 25.40 (4.97) | 65.95 (9.80) | 84.40 (11.80) | 0.9468 | 0.0521 |
Equation (26) (t, d) | 37.91 (3.42) | 80.13 (7.48) | 94.71 (8.36) | 0.9466 | 0.0110 | Equation (26) (t, d) | 30.50 (5.50) | 66.09 (9.81) | 80.97 (11.32) | 0.9487 | 0.0163 |
Equation (27) (t, h) | 29.56 (2.75) | 81.77 (7.65) | 99.30 (8.76) | 0.9450 | 0.0545 | Equation (27) (t, h) | 26.66 (5.07) | 66.04 (9.82) | 83.15 (11.62) | 0.9477 | 0.0391 |
Equation (28) (t, d, h) | 44.49 (3.99) | 81.81 (7.59) | 94.53 (8.34) | 0. 9440 | 0.0032 | Equation (28) (t, d, h) | 32.89 (5.88) | 67.03 (9.94) | 81.76 (11.43) | 0.9468 | 0.0106 |
Number of Spruce Trees per ha | Number of Birch Trees per ha | ||||||||||
Equation (25) (t) | −25.09 (−7.19) | 69.48 (14.45) | 108.44 (19.03) | 0.9367 | 0.2581 | Equation (25) (t) | 1.50 (−5.47) | 17.22 (18.27) | 22.27 (15.80) | 0.9684 | 0.7437 |
Equation (26) (t, d) | −22.97 (−6.69) | 61.56 (13.31) | 94.47 (16.58) | 0.9517 | 0.2353 | Equation (26) (t, d) | 4.46 (−3.58) | 18.06 (17.94) | 23.59 (16.74) | 0.9634 | 0.3635 |
Equation (27) (t, h) | −25.57 (−7.16) | 65.93 (13.95) | 99.81 (17.52) | 0.9458 | 0.2118 | Equation (27) (t, h) | 2.17 (−4.89) | 17.10 (18.0) | 22.25 (15.79) | 0.9683 | 0.6369 |
Equation (28) (t, d, h) | −21.39 (−6.49) | 62.38 (13.35) | 95.09 (16.69) | 0.9515 | 0.2714 | Equation (28) (t, d, h) | 4.47 (−3.57) | 18.07 (17.94) | 23.60 (16.75) | 0.9634 | 0.3624 |
Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | Curve (Variables) | B (%) | AB (%) | RMSE (%) | R2 | T p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
5-Year Forecast Period | 15-Year Forecast Period | ||||||||||
Equation (25) (t) | 25.21 (2.48) | 83.19 (7.78) | 103.01 (9.09) | 0.9423 | 0.1116 | Equation (25) (t) | 25.40 (4.97) | 65.95 (9.80) | 84.40 (11.80) | 0.9468 | 0.0521 |
Equation (26) (t, d) | 37.91 (3.42) | 80.13 (7.48) | 94.71 (8.36) | 0.9466 | 0.0110 | Equation (26) (t, d) | 30.50 (5.50) | 66.09 (9.81) | 80.97 (11.32) | 0.9487 | 0.0163 |
Equation (27) (t, h) | 29.56 (2.75) | 81.77 (7.65) | 99.30 (8.76) | 0.9450 | 0.0545 | Equation (27) (t, h) | 26.66 (5.07) | 66.04 (9.82) | 83.15 (11.62) | 0.9477 | 0.0391 |
Equation (28) (t, d, h) | 44.49 (3.99) | 81.81 (7.59) | 94.53 (8.34) | 0. 9440 | 0.0032 | Equation (28) (t, d, h) | 32.89 (5.88) | 67.03 (9.94) | 81.76 (11.43) | 0.9468 | 0.0106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupšys, P.; Petrauskas, E. Modeling Number of Trees per Hectare Dynamics for Uneven-Aged, Mixed-Species Stands Using the Copula Approach. Forests 2023, 14, 12. https://doi.org/10.3390/f14010012
Rupšys P, Petrauskas E. Modeling Number of Trees per Hectare Dynamics for Uneven-Aged, Mixed-Species Stands Using the Copula Approach. Forests. 2023; 14(1):12. https://doi.org/10.3390/f14010012
Chicago/Turabian StyleRupšys, Petras, and Edmundas Petrauskas. 2023. "Modeling Number of Trees per Hectare Dynamics for Uneven-Aged, Mixed-Species Stands Using the Copula Approach" Forests 14, no. 1: 12. https://doi.org/10.3390/f14010012
APA StyleRupšys, P., & Petrauskas, E. (2023). Modeling Number of Trees per Hectare Dynamics for Uneven-Aged, Mixed-Species Stands Using the Copula Approach. Forests, 14(1), 12. https://doi.org/10.3390/f14010012