The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Object
2.3. Data Sources and Experimental Processing
2.4. Experimental Method
2.4.1. Ecological Source Site Identification Based on the InVEST Model
2.4.2. Ecological Resistance Surface Parameter Setting
2.4.3. Ecological Corridors Extracted with Linkage Mapper
2.4.4. Habitat Network Construction
3. Results
3.1. Assessment Results of Habitat Quality
3.2. Simulation Results of the Habitat Network
4. Discussion
4.1. Habitat Quality and Bird Distribution
4.2. Habitat Network Optimization Recommendations
4.2.1. Protecting Core Areas to Drive the Operation of Urban Habitat Networks
4.2.2. Valuing the Role of Cultivated Land as Semi-Natural Habitat Patches
4.2.3. Protect and Plan Connectivity Structures at Various Scales
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zheng, L.; Liu, H.; Xu, B.; Zou, Z. The effects of habitat network construction and urban block unit structure on biodiversity in semiarid green spaces. Environ. Monit. Assess. 2020, 192, 179. [Google Scholar] [CrossRef] [PubMed]
- Tambosi, L.R.; Martensen, A.C.; Ribeiro, M.C.; Metzger, J.P. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor. Ecol. 2013, 22, 169–177. [Google Scholar] [CrossRef]
- Harlio, A.; Kuussaari, M.; Heikkinen, R.K.; Arponen, A. Incorporating landscape heterogeneity into multi-objective spatial planning improves biodiversity conservation of semi-natural grasslands. J. Nat. Conserv. 2019, 49, 37–44. [Google Scholar] [CrossRef]
- Théau, J.; Bernier, A.; Fournier, R.A. An evaluation framework based on sustainability-related indicators for the comparison of conceptual approaches for ecological networks. Ecol. Indic. 2015, 52, 444–457. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Lee, D.J.; Jeon, S.W. Estimating Changes in Habitat Quality through Land-Use Predictions: Case Study of Roe Deer (Capreolus pygargus tianschanicus) in Jeju Island. Sustainability 2020, 12, 10123. [Google Scholar] [CrossRef]
- Mushet, D.M.; Neau, J.L.; Euliss, N.H., Jr. Modeling effects of conservation grassland losses on amphibian habitat. Biol. Conserv. 2014, 174, 93–100. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, S. Land use change and its correlation with habitat quality in high efficiency Eco-economic zone of Yellow River Delta. Bull. Soil Water Conserv. 2020, 40, 213–220+227+330. [Google Scholar]
- Cao, Y.; Yang, R.; Carver, S. Linking wilderness mapping and connectivity modelling: A methodological framework for wildland network planning. Biol. Conserv. 2020, 251, 108679. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef]
- Matthies, S.; Rüter, S.; Schaarschmidt, F.; Prasse, R. Determinants of species richness within and across taxonomic groups in urban green spaces. Urban Ecosyst. 2017, 20, 897–909. [Google Scholar] [CrossRef]
- Kang, W.; Minor, E.; Park, C.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- Culbert, P.D.; Radeloff, V.C.; Flather, C.H.; Kellndorfer, J.M.; Rittenhouse, C.D.; Pidgeon, A.M. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk 2013, 130, 656–665. [Google Scholar] [CrossRef]
- Tam, K.C.; Bonebrake, T.C. Butterfly diversity, habitat and vegetation usage in Hong Kong urban parks. Urban Ecosyst. 2016, 19, 721–733. [Google Scholar] [CrossRef]
- Kaushik, M.; Tiwari, S.; Manisha, K. Habitat patch size and tree species richness shape the bird community in urban green spaces of rapidly urbanizing Himalayan foothill region of India. Urban Ecosyst. 2022, 25, 423–436. [Google Scholar] [CrossRef]
- Yukihiro, M. Case studies on pioneering urban habitat projects in Japan. Landsc. Archit. 2020, 27, 25–35. [Google Scholar]
- Tiwary, N.K.; Urfi, A.J. Spatial variations of bird occupancy in Delhi: The significance of woodland habitat patches in urban centres. Urban For. Urban Green. 2016, 20, 338–347. [Google Scholar] [CrossRef]
- Khera, N.; Mehta, V.; Sabata, B.C. Interrelationship of birds and habitat features in urban greenspaces in Delhi, India. Urban For. Urban Green. 2009, 8, 187–196. [Google Scholar] [CrossRef]
- McKinney, M. Urbanization, Biodiversity, and Conservation. BioScience 2018, 52, 883. [Google Scholar] [CrossRef]
- Sick, H. Ornitologia Brasileira; Nova Fronteira: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Pejchar, L.; Pringle, R.M.; Ranganathan, J.; Zook, J.R.; Duran, G.; Oviedo, F.; Daily, G.C. Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol. Conserv. 2008, 141, 536–544. [Google Scholar] [CrossRef]
- Barros, F.; Peres, C.; Pizo, M.; Ribeiro, M. Divergent flows of avian-mediated ecosystem services across forest-matrix interfaces in human-modified landscapes. Landsc. Ecol. 2019, 34, 879–894. [Google Scholar] [CrossRef]
- Pena, J.C.; Martello, F.; Ribeiro, M.C.; Armitage, R.A.; Young, R.J.; Rodrigues, M. Street trees reduce the negative effects of urbanization on birds. PLoS ONE 2017, 12, e0174484. [Google Scholar] [CrossRef]
- Pereira, H.M.; Davidcooper, H.D. Towards the global monitoring of biodiversity change. Trends Ecol. Evol. 2006, 21, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Chowfin, S.; Leslie, A. Using birds as biodindicators of forest restoration progress: A preliminary study. Trees For. People 2021, 3, 100048. [Google Scholar] [CrossRef]
- IPBES. Nature’s Dangerous Decline ‘Unprecedented’, Species Extinction Rates ‘Accelerating’. Available online: https://ipbes.net/news/Media-Release-Global-Assessment (accessed on 14 October 2021).
- Fernandez-Juricic, E.; Jokimaki, J. A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe. Biodivers. Conserv. 2001, 10, 2023–2043. [Google Scholar] [CrossRef]
- Sandström, U.G.; Angelstam, P.; Mikusiński, G. Ecological diversity of birds in relation to the structure of urban green space. Landsc. Urban Plan 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Devictor, V.; Julliard, R.; Couvet, D.; Lee, A.; Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 2007, 21, 741–751. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [Google Scholar] [CrossRef]
- Bonier, F.; Martin, P.R.; Wingfield, J.C. Urban birds have broader environmental tolerance. Biol. Lett. 2007, 3, 670–673. [Google Scholar] [CrossRef]
- Galbraith, J.A.; Beggs, J.R.; Jones, D.N.; Stanley, M.C. Supplementary feeding restructures urban bird communities. Proc. Natl. Acad. Sci. USA 2015, 112, E2648–E2657. [Google Scholar] [CrossRef] [Green Version]
- Pei, N.; Wang, C.; Jin, J.; Jia, B.; Chen, B.; Qie, G.; Qiu, E.; Sun, R.; Li, J.; Zhang, C.; et al. Long-term afforestation efforts increase bird species diversity in Beijing, China. Urban For. Urban Green 2018, 29, 88–95. [Google Scholar] [CrossRef]
- Jiang, S.; Buck, D.; Tang, Q.; Guan, J.; Wu, Z.; Guo, X.; Zhu, Z.; Wang, X. Cutting force and surface roughness during straight-tooth milling of Walnut wood. Forests. 2022, 13, 2126. [Google Scholar] [CrossRef]
- Sun, B.; Lu, Y.; Yang, Y.; Yu, M.; Yuan, J.; Yu, R.; Bulloke, J.; Stenseth, N.; Li, X.; Cao, H.; et al. Urbanization affects spatial variation and species similarity of bird diversity distribution. Sci. Adv. 2022, 8, eade3061. [Google Scholar] [CrossRef]
- Regolin, A.L.; Oliveira-Santos, L.G.; Ribeiro, M.C.; Bailey, L.L. Habitat quality, not habitat amount, drives mammalian habitat use in the Brazilian Pantanal. Landsc. Ecol. 2021, 36, 2519–2533. [Google Scholar] [CrossRef]
- Wang, Y. High-quality development for the “14th Five-Year Plan” to start a good start. People’s Dly. 2020, 1, 12–23. [Google Scholar]
- Blair, R. Birds and Butterflies Along Urban Gradients in Two Ecoregions of the United States: Is Urbanization Creating a Homogeneous Fauna? In Biotic Homogenization; Springer: Boston, MA, USA, 2001; pp. 33–56. [Google Scholar]
- Lu, C.; Sun, L. Nanjing Wildlife Resources; Southeast University Press: Nanjing, China, 2016. [Google Scholar]
- Department of Biology, Stanford University. InVEST User Guide: Integrated Valuation of Ecosystem Services and Tradeoffs[EB/OL]. Available online: https://storage.googleapis.com/invest-users-guides/InVEST%203.2.0%20User’s%20Guide_Chinese%20Version_20171008.pdf (accessed on 8 October 2017).
- Wang, L.; Sui, J.; Ma, Q. Influencing factors analysis of nest site selection and reproductive efficiency of Chinese sparrowhawk. For. Sci. 2020, 56, 116–122. [Google Scholar]
- McKinney, R.; Raposa, K.; Kutcher, T. Use of urban marine habitats by foraging wading birds. Urban Ecosyst. 2009, 13, 191–208. [Google Scholar] [CrossRef]
- Chen, Y. Anseriformes as a Man Focus, Studying the Threats Migration Waterfowl Facing along the East Asian-Australasian Flyway; University of Science and Technology of China: Hefei, China, 2015. [Google Scholar]
- Chen, S.; Wang, S. Bird Diversities and Their Responses to Urbanization in China. In Ecology and Conservation of Birds in Urban Environments; Springer: Cham, Switzerland, 2017; pp. 55–74. [Google Scholar]
- Li, J.; Yang, J.; Ou, Z. Animals in Hong Kong City Centre. For. Hum. 2021, 7, 116–121. [Google Scholar]
- Cao, J.; Fu, J. Research on the construction method of urban green space habitat network based on InVEST model and Least-cost path: A case study of Nanjing. Chin. Landsc. Archit. 2022, 10, 1–10. [Google Scholar]
- Huck, M.; Jędrzejewski, W.; Borowik, T.; Jędrzejewska, B.; Nowak, S.; Mysłajek, R.W. Analyses of least cost paths for determining effects of habitat types on landscape permeability: Wolves in Poland. Acta Theriol. 2010, 56, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Wang, H. Analysis on the suitability of green sponge space in modern city based on MCR model. J. Nanjing For. Univ. Nat. Sci. Ed. 2019, 62, 116. [Google Scholar]
- Zhu, Z.; Jin, D.; Wu, Z.; Xu, W.; Yu, Y.; Guo, X.; Wang, X.A. Assessment of surface roughness in milling of beech using a response surface methodology and an adaptive network-based fuzzy inference system. Machines 2022, 10, 567. [Google Scholar] [CrossRef]
- Matthew, D. Measuring Habitat Quality: A Review. Condor 2007, 109, 489–504. [Google Scholar]
- Winnie, J.A.; Cross, P.; Getz, W. Habitat quality and heterogeneity influence distribution and behavior in African buffalo (Syncerus caffer). Ecology 2008, 89, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- St-Louis, V.; Pidgeon, A.M.; Clayton, M.K.; Locke, B.A.; Bash, D.; Radeloff, V.C. Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 2009, 32, 468–480. [Google Scholar] [CrossRef]
- Willems, E.P.; Barton, R.A.; Hill, R.A. Remotely sensed productivity, regional home range selection, and local range use by an omnivorous primate. Behav. Ecol. 2009, 20, 985–992. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.J.; McAlpine, C.A.; Possingham, H.P.; Miller, C.J.; Baxter, G.S. Matrix is important for mammals in landscapes with small amounts of native forest habitat. Landsc. Ecol. 2011, 26, 617–628. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture predicts avian density and species richness. PLoS ONE 2013, 8, e63211. [Google Scholar] [CrossRef]
- Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Groenenberg, M.; Bobrowiec, P.E.; Cabeza, M.; Palmeirim, J.M.; Meyer, C.F. Consequences of a large-scale fragmentation experiment for Neotropical bats: Disentangling the relative importance of local and landscape-scale effects. Landsc. Ecol. 2017, 32, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Regolin, A.L.; Ribeiro, M.C.; Martello, F.; Melo, G.L.; Sponchiado, J.; Campanha, L.F.; Sugai, L.; Silva, T.; Cáceres, N.C. Spatial heterogeneity and habitat configuration overcome habitat composition influences on alpha and beta mammal diversity. Biotropica 2020, 52, 969–980. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Flather, C.H.; Radeloff, V.C.; Pidgeon, A.M.; Hammer, R.B.; Liu, J. Human impacts on regional avian diversity and abundance. Conserv. Biol. 2008, 22, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, C. Impact of urbanization on birds. Bird Species 2018, 235, 257. [Google Scholar]
- Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Kingsford, R.T. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere 2018, 9, e02347. [Google Scholar] [CrossRef] [Green Version]
- Leveau, L.; Ruggiero, A.; Matthews, T.J.; Isabel Bellocq, M. A global consistent positive effect of urban green area size on bird richness. Avian Res. 2019, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Puan, C.L.; Yeong, K.L.; Ong, K.W.; Fauzi, M.I.; Yahya, M.S.; Khoo, S.S. Influence of landscape matrix on urban bird abundance: Evidence from Malaysian citizen science data. J. Asia-Pac. Bus. 2019, 12, 369–375. [Google Scholar] [CrossRef]
- Rico-Silva, J.F.; Cruz-Trujillo, E.J.; Colorado, Z.G.J. Influence of environmental factors on bird diversity in greenspaces in an Amazonian city. Urban Ecosyst. 2021, 24, 365–374. [Google Scholar] [CrossRef]
- Xie, S.; Marzluff, J.M.; Su, Y.; Wang, Y.; Meng, N.; Wu, T.; Gong, C.; Lu, F.; Xian, C.; Zhang, Y.; et al. The role of urban waterbodies in maintaining bird species diversity within built area of Beijing. Sci. Total Environ. 2022, 806, 150430. [Google Scholar] [CrossRef]
- Presley, S.J.; Cisneros, L.M.; Klingbeil, B.T.; Willig, M.R. Landscape ecology of mammals. J. Mammal. 2019, 100, 1044–1068. [Google Scholar] [CrossRef]
- Arévalo, C.; Amaya-Espinel, J.D.; Henríquez, C.; Ibarra, J.T.; Bonacic, C. Urban noise and surrounding city morphology influence green space occupancy by native birds in a Mediterranean-type South American metropolis. Sci. Rep. 2022, 12, 4471. [Google Scholar] [CrossRef]
- Humphrey, J.; Newton, A.; Latham, J.; Gray, H.; Kirby, K.; Poulsom, E.; Quine, C. The Restoration of Wooded Landscapes. In Proceedings of the Conference at Heriot Watt University, Edinburgh, UK, 14–15 September 2000. [Google Scholar]
- Li, F.; Zhu, G.; Ji, C.; Hou, D.; Sun, H. Analysis on the Trend and Driving Mechanism of Urban Growth Based on Impervious Surface Index: Taking Nanjing City for Example. Resour. Environ. Yangtze Basin 2021, 30, 575–590. [Google Scholar]
- Zhu, Q.; Yu, K.; Li, D. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
Living Habits | Code | Species | Common Name | Food Guilds | Resident |
---|---|---|---|---|---|
Forest bird | 1 | Accipiter soloensis | Red-bellied hawk | Carnivorous | Migrant bird |
2 | Falco tinnunculus | Kestrel | Migrant bird | ||
3 | Otus sunia | Red-horned owl | Resident | ||
4 | Garrulax canorus | Wood thrush | Omnivorous | Resident | |
Waterfowl | 5 | Aix galericulata | Mandarin duck | Migrant bird | |
6 | Hydrophasianus chirurgus | Water pheasant | Resident, Summer types |
Threat | Max_dist/km | Weight | Decay |
---|---|---|---|
Dry land | 1 | 0.7 | Linear |
Water field | 1 | 0.7 | Linear |
Other land | 12 | 1 | Exponential |
Village | 5 | 0.5 | Exponential |
Town | 10 | 0.9 | Exponential |
Land Use Type and the Corresponding Land Utilization Data Code | Habitat Suitability | Threat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accipiter soloensis | Falco tinnunculus | Otus sunia | Garrulax canorus | Aix galericulata | Hydrophasianus chirurgus | Dry Land | Town | Village | Other Land | |
Water field 11 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.8 | 1 | 0.8 | 1 |
Dry land 12 | 0.5 | 0.5 | 0.5 | 0.4 | 0.2 | 0.2 | 0 | 0.5 | 0.4 | 0.5 |
Wooded land 21 | 1 | 1 | 1 | 1 | 0.6 | 0.8 | 0.5 | 0.7 | 0.7 | 0.9 |
Shrubland 22 | 1 | 0.8 | 0.8 | 0.8 | 0.4 | 0.4 | 0.4 | 0.6 | 0.6 | 0.8 |
Open woodland 23 | 1 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 | 0.4 | 0.6 | 0.5 | 0.8 |
Other woodland 24 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 | 0.3 | 0.5 | 0.4 | 0.8 |
High-coverage grassland 31 | 0.6 | 0.6 | 0.5 | 0 | 0.3 | 0.3 | 0.3 | 0.5 | 0.3 | 0.6 |
Low-coverage grassland 33 | 0.5 | 0.5 | 0.3 | 0 | 0.2 | 0.2 | 0.3 | 0.5 | 0.3 | 0.6 |
River and canal 41 | 0.8 | 0.7 | 0.3 | 0.7 | 1 | 1 | 0.7 | 0.9 | 0.7 | 1 |
Lake 42 | 0.5 | 0 | 0 | 0.7 | 1 | 1 | 0.7 | 0.9 | 0.7 | 1 |
Reservoir pond 43 | 0.5 | 0 | 0 | 0 | 1 | 1 | 0.7 | 0.9 | 0.7 | 1 |
Beachland 46 | 0.3 | 0 | 0 | 0.3 | 0.8 | 1 | 0.7 | 0.9 | 0.7 | 1 |
Urban land 51 | 0.6 | 0.7 | 0.5 | 0.2 | 0.3 | 0.5 | 0 | 0 | 0 | 0 |
Village 52 | 0.7 | 0.5 | 0.3 | 0.3 | 0.2 | 0.7 | 0 | 0 | 0 | 0 |
Other land 53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bare land 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bare rocky ground 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Resistance Factor | Classification Criteria | Resistance Coefficient | Weight |
---|---|---|---|
NDVI | 10 | ||
20 | |||
30 | |||
40 | |||
50 | |||
LULC | Cropland | 50 | |
Forest | 1 | ||
Grassland | 40 | ||
Wetland | 30 | ||
Urban and built-up | 100 | ||
Bare ground | 70 | ||
Slope | 10 | ||
20 | |||
30 | |||
40 | |||
50 | |||
DEM | 10 | ||
20 | |||
30 | |||
40 | |||
50 |
Species | Habitats for Which Observations Are Recorded | Habitats of High Quality (Two of the Highest Levels) | |||||
---|---|---|---|---|---|---|---|
The Types of Habitat and Their Corresponding Land Use Data Codes | Total Area /hm2 | Percentage in the Main Urban Area of Nanjing/% | The Types of Habitat and Their Corresponding Land Use Data Codes | Area/hm2 | Percentage of Habitats with Observed Records/% | Percentage in the Main Urban Area of Nanjing/% | |
Accipiter soloensis | 12, 21, 23, 24, 31, 41, 42, 51, 52, 53 | 62,392.14 | 79.23 | 21, 41, 23 | 13,888.35 | 22.26 | 17.64 |
Falco tinnunculus | 11, 12, 21, 23, 41, 42, 51 | 70,006.14 | 88.90 | 21, 22 | 7370.17 | 10.53 | 9.36 |
Otus sunia | 21, 24, 41, 42, 43, 51 | 53,629.47 | 68.11 | 21, 23, 22 | 7800.57 | 14.55 | 9.91 |
Garrulax canorus | 12, 21, 41, 42, 51, 52, 53 | 61,343.01 | 77.90 | 21, 22, 23, 41, 42 | 14,273.82 | 23.27 | 18.13 |
Aix galericulata | 12, 21, 41, 42, 43, 51 | 58,885.65 | 74.78 | 41, 42, 43, 46 | 7475.31 | 12.69 | 9.49 |
Hydrophasianus chirurgus | 41, 43, 51 | 46,194.75 | 58.66 | 21, 41, 42 | 14,832.63 | 32.11 | 18.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Cao, J.; Wang, Y. The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing. Forests 2023, 14, 133. https://doi.org/10.3390/f14010133
Ding Z, Cao J, Wang Y. The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing. Forests. 2023; 14(1):133. https://doi.org/10.3390/f14010133
Chicago/Turabian StyleDing, Zhenhui, Jiajie Cao, and Yan Wang. 2023. "The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing" Forests 14, no. 1: 133. https://doi.org/10.3390/f14010133
APA StyleDing, Z., Cao, J., & Wang, Y. (2023). The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing. Forests, 14(1), 133. https://doi.org/10.3390/f14010133