Damage Diagnosis of Pinus yunnanensis Canopies Attacked by Tomicus Using UAV Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Sample Data Collection
- Ground sample data collection
- 2.
- Canopy sample data collection
- 3.
- Ground hyperspectral of Pinus yunnanensis needle
2.2.2. Hyperspectral Imagery Acquisition Based on a UAV Platform
2.2.3. Data Preprocessing
2.3. Methods
2.3.1. Spectral Feature Extraction
- Vegetation index (VI)
- 2.
- Principal component analysis (PCA)
- 3.
- Continuous Wavelet Transform (CWT)
2.3.2. Classification and Evaluation
- Classification based on VIs, PCA and CWT
- 2.
- Evaluation
3. Results
3.1. Results of Canopy Spectral Feature Extraction
3.1.1. Vegetation Indices (VI)
3.1.2. Principal Component Analysis (PCA)
3.1.3. Continuous Wavelet Transform (CWT)
3.2. Classification Results
3.2.1. Results of VI-Based Classification
3.2.2. PCA-Based Classification and Diagnosis Results
3.2.3. CWT-Based Classification and Diagnosis Results
4. Discussion
4.1. Comparison between Needles and Canopy
4.1.1. Comparison of Spectral Characteristics
- Comparison of Original Spectral Reflectance
- 2.
- Comparison of first-order derivative reflectance
4.1.2. Comparison of Sensitive Bands
4.2. Existing Deficiencies and Future Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Spectral Reflectance of Pinus yunnanensis Canopy | The Spectral First Derivative of Pinus yunnanensis Canopy | ||||
---|---|---|---|---|---|
Sensitive Wavelength | Correlation Analysis | Stepwise Regression Analysis | Sensitive Wavelength | Correlation Analysis | Stepwise Regression Analysis |
698 | −0.199 * | <0.001 ** | 718 | −0.660 ** | <0.001 ** |
650 | 0.595 ** | <0.001 ** | |||
806 | −0.577 ** | <0.001 ** | 690 | −0.495 ** | <0.001 ** |
878 | 0.332 ** | 0.007 ** | |||
858 | −0.544 ** | <0.001 ** | 754 | −0.327 ** | 0.013 * |
662 | 0.430 ** | 0.019 * | |||
586 | 0.278 ** | 0.039 * |
References
- Lieutier, F.; Ye, H.; Yart, A. Shoot damage by Tomicus sp. (Coleoptera: Scolytidae) and effect on Pinus yunnanensis resistance to subsequent reproductive attacks in the stem. Agric. For. Entomol. 2003, 5, 227–233. [Google Scholar] [CrossRef]
- Yu, L.; Zhan, Z.; Ren, L.; Zong, S.; Luo, Y.; Huang, H. Evaluating the potential of worldview-3 data to classify different shoot damage ratios of Pinus yunnanensis. Forests 2020, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In situ/remote sensing integration to assess forest health-a review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhan, Z.; Ren, L.; Ze, S.; Yu, L.; Jiang, Q.; Luo, Y. Hyperspectral evidence of early-stage pine shoot beetle attack in Yunnan pine. For. Ecol. Manage. 2021, 497, 119505. [Google Scholar] [CrossRef]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Brooks, D.; Reich, R.; Wheate, R.D. Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery. Remote Sens. Environ. 2005, 96, 340–351. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-Part I-A review of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Carlson, K.M.; Asner, G.P.; Hughes, R.F.; Ostertag, R.; Martin, R.E. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems 2007, 10, 536–549. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, W.K.; Lim, C.H.; Kim, M.; Kafatos, M.C.; Lee, S.H.; Lee, S.S. Hyperspectral analysis of pine wilt disease to determine an optimal detection index. Forests 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.; Stanford, M.; Old, K.; Dudzinski, M.; Culvenor, D.; Stone, C. Assessment of Dothistroma Needle Blight of Pinus radiata Using Airborne Hyperspectral Imagery. Phytopathology 2003, 93, 1524–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manage. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Hilker, T.; Wulder, M.A.; Carroll, A.L. Detecting mountain pine beetle red attack damage with EO-1 hyperion moisture indices. Int. J. Remote Sens. 2007, 28, 2111–2121. [Google Scholar] [CrossRef]
- Peña, M.A.; Altmann, S.H. Use of satellite-derived hyperspectral indices to identify stress symptoms in an Austrocedrus chilensis forest infested by the aphid Cinara cupressi. Int. J. Pest Manag. 2009, 55, 197–206. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Wang, T.; Cai, C. Estimation of leaf chlorophyll content and density in Populus euphratica based on hyperspectral characteristic variables. Spectrosc. Lett. 2018, 51, 485–495. [Google Scholar] [CrossRef]
- Ju, Y.; Pan, J.; Wang, X.; Zhang, H. Detection of Bursaphelenchus xylophilus infection in Pinus massoniana from hyperspectral data. Nematology 2014, 16, 1197–1207. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Liu, X.; Yao, J.; Du, T.; Ma, Y.; Shi, L. Discriminant analysis of the damage degree caused by pine shoot beetle to yunnan pine using UAV-based hyperspectral images. Forests 2020, 11, 1258. [Google Scholar] [CrossRef]
- Moreno, R.; Corona, F.; Lendasse, A.; Graña, M.; Galvão, L.S. Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 2014, 128, 207–216. [Google Scholar] [CrossRef]
- Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A machine learning approach to detecting Pine Wilt Disease using airborne spectral imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Li, H.; Yang, L.; Huang, H.; Yu, L.; Ren, L. Three-dimensional convolutional neural network model for early detection of pine wilt disease using uav-based hyperspectral images. Remote Sens. 2021, 13, 4065. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A. Savitzky-Golay Smoothing Filters. Comput. Phys. 1990, 4, 669. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kuhbaüch, W. Shape of the red edge as vitality indicator for plants. Int. J. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Pearson, K.L., III. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321. [Google Scholar] [CrossRef]
- Liu, N.; Xing, Z.; Zhao, R.; Qiao, L.; Li, M.; Liu, G.; Sun, H. Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization. Remote Sens. 2020, 12, 2826. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Q.; Zhang, Y.; Wang, H.; Du, X. Integrating the continuous Wavelet transform and a convolutional neural network to identify Vineyard Using Time series satellite images. Remote Sens. 2019, 11, 2641. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, H.; Gao, D.; Qiao, L.; Liu, N.; Li, M.; Zhang, Y. Detection of canopy chlorophyll content of corn based on continuous wavelet transform analysis. Remote Sens. 2020, 12, 2741. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Elanayar, S.; Shin, Y.C. Radial Basis Function Neural Network for Approximation and Estimation of Nonlinear Stochastic Dynamic Systems. IEEE Trans. Neural Netw. 1994, 5, 594–603. [Google Scholar] [CrossRef]
Damage Degree | DSR (%) | Canopy Characteristics |
---|---|---|
Health | <10 | The tree crown is normal |
Mild Damage | 10~20 | A few damaged shoots begin to turn yellow or reddish brown |
Moderate Damage | 21~50 | A few damaged shoots turn reddish brown |
Severe Damage | >51 | Damaged shoots are reddish brown or gray |
Technical Parameter of SOC 710VP Image Spectrometer | A Parameter Value of SOC 710VP Image Spectrometer | Technical Parameter of Airborne Hyperspectral S185 Imager | A Parameter Value of Airborne Hyperspectral S185 Imager |
---|---|---|---|
Spectral range | 400~1000 nm | Spectral range | 450~950 nm |
Height of objective lens and f-number | 50 cm and 5.6 | sample interval | 4 nm |
Spectral resolution | 4.68 nm | Spectral resolution | 8~532 nm |
channels | 128 | channels | 125 |
Exposure time | 35 ms | Measured Time | 0.1~1000 ms |
speed | 32 Cubes/s | Hyperspectral imaging speed | 5 Cubes/s |
dynamic range | 12 bit | dynamic range | 12 bit |
Sample Type | Number | Sampling Methods |
---|---|---|
DSR collection | 120 samples | Manual visual counting |
Damaged needle | 80 samples | Cut branches of sampled trees |
Canopy photos | 120 samples | Z30 camera based on UAV |
Needle hyperspectral data | 80 samples | SOC710VP |
The airborne hyperspectral imager | 6.67 km2 | UHD S185 |
Airborne hyperspectral spectrum | 120 samples | Manual drawing |
Variable Categories | Parameter Names | Variable Definitions and Formulas |
---|---|---|
Vegetation indexes | Normalized Difference Vegetation Index / | |
/ | ||
Ratio vegetation index | ||
Difference vegetation index | ||
Location parameters | Green peak, the maximum reflectance in the wavelength range 510 to 560 nm | |
Red valley, the minimum reflectance in the wavelength range 640 to 680 nm | ||
Positional parameters | The maximum value of the first derivative in the blue edge region (490~530 nm) | |
The maximum value of the first derivative spectra in the yellow edge region (550~582 nm) | ||
The maximum value of the first derivative spectra in the red edge region (680~780 nm) | ||
The maximum value of the first derivative spectra in the near-infrared region (780~1300 nm) | ||
Area parameter | The sum of the first derivative values in the blue edge region (490 to 530 nm) | |
The sum of the first derivative values in the yellow edge region (550 to 582 nm) | ||
The sum of the first derivative values in the red-edge region (680 to 780 nm) | ||
The sum of the first derivative values in the near-infrared region (780~1300 nm) | ||
Characteristic parameters of vegetation indexes | The ratio of green peak reflectance () to Red Valley reflectance () | |
The ratio of to | ||
The ratio of to | ||
The ratio of to | ||
The ratio of to | ||
Normalized values of and | ||
Normalized values of and | ||
Normalized values of and | ||
Normalized values of and | ||
Normalized values of and |
Name | F-Value | p | Name | F-Value | p |
---|---|---|---|---|---|
NDVI | 19.368 | 0.000 | 5.453 | 0.002 | |
NDVI705 | 15.137 | 0.000 | 18.74 | 0.000 | |
RVI | 21.486 | 0.000 | 20.178 | 0.000 | |
GI | 22.854 | 0.000 | 30.361 | 0.000 | |
DVI | 29.059 | 0.000 | 22.676 | 0.000 | |
PRI | 9.703 | 0.000 | 22.214 | 0.000 | |
PSRI | 13.936 | 0.000 | 1.335 | 0.266 | |
TVI | 31.099 | 0.000 | 1.599 | 0.193 | |
SLAVI | 14.577 | 0.000 | 2.838 | 0.041 | |
YI | 6.665 | 0.000 | 1.837 | 0.144 | |
Rg | 6.344 | 0.001 | 20.947 | 0.000 | |
Rr | 5.332 | 0.002 | 1.455 | 0.231 | |
Db | 14.462 | 0.000 | 8.57 | 0.000 | |
Dy | 3.745 | 0.013 | 3.262 | 0.024 | |
Dr | 30.868 | 0.000 | 1.134 | 0.338 |
Number | Scale | λ (nm) | Sig. | VIF | Number | Scale | λ (nm) | Sig. | VIF |
---|---|---|---|---|---|---|---|---|---|
WF1 | 3 | 822 | 0.000 | 8.725 | WF9 | 1 | 678 | 0.000 | 1.183 |
WF2 | 3 | 854 | 0.000 | 1.631 | WF10 | 4 | 662 | 0.007 | 2.165 |
WF3 | 2 | 542 | 0.000 | 1.643 | WF11 | 2 | 910 | 0.000 | 2.059 |
WF4 | 2 | 626 | 0.000 | 1.758 | WF12 | 6 | 474 | 0.000 | 1.964 |
WF5 | 3 | 630 | 0.000 | 2.284 | WF13 | 1 | 714 | 0.000 | 5.072 |
WF6 | 2 | 474 | 0.000 | 4.355 | WF14 | 1 | 930 | 0.000 | 3.712 |
WF7 | 6 | 614 | 0.000 | 1.472 | WF15 | 3 | 462 | 0.000 | 1.823 |
WF8 | 5 | 862 | 0.000 | 1.366 | WF16 | 5 | 838 | 0.008 | 1.663 |
Damage Degree | The Optimal Spectral Reflectance Monitoring Window (nm) | |||
---|---|---|---|---|
Spectral Reflectance of Needle | Spectral Reflectance of Canopy | The First Derivative of the Needle | The First Derivative of Canopy | |
Health/Mild Damage | 781, 775, 786, 791, 770, 796, 801, 765 | 750, 746, 754, 794, 758, 798, 762, 782 | 718, 723, 713, 728, 708, 734, 739, 702 | 714, 710, 718, 706, 722, 702, 726, 698 |
Health/Moderate Damage | 781, 786, 775, 791, 796, 770, 828, 801 | 770, 774, 758, 778, 766, 754, 762, 782 | 723, 718, 728, 713, 734, 739, 708, 744 | 714, 718, 710, 722, 706, 726, 730, 702 |
Health/Severe Damage | 781, 786, 775, 791, 770, 796, 801, 828 | 778, 782, 774, 790, 786, 770, 758, 794 | 723, 718, 713, 728, 734, 708, 739, 702 | 714, 718, 710, 706, 722, 702, 726, 698 |
Mild/Moderate Damage | 786, 781, 791, 828, 823, 833, 775, 796 | 774, 770, 766, 778, 786, 762, 758, 782 | 723, 728, 718, 734, 713, 739, 744, 708 | 722, 718, 726, 714, 886, 730, 710, 890 |
Mild/Severe Damage | 781, 786, 775, 791, 796, 770, 801, 828 | 778, 774, 782, 786, 790, 770, 766, 762 | 723, 718, 728, 713, 734, 739, 708, 744 | 718, 714, 710, 722, 706, 702, 726, 698 |
Moderate/Severe Damage | 833, 828, 838, 786, 823, 844, 781, 791 | 790, 802, 794, 806, 778, 782, 798, 786 | 718, 723, 713, 728, 708, 734, 702, 839 | 714, 710, 706, 718, 702, 698, 722, 694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Lu, J.; Huang, X. Damage Diagnosis of Pinus yunnanensis Canopies Attacked by Tomicus Using UAV Hyperspectral Images. Forests 2023, 14, 61. https://doi.org/10.3390/f14010061
Ma Y, Lu J, Huang X. Damage Diagnosis of Pinus yunnanensis Canopies Attacked by Tomicus Using UAV Hyperspectral Images. Forests. 2023; 14(1):61. https://doi.org/10.3390/f14010061
Chicago/Turabian StyleMa, Yunqiang, Junjia Lu, and Xiao Huang. 2023. "Damage Diagnosis of Pinus yunnanensis Canopies Attacked by Tomicus Using UAV Hyperspectral Images" Forests 14, no. 1: 61. https://doi.org/10.3390/f14010061
APA StyleMa, Y., Lu, J., & Huang, X. (2023). Damage Diagnosis of Pinus yunnanensis Canopies Attacked by Tomicus Using UAV Hyperspectral Images. Forests, 14(1), 61. https://doi.org/10.3390/f14010061