Seasonal Dynamics of Flux Footprint for a Measuring Tower in Southern Taiga via Modeling and Experimental Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area, Site Measurement Design, and Data Selection
2.2. Flux Footprint Estimation
2.3. Estimation of Aerodynamic Properties
3. Results and Discussion
3.1. Measurements
3.2. Footprints
3.2.1. Intermodel Comparison Test
3.2.2. Seasonal Dynamics of Footprints
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Forward LS Footprint Model
Appendix B. Kernel Function
References
- Malhi, Y.; Baldocchi, D.D.; Jarvis, P.G. The Carbon Balance of Tropical, Temperate and Boreal Forests. Plant Cell Environ. 1999, 22, 715–740. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, Ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar] [CrossRef]
- Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.-M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net Exchange of CO 2 in a Mid-Latitude Forest. Science 1993, 260, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.; Valentini, R.; Running, S.; Oechel, W.; Dahlman, R. Strategies for Measuring and Modelling Carbon Dioxide and Water Vapour Fluxes over Terrestrial Ecosystems. Glob. Chang. Biol. 1996, 2, 159–168. [Google Scholar] [CrossRef]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Lindroth, A.; Grelle, A.; Morén, A.S. Long-Term Measurements of Boreal Forest Carbon Balance Reveal Large Temperature Sensitivity. Glob. Chang. Biol. 1998, 4, 443–450. [Google Scholar] [CrossRef]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.-D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the Main Determinant of Carbon Balance in European Forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Hincks, B.B.; Meyers, T.P. Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. Ecology 1988, 69, 1331–1340. Available online: http://www.jstor.org/stable/1941631refer (accessed on 22 September 2023). [CrossRef]
- Wilson, J.D.; Swaters, G.E. The Source Area Influencing a Measurement in the Planetary Boundary-Layer—The Footprint and the Distribution of Contact Distance. Bound.-Layer Meteorol. 1991, 55, 25–46. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; MacPherson, J.I.; Desjardins, R.L. Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation. Bound.-Layer Meteorol. 1990, 50, 355–373. [Google Scholar] [CrossRef]
- Horst, T.W.; Weil, J.C. Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer. Bound.-Layer Meteorol. 1992, 59, 279–296. [Google Scholar] [CrossRef]
- Kormann, R.; Meixner, F.X. An Analytical Footprint Model for Non-Neutral Stratification. Bound.-Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Leclerc, M.Y.; Thurtell, G.W. Footprint Prediction of Scalar Fluxes Using a Markovian Analysis. Bound.-Layer Meteorol. 1990, 52, 247–258. [Google Scholar] [CrossRef]
- Baldocchi, D. Flux Footprints Within and Over Forest Canopies. Bound.-Layer Meteorol. 1997, 85, 273–292. [Google Scholar] [CrossRef]
- Kurbanmuradov, O.; Sabelfeld, K. Lagrangian Stochastic Models For Turbulent Dispersion In The Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2000, 97, 191–218. [Google Scholar] [CrossRef]
- Rannik, Ü.; Aubinet, M.; Kurbanmuradov, O.; Sabelfeld, K.K.; Markkanen, T.; Vesala, T. Footprint Analysis For Measurements Over A Heterogeneous Forest. Bound.-Layer Meteorol. 2000, 97, 137–166. [Google Scholar] [CrossRef]
- Flesch, T.K. The Footprint for Flux Measurements, from Backward Lagrangian Stochastic Models. Bound.-Layer Meteorol. 1996, 78, 399–404. [Google Scholar] [CrossRef]
- Leclerc, M.Y.; Shen, S.; Lamb, B. Observations and Large-Eddy Simulation Modeling of Footprints in the Lower Convective Boundary Layer. J. Geophys. Res. Atmos. 1997, 102, 9323–9334. [Google Scholar] [CrossRef]
- Sogachev, A.; Menzhulin, G.V.G.V.; Heimann, M.; Lloyd, J. A Simple Three-Dimensional Canopy—Planetary Boundary Layer Simulation Model for Scalar Concentrations and Fluxes. Tellus Ser. B Chem. Phys. Meteorol. 2002, 54, 784–819. [Google Scholar] [CrossRef]
- Schmid, H.P. Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective. Agric. For. Meteorol. 2002, 113, 159–183. [Google Scholar] [CrossRef]
- Vesala, T.; Kljun, N.; Rannik, U.; Rinne, J.; Sogachev, A.; Markkanen, T.; Sabelfeld, K.; Foken, T.; Leclerc, M.Y.Y.; Rannik, Ü.; et al. Flux and Concentration Footprint Modelling: State of the Art. Environ. Pollut. 2008, 152, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Rannik, U.; Sogachev, A.; Foken, T.; Göckede, M.; Kljun, N.; Leclerc, M.Y.; Vesala, T. Footprint Analysis. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 211–261. ISBN 9789400723511. [Google Scholar]
- Leclerc, M.Y.; Foken, T. Footprints in Micrometeorology and Ecology; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-54544-3. [Google Scholar]
- Amiro, B.D. Footprint Climatologies for Evapotranspiration in a Boreal Catchment. Agric. For. Meteorol. 1998, 90, 195–201. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A.; et al. Representativeness of Eddy-Covariance Flux Footprints for Areas Surrounding AmeriFlux Sites. Agric. For. Meteorol. 2021, 301–302, 108350. [Google Scholar] [CrossRef]
- Kong, J.; Ryu, Y.; Liu, J.; Dechant, B.; Rey-Sanchez, C.; Shortt, R.; Szutu, D.; Verfaillie, J.; Houborg, R.; Baldocchi, D.D. Matching High Resolution Satellite Data and Flux Tower Footprints Improves Their Agreement in Photosynthesis Estimates. Agric. For. Meteorol. 2022, 316, 108878. [Google Scholar] [CrossRef]
- Huang, X.; Lin, S.; Li, X.; Ma, M.; Wu, C.; Yuan, W. How Well Can Matching High Spatial Resolution Landsat Data with Flux Tower Footprints Improve Estimates of Vegetation Gross Primary Production. Remote Sens. 2022, 14, 6062. [Google Scholar] [CrossRef]
- Milyukova, I.M.; Kolle, O.; Varlagin, A.V.; Vygodskaya, N.N.; Schulze, E.-D.; Lloyd, J. Carbon Balance of a Southern Taiga Spruce Stand in European Russia. Tellus B Chem. Phys. Meteorol. 2002, 54, 429. [Google Scholar] [CrossRef]
- Eddy Covariance Processing Software, Version 7.0.8. [Software]; 4. LI-COR Biosciences. 2021. Available online: www.licor.com/EddyPro (accessed on 1 July 2023).
- Mauder, M.; Foken, T. Impact of Post-Field Data Processing on Eddy Covariance Flux Estimates and Energy Balance Closure. Meteorol. Z. 2006, 15, 597–609. [Google Scholar] [CrossRef]
- Sogachev, A.; Lloyd, J. Using a One-and-a-Half Order Closure Model of the Atmospheric Boundary Layer for Surface Flux Footprint Estimation. Bound.-Layer Meteorol. 2004, 112, 467–502. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef]
- Kljun, N.; Rotach, M.W.; Schmid, H.P. A Three-Dimensional Backward Lagrangian Footprint Model for a Wide Range of Boundary-Layer Stratifications. Bound.-Layer Meteorol. 2002, 103, 205–226. [Google Scholar] [CrossRef]
- Kljun, N. Online Tool. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction (FFP). Available online: https://footprint.kljun.net/ (accessed on 1 July 2023).
- Markkanen, T.; Rannik, Ü.; Marcolla, B.; Cescatti, A.; Vesala, T. Footprints and Fetches for Fluxes over Forest Canopies with Varying Structure and Density. Bound.-Layer Meteorol. 2003, 106, 437–459. [Google Scholar] [CrossRef]
- Prabha, T.V.; Leclerc, M.Y.; Karipot, A.; Hollinger, D.Y.; Mursch-Radlgruber, E. Influence of Nocturnal Low-Level Jets on Eddy-Covariance Fluxes over a Tall Forest Canopy. Bound.-Layer Meteorol. 2008, 126, 219–236. [Google Scholar] [CrossRef]
- Sogachev, A.; Leclerc, M.Y.Y.; Karipot, A.; Zhang, G.; Vesala, T. Effect of Clearcuts on Footprints and Flux Measurements above a Forest Canopy. Agric. For. Meteorol. 2005, 133, 182–196. [Google Scholar] [CrossRef]
- Sogachev, A.; Leclerc, M.Y. On Concentration Footprints for a Tall Tower in the Presence of a Nocturnal Low-Level Jet. Agric. For. Meteorol. 2011, 151, 755–764. [Google Scholar] [CrossRef]
- Sogachev, A.; Dellwik, E. Flux Footprints for a Tall Tower in a Land–Water Mosaic Area: A Case Study of the Area around the Risø Tower. Agric. For. Meteorol. 2017, 237–238, 326–339. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-642-25439-0. [Google Scholar]
- Martano, P. Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data. J. Appl. Meteorol. 2000, 39, 708–715. [Google Scholar] [CrossRef]
- Graf, A.; van de Boer, A.; Moene, A.; Vereecken, H. Intercomparison of Methods for the Simultaneous Estimation of Zero-Plane Displacement and Aerodynamic Roughness Length from Single-Level Eddy-Covariance Data. Bound.-Layer Meteorol. 2014, 151, 373–387. [Google Scholar] [CrossRef]
- Raupach, M.R.; Finnigan, J.J.; Brunei, Y. Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy. Bound.-Layer Meteorol. 1996, 78, 351–382. [Google Scholar] [CrossRef]
- Cintolesi, C.; Barbano, F.; Trudu, P.L.; Finco, A.; Gerosa, G.; Di Sabatino, S. Characterisation of Flow Dynamics within and around an Isolated Forest, through Measurements and Numerical Simulations. Agric. For. Meteorol. 2023, 339, 109557. [Google Scholar] [CrossRef]
- Thom, A.S. Momentum, Mass and Heat Exchange of Vegetation. Q. J. R. Meteorol. Soc. 1972, 98, 124–134. [Google Scholar] [CrossRef]
- Kondo, J. Relationship Between the Roughness Coefficient and Other Aerodynamic Parameters. J. Meteorol. Soc. Jpn. Ser. II 1971, 49, 121–124. [Google Scholar] [CrossRef]
- Maki, T. Interrelationships between Zero-Plane Displacement, Aerodynamic Roughness Length and Plant Canopy Height. J. Agric. Meteorol. 1975, 31, 7–15. [Google Scholar] [CrossRef]
- Thomas, C.; Foken, T. Flux Contribution of Coherent Structures and Its Implications for the Exchange of Energy and Matter in a Tall Spruce Canopy. Bound.-Layer Meteorol. 2007, 123, 317–337. [Google Scholar] [CrossRef]
- Nakai, T.; Sumida, A.; Kodama, Y.; Hara, T.; Ohta, T. A Comparison between Various Definitions of Forest Stand Height and Aerodynamic Canopy Height. Agric. For. Meteorol. 2010, 150, 1225–1233. [Google Scholar] [CrossRef]
- Inoue, E. On the Turbulent Structure of Airflow Within. J. Meteorol. Soc. Jpn. Ser. II 1963, 41, 317–326. [Google Scholar] [CrossRef]
- Cionco, R.M. A Mathematical Model for Air Flow in a Vegetative Canopy. J. Appl. Meteorol. 1965, 4, 517–522. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, X. Flux Footprint Climatology Estimated by Three Analytical Models over a Subtropical Coniferous Plantation in Southeast China. J. Meteorol. Res. 2015, 29, 654–666. [Google Scholar] [CrossRef]
- Foken, T.; Leclerc, M.Y. Methods and Limitations in Validation of Footprint Models. Agric. For. Meteorol. 2004, 127, 223–234. [Google Scholar] [CrossRef]
- Heidbach, K.; Schmid, H.P.; Mauder, M. Experimental Evaluation of Flux Footprint Models. Agric. For. Meteorol. 2017, 246, 142–153. [Google Scholar] [CrossRef]
- Prajapati, P.; Santos, E.A. Estimating Methane Emissions from Beef Cattle in a Feedlot Using the Eddy Covariance Technique and Footprint Analysis. Agric. For. Meteorol. 2018, 258, 18–28. [Google Scholar] [CrossRef]
- Kumari, S.; Kambhammettu, B.V.N.P.; Niyogi, D. Sensitivity of Analytical Flux Footprint Models in Diverse Source-Receptor Configurations: A Field Experimental Study. J. Geophys. Res. Biogeosci. 2020, 125, 1–17. [Google Scholar] [CrossRef]
- Hsieh, C.-I.; Katul, G.; Chi, T. An Approximate Analytical Model for Footprint Estimation of Scalar Fluxes in Thermally Stratified Atmospheric Flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Panferov, O.; Sogachev, A. Influence of Gap Size on Wind Damage Variables in a Forest. Agric. For. Meteorol. 2008, 148, 1869–1881. [Google Scholar] [CrossRef]
- Rannik, Ü.; Markkanen, T.; Raittila, J.; Hari, P.; Vesala, T. Turbulence Statistics Inside and Over Forest: Influence on Footprint Prediction. Bound.-Layer Meteorol. 2003, 109, 163–189. [Google Scholar] [CrossRef]
- Schmid, H.P. Source Areas for Scalars and Scalar Fluxes. Bound.-Layer Meteorol. 1994, 67, 293–318. [Google Scholar] [CrossRef]
- Thomson, D. Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid Mech. 1987, 180, 529–556. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sogachev, A.; Varlagin, A. Seasonal Dynamics of Flux Footprint for a Measuring Tower in Southern Taiga via Modeling and Experimental Data Analysis. Forests 2023, 14, 1968. https://doi.org/10.3390/f14101968
Sogachev A, Varlagin A. Seasonal Dynamics of Flux Footprint for a Measuring Tower in Southern Taiga via Modeling and Experimental Data Analysis. Forests. 2023; 14(10):1968. https://doi.org/10.3390/f14101968
Chicago/Turabian StyleSogachev, Andrey, and Andrej Varlagin. 2023. "Seasonal Dynamics of Flux Footprint for a Measuring Tower in Southern Taiga via Modeling and Experimental Data Analysis" Forests 14, no. 10: 1968. https://doi.org/10.3390/f14101968
APA StyleSogachev, A., & Varlagin, A. (2023). Seasonal Dynamics of Flux Footprint for a Measuring Tower in Southern Taiga via Modeling and Experimental Data Analysis. Forests, 14(10), 1968. https://doi.org/10.3390/f14101968