Utilizing SIFT-MS and GC-MS for Phytoncide Assessment in Phytotron: Implications for Indoor Forest Healing Programs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.1.1. NIFoS Phytotron
2.1.2. NIFoS Indoor Study
2.1.3. NIFoS Outdoor Study
2.2. Data Collection Methods
2.2.1. NVOCs Measured Using the Mini Pump
2.2.2. Quantifying NVOCs Using Real-Time VOC Measuring Equipment
- SIFT-MS generates three distinct reagent ions (H3O+, NO+, and O2+) using microwave plasma energy facilitated by the presence of nitrogen, oxygen, and moisture within the ambient atmosphere. The generated reagent ions are filtered through an initial quadrupole mass filter before sequentially entering the flow tube.
- Subsequently, the generated reagent ions are introduced sequentially into the flow tube, where they undergo stabilization through collisions with the cooling gas. Once stabilized, these reagent ions encounter the sample and initiate ionization reactions. The flow tube maintains a consistent flow rate, temperature, and pressure while transferring the energy of the reagent ions to the sample, thereby generating product ions.
- Surplus reagent ions that did not react with the generated product ions are filtered through a secondary quadrupole mass filter. The concentration of the sample can be promptly ascertained by utilizing the data stored in the comprehensive compound library of Syft, which encompasses pertinent parameters, such as collision constants, reaction rate constants, and reaction rates [21,22,23].
2.3. Data Analysis Methods
3. Results
3.1. Characteristics of NVOCs at the NIFoS Phytotron by SIFT-MS and GC-MS
3.1.1. Diurnal Characteristics of NVOC Emissions
3.1.2. NVOC Detailed Compound Ratio Analysis
3.1.3. Independent Samples t-Test for NVOC Measurement Results
3.2. Characteristics of NVOCs: Indoors, Outdoors, and in the Phytotron
3.2.1. Diurnal Characteristics of NVOC Emissions
3.2.2. Descriptive Statistics of NVOC Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, B.; Lee, K.J.; Zaslawski, C.; Yeung, A.; Rosenthal, D.; Larkey, L.; Back, M. Health and well-being benefits of spending time in forests: Systematic review. Environ. Health Prev. Med. 2017, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Grilli, G.; Sacchelli, S. Health benefits derived from forest: A review. Int. J. Environ. Res. Public Health 2020, 17, 6125. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Liu, J.; Liu, H.; Lu, S. A systematic review of evidence of additional health benefits from forest exposure. Landsc. Urban Plan. 2021, 212, 104123. [Google Scholar] [CrossRef]
- Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.-J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen, L.; Kagawa, T. Influence of forest therapy on cardiovascular relaxation in young adults. Evid.-Based Complement. Altern. Med. 2014, 2014, e834360. [Google Scholar] [CrossRef]
- Rajoo, K.S.; Karam, D.S.; Abdullah, M.Z. The physiological and psychosocial effects of forest therapy: A systematic review. Urban For. Urban Green. 2020, 54, 126744. [Google Scholar] [CrossRef]
- Yu, C.-P.S.; Hsieh, H. Beyond restorative benefits: Evaluating the effect of forest therapy on creativity. Urban For. Urban Green. 2020, 51, 126670. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.J.; et al. Effect of phytoncide from trees on human natural killer cell function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef]
- Li, Q.; Nakadai, A.; Matsushima, H.; Miyazaki, Y.; Krensky, A.M.; Kawada, T.; Morimoto, K. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol. Immunotoxicol. 2006, 28, 319–333. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest volatile organic compounds and their effects on human health: A state-of-the-art review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.S.; Lee, H.C.; Petriello, M.C.; Kim, B.Y.; Do, J.T.; Lim, D.S.; Lee, H.G.; Han, S.G. Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J. Microbiol. Biotechnol. 2016, 26, 579–587. [Google Scholar] [CrossRef]
- Altındal, D.; Altındal, N. Plant volatile compounds in growth. In Volatiles and Food Security—Role of Volatiles in Agro-Ecosystems; Springer: Singapore, 2017; pp. 1–13. [Google Scholar]
- Thiel, S.; Döhring, T.; Köfferlein, M.; Kosak, A.; Martin, P.; Seidlitz, H.K. A phytotron for plant stress research: How far can artificial lighting compare to natural sunlight? J. Plant Physiol. 1996, 148, 456–463. [Google Scholar] [CrossRef]
- Koike, T.; Kitao, M.; Hikosaka, K.; Agathokleous, E.; Watanabe, Y.; Watanabe, M.; Eguchi, N.; Funada, R. Photosynthetic and photosynthesis-related responses of Japanese native trees to CO2: Results from phytotrons, open-top chambers, natural CO2 springs, and Free-Air CO2 enrichment. In The Leaf: A Platform for Performing Photosynthesis; Springer: Cham, Switzerland, 2018; pp. 425–449. [Google Scholar]
- Meena, S.; Nagar, S. Phytotron-an enclosed research facility for study interactions between plants and the environment. Agrosci. Today 2021, 2, 38–42. [Google Scholar]
- Matić, S.; Garibaldi, A.; Gullino, M.L. Combined and single effects of elevated CO2 and temperatures on rice bakanae disease under controlled conditions in phytotrons. Plant Pathol. 2021, 70, 815–826. [Google Scholar] [CrossRef]
- Chiang, C.; Bånkestad, D.; Hoch, G. Reaching natural growth: The significance of light and temperature fluctuations in plant performance in indoor growth facilities. Plants 2020, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Abdelouhahid, R.A.; Debauche, O.; Mahmoudi, S.; Marzak, A.; Manneback, P.; Lebeau, F. Open phytotron: A new iot device for home gardening. In Proceedings of the 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 November 2020; IEEE Publications: Piscataway, NJ, USA, 2020; Volume 2020, pp. 1–8. [Google Scholar] [CrossRef]
- Hastie, C.; Thompson, A.; Perkins, M.; Langford, V.S.; Eddleston, M.; Homer, N.Z. Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) as an alternative to gas chromatography/mass spectrometry (GC/MS) for the analysis of cyclohexanone and cyclohexanol in plasma. ACS Omega 2021, 6, 32818–32822. [Google Scholar] [CrossRef]
- Langford, V.; McEwan, M.J.; Perkins, M. High-throughput analysis of volatile compounds in air, water, and soil using SIFT-MS. LCGC Suppl. 2018, 37, 24–29. [Google Scholar]
- Kim, G.; Park, B.-J.; Joung, D.; Yeom, D.-G.; Koga, S. Primary concentration measurements of natural volatile organic compounds in atmosphere using the headspace solid–phase microextraction method within the forest. J. Fac. Agric. Kyushu Univ. 2015, 60, 471–476. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Demarais, N.; Langford, V.S.; McEwan, M.J. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). Mass Spectrom. Rev. 2023, e21835. [Google Scholar] [CrossRef]
- La Nasa, J.; Modugno, F.; Colombini, M.P.; Degano, I. Validation study of Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) in heritage science: Characterization of natural and synthetic paint varnishes by portable mass spectrometry. J. Am. Soc. Mass. Spectrom. 2019, 30, 2250–2258. [Google Scholar] [CrossRef]
- Langford, V.S.; Sift, M.S. Quantifying the volatiles you smell… and the toxics you don’t. Chemosensors 2023, 11, 111. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, G.; Park, S.; Kim, E.; Kim, S. Prediction of natural volatile organic compounds emitted by bamboo Groves in urban forests. Forests 2021, 12, 543. [Google Scholar] [CrossRef]
- Cheng, W.-W.; Lin, C.-T.; Chu, F.-H.; Chang, S.-T.; Wang, S.-Y. Neuropharmacological activities of phytoncide released from Cryptomeria japonica. J. Wood Sci. 2009, 55, 27–31. [Google Scholar] [CrossRef]
- Kim, G.; Park, S.; Kwak, D. Is it possible to predict the concentration of natural volatile organic compounds in forest atmosphere? Int. J. Environ. Res. Public Health 2020, 17, 7875. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, A.-S.; Behrendt, T.; Ruecker, A.; Pohnert, G.; Trumbore, S.E.; Sift, M.S. SIFT-MS Optimization for atmospheric trace gas measurements at varying humidity. Atmos. Meas. Tech. 2020, 13, 3507–3520. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Li, H.L.; Zhao, P.Y.; Lei, Y.; Hossain, M.M.; Kang, J.; Kim, I.H. Dietary phytoncide supplementation improved growth performance and meat quality of finishing pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 1314–1321. [Google Scholar] [CrossRef]
- Pinto, D.M.; Blande, J.D.; Souza, S.R.; Nerg, A.M.; Holopainen, J.K. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: The ecological effects. J. Chem. Ecol. 2010, 36, 22–34. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Z.; Wang, F.; Liang, W.; Shi, G.; Wang, W.; Chen, D.; Liang, D.; Feng, Y.; Russell, A.G. Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. NPJ Clim. Atmos. Sci. 2022, 5, 39. [Google Scholar] [CrossRef]
- Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a Major Constituent of Pine Tree Oils, Enhances non-rapid Eye Movement Sleep in Mice through GABAA-benzodiazepine Receptors. Mol. Pharmacol. 2016, 90, 530–539. [Google Scholar] [CrossRef]
- Silva, C.M.; Filho, C.A.; Quadri, M.B.; Macedo, E.A. Binary diffusion coefficients of α-pinene and β-pinene in supercritical carbon dioxide. J. Supercrit. Fluids 2004, 32, 167–175. [Google Scholar] [CrossRef]
- Chang, H.; Son, J.; Kim, J.; Kim, J.; Kim, Y.; Choi, W.-S.; Lee, Y.-K. Emission rates of biogenic volatile organic compounds from various tree species in Korea (II): Major Species in Urban Forests. J. Korean Soc. For. Sci. 2022, 111, 490–501. [Google Scholar] [CrossRef]
NVOCs |
---|
α-pinene, β-pinene, camphene, limonene, benzaldehyde, myrcene, phellandrene, sabinene, camphor, α-terpinene, γ-terpinene, terpinolene, 3-carene, terpineol, bornyl acetate, sabina ketone, cineole, longifolene, pinocarvone, sabinene hydrate, cymene, valencene, α-bisabolol, farnesene, caryophyllene, nerol, nerolidol, pulegone, borneol, menthol, geraniol, and D-fenchone |
Parameters | Conditions | |||||
---|---|---|---|---|---|---|
Column | HP-INNOWAX (60 m × 0.25 mmL D × 0.25 μm, film thickness) | |||||
Carrier gas flow | He at 1 mL/min | |||||
Injection mode | Pulsed splitless | |||||
Injection port temp. | 210 °C | |||||
Transfer line temp. | 210 °C | |||||
Over temp. program | Initial | Rate | Final | |||
3 min | 40 °C | 8 °C/min | 220 °C | 3 min | 40 °C | |
Post run | 220 °C, 5 min |
Independent Samples t-Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Shapiro–Wilk Normality Test | Levene’s Test for Homogeneity of Variance | t-Test for Equality of Mean (Equal Variance Assumed) | ||||||||
p-Value | F | p-Value | t | Df | p-Value | Mean Difference | SE Difference | 95% Confidence Interval of the Difference | ||
SIFF-MS | GC-MS | Lower | Upper | |||||||
0.914 | 0.794 | 0.120 | 0.197 | 3.565 | 26 | 0.144 | 8.153 | 0.203 | 5.570 | 20.737 |
Measurement Site | N | Mean | Median | Max. | Min. | CV | Skewness | Kurtosis | J–B | p-Value 1 |
---|---|---|---|---|---|---|---|---|---|---|
Indoor | 39 | 25.31 | 20.61 | 43.20 | 13.52 | 0.41 | 0.62 | −1.08 | 3.30 | 0.193 |
Outdoor | 26 | 0.65 | 0.49 | 1.59 | 0.38 | 0.61 | 2.34 | 5.67 | 58.56 | 0.000 *** |
Phytotron | 28 | 38.09 | 37.20 | 60.33 | 20.71 | 0.33 | 0.40 | −0.05 | 0.78 | 0.675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, G.; Kim, S.; Cho, J.H.; Park, S. Utilizing SIFT-MS and GC-MS for Phytoncide Assessment in Phytotron: Implications for Indoor Forest Healing Programs. Forests 2023, 14, 2235. https://doi.org/10.3390/f14112235
Choi Y, Kim G, Kim S, Cho JH, Park S. Utilizing SIFT-MS and GC-MS for Phytoncide Assessment in Phytotron: Implications for Indoor Forest Healing Programs. Forests. 2023; 14(11):2235. https://doi.org/10.3390/f14112235
Chicago/Turabian StyleChoi, Yeji, Geonwoo Kim, Soojin Kim, Jae Hyoung Cho, and Sujin Park. 2023. "Utilizing SIFT-MS and GC-MS for Phytoncide Assessment in Phytotron: Implications for Indoor Forest Healing Programs" Forests 14, no. 11: 2235. https://doi.org/10.3390/f14112235
APA StyleChoi, Y., Kim, G., Kim, S., Cho, J. H., & Park, S. (2023). Utilizing SIFT-MS and GC-MS for Phytoncide Assessment in Phytotron: Implications for Indoor Forest Healing Programs. Forests, 14(11), 2235. https://doi.org/10.3390/f14112235