The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Setting and Plant Community Survey
2.3. Monitoring of Healthcare Indicators
2.4. Multiple Indicators Comprehensive Evaluation Methods
2.5. Data Analysis
3. Results
3.1. Human Comfort Dynamic
3.2. PM2.5, PM10 Dynamics
3.3. Negative Air Ion Concentration Dynamics
3.4. Noise Dynamics
3.5. The Ecological Healthcare Benefits Dynamics
3.6. Effect of Multi-Factors on UPCHI
3.7. Multi-Factor Pass Analysis of UPCHI
4. Discussion
4.1. Changes in Ecological Health Benefits
4.2. Influence of Plant Factors on the UPCHI
4.3. Influence of Climatic Factors on the UPCHI
4.4. Influence of Geography Factors on the UPCHI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Li, J.; Wang, J.; Liu, F.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. The establishment of an eco-environmental evaluation model for southwest China and eastern South Africa based on the DPSIR framework. Ecol. Indic. 2022, 145, 109687. [Google Scholar] [CrossRef]
- Liao, L.; Du, M.; Chen, Z. Environmental pollution and socioeconomic health inequality: Evidence from China. Sustain. Cities Soc. 2023, 95, 104579. [Google Scholar] [CrossRef]
- Zhu, S.X.; Hu, F.F.; He, S.Y.; Qiu, Q.S.; Yan, H.; Qian, L.; Ji, Y. Comprehensive Evaluation of Healthcare Benefits of Different Forest Types: A Case Study in Shimen National Forest Park, China. Forests 2021, 12, 207. [Google Scholar] [CrossRef]
- Dou, X.Y.; Guo, H.D.; Zhang, L.; Liang, D.; Zhu, Q.; Liu, X.T.; Zhou, H.; Lv, Z.R.; Liu, Y.M.; Guo, Y.T.; et al. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. Sci. Total Environ. 2023, 899, 166239. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.F.; Shao, Y.; Xie, C.; Cui, B.S.; Tian, B.S.; Brisco, B.; Li, K.; Tang, W.J. Number and Nest-Site Selection of Breeding Black-Necked Cranes Over the Past 40 Years in the Longbao Wetland Nature Reserve, Qinghai, China. Big Earth Data 2021, 5, 217–236. [Google Scholar] [CrossRef]
- Pan, M.X.; Hu, T.G.; Zhan, J.Y.; Hao, Y.; Li, X.Q.; Zhang, L.X. Unveiling spatiotemporal dynamics and factors influencing the provision of urban wetland ecosystem services using high-resolution images. Ecol. Indic. 2023, 151, 110305. [Google Scholar] [CrossRef]
- Xu, Y.M.; Xie, Y.J.; Wu, X.D.; Xie, Y.T.; Zhang, T.Y.; Zou, Z.X.; Zhang, R.T.; Zhang, Z.Q. Evaluating temporal-spatial variations of wetland ecosystem service value in China during 1990–2020 from the donor side based on cosmic exergy. J. Clean. Prod. 2023, 414, 137485. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, Y.T.; Liu, J.H.; Xu, J.; Xie, G.D. Economic values and dominant providers of key ecosystem services of wetlands in Beijing, China. Ecol. Indic. 2017, 77, 48–58. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934. [Google Scholar] [CrossRef]
- Zhu, X.L.; Jiao, L.; Wu, X.; Du, D.S.; Wu, J.J.; Zhang, P. Ecosystem health assessment and comparison of natural and constructed wetlands in the arid zone of northwest China. Ecol. Indic. 2023, 154, 110576. [Google Scholar] [CrossRef]
- Mahapatra, A.; Hore, U.; Singh, A.; Kumari, M. The effect of urbanization on the shrinkage of wetlands in the Noida-Greater Noida region and its surrounding sub-urban areas. Acta Ecol. Sin. 2023; in press. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, J.; Zhao, S.Y.; Su, F.Z. Coastal wetland degradation and ecosystem service value change in the Yellow River Delta, China. Glob. Ecol. Conserv. 2023, 44, e02501. [Google Scholar] [CrossRef]
- Liu, L.; He, H.Y.; Cai, Y.H.; Hang, J.; Liu, J.; Liu, L.; Jiang, P.; He, H. Cooling effects of wetland parks in hot and humid areas based on remote sensing images and local climate zone scheme. Build. Environ. 2023, 243, 110660. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wu, J.; Gong, Y.Z. Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland studies. J. Clean. Prod. 2020, 276, 122988. [Google Scholar] [CrossRef]
- Ye, Y.; Qiu, H.F. Environmental and social benefits, and their coupling coordination in urban wetland parks. Urban For. Urban Green. 2021, 60, 127043. [Google Scholar] [CrossRef]
- Wu, S.J.; Yang, H.; Luo, P.; Luo, C.; Li, H.L.; Liu, M.; Ruan, Y.; Zhang, S.J.; Xiang, P.; Jia, H.H.; et al. The effects of the cooling efficiency of urban wetlands in an inland megacity: A case study of Chengdu, Southwest China. Build. Environ. 2021, 204, 108128. [Google Scholar] [CrossRef]
- Şimsek, Ç.K.; Ödul, H. Investigation of the effects of wetlands on micro-climate. Appl. Geogr. 2018, 97, 48–60. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Willis, K.J.; Petroofsky, G. The natural capital of city trees. Science 2017, 356, 374–376. [Google Scholar] [CrossRef]
- Yan, G.X.; Liu, J.K.; Zhu, L.J.; Zhai, J.X.; Cong, L.; Ma, W.M.; Wang, Y.; Wu, Y.N.; Zhang, Z.M. Effectiveness of wetland plants as biofilters for inhalable particles in an urban park. J. Clean. Prod. 2018, 194, 435–443. [Google Scholar] [CrossRef]
- Li, A.; Li, Q.L.; Zhou, B.Z.; Ge, X.G.; Cao, Y.H. Temporal Dynamics of Negative Air Ion Concentration and its Relationship with Environmental Factors: Results from Long-Term On-Site Monitoring. Sci. Total Environ. 2022, 832, 155057. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Y.; Przybysz, A.; Chen, Y.; Guo, H.J.; Chen, Y.Y.; Zeng, Y.Z. Effect of spatial heterogeneity of plant communities on air PM10 and PM2.5 in an urban forest park in Wuhan, China. Urban For. Urban Green. 2019, 46, 126487. [Google Scholar] [CrossRef]
- Kim, Y.; Yu, S.Y.; Li, D.Y.; Gatson, S.N.; Brown, R.D. Linking landscape spatial heterogeneity to urban heat island and outdoor human thermal comfort in Tokyo: Application of the outdoor thermal comfort index. Sustain. Cities Soc. 2022, 87, 104262. [Google Scholar] [CrossRef]
- Zhou, X.F.; Zhang, S.; Zhu, D. Impact of Urban Water Networks on Microclimate and PM2.5 Distribution in Downtown Areas: A Case Study of Wuhan. Build. Environ. 2021, 203, 108073. [Google Scholar] [CrossRef]
- Tang, H.X.; Yang, Q.; Jiang, M.Y.; Wang, T.X.; Li, X.; Chen, Q.B.; Luo, Z.H.; Lv, B.Y. Seasonal Variation in the Thermal Environment and Health-Related Factors in Two Clustered Recreational Bamboo Forests. Forests 2023, 14, 1894. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.R.; Tang, Z.Y.; Wang, Q.; Duan, M.J.; Qi, L.H. Ecological health care effects of scenic recreational forests with different community structures: A case study of Beijing Xishan National Forest Park. Acta Ecol. Sin. 2022, 42, 6499–6513. [Google Scholar]
- Sha, Z.P.; Ma, X.; Liu, H.J.; Wang, J.X.; Lv, T.T.; Goulding, K.; Liu, X. Crop-specific ammonia volatilization rates and key influencing factors in the upland of China—A data synthesis. J. Environ. Manag. 2023, 336, 117676. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Li, Y.; Li, M.N.; Zhang, T.; Meng, H.; Zhang, Z.; Wang, B.; Zhang, W.K. Understanding vegetation structures in green spaces to regulate atmospheric particulate matter and negative air ions. Atmos. Pollut. Res. 2022, 13, 101534. [Google Scholar] [CrossRef]
- Zhou, J.H.; Sun, T.Z. Remote sensing model study of three-dimensional green biomass and estimation of greening environmental benefits. Natl. Remote Sens. Bull. 1995, 3, 162–174. [Google Scholar]
- Asghari, M.; Ghalhari, G.; Ghanadzadeh, M.; Moradzadeh, R.; Tajik, R.; Samadi, S.; Samadi, S.; Heidari, H. Modeling of thermal discomfort based representative concentration pathways (RCP) scenarios in coming decades using temperature-humidity index (THI) and effective temperature (ET): A case study in a semi-arid climate of Iran. Air Qual. Atmos. Health 2023, 16, 1195–1205. [Google Scholar] [CrossRef]
- Chen, L.X.; Chen, Z.S.; Jia, G.D.; Zhuo, J.; Zhao, J.C.; Zhang, Z.Q. Influences of forest cover on soil freeze-thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: A comparison study of the farmland and forest plantation. Sci. Total Environ. 2020, 726, 138403. [Google Scholar] [CrossRef]
- Duan, C.S.; Wu, Z.F.; Liao, H.; Ren, Y. Interaction Processes of Environment and Plant Ecophysiology with BVOC Emissions from Dominant Greening Trees. Forests 2023, 14, 523. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.B.; Li, Z.Q.; Wang, P.C.; Cribb, M.; Fan, X.H. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci. 2015, 32, 898–908. [Google Scholar] [CrossRef]
- Przybysz, A.; Nersisyan, G.; Gawroński, S. Removal of particulate matter and trace elements from ambient air by urban greenery in the winter season. Environ. Sci. Pollut. Res. Int. 2018, 26, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, R.; Neri, L.; Costa, F.; Facin, O.; Rapparini, F.; Carriero, G. Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation. Urban For. Urban Green. 2019, 37, 24–32. [Google Scholar] [CrossRef]
- Ni, R.W.; Gan, Y.T.; Yang, G.M.; Huang, L.J.; Liu, X.Z.; Run, S.J. Trade-off characteristics of stomata of subtropical urban vegetation and its relationship with leaf functional traits under heat island effect. Acta Ecol. Sin. 2023, 43, 5336–5346. [Google Scholar]
- Tilahun, T.; Bezie, Y.; Petros, Y.; Dessalegn, Y.; Taye, M. Correlation and path coefficient analysis of green pod yield and yield attributing traits of chili (Capsicum annum L.) genotypes in Ethiopia. All Life 2022, 15, 203–210. [Google Scholar] [CrossRef]
- Gayathri, S.; Lal, G.; Lavanya, G.R.; Maddula, S.R.; Shika, U. Estimation of Correlation and Path Coefficient Analysis for Quantitative Traits in Chickpea (Cicer arietinum L.): An Experimental Study. Int. J. Environ. Clim. Change 2022, 12, 2185–2193. [Google Scholar] [CrossRef]
- Hinson, P.O.; Adams, C.B.; Dong, X.J.; Xue, Q.W.; Thapa, S.; Feng, G.N.; Kimura, E.; Pincha, B.; Somenahally, A.; Somenahally, A.; et al. Path analysis of phenotypic factors associated with grain protein in dryland winter wheat. J. Crop Improv. 2022, 36, 892–918. [Google Scholar] [CrossRef]
- Liu, H.X.; Wu, J.; Xu, L.J.; Xu, C.Y. Selection of Canopy Structure Index of Urban Forest Associated with Comfort Degree of Microclimate Within the Forest. Sci. Silvae Sin. 2020, 56, 32–39. [Google Scholar]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.F.; Li, M.H.; Luo, Y.Y.; Liang, L.D.; Du, P.C.; Peng, W.L. Study on the change of negative air ion concentration and its influencing factors at different spatio-temporal scales. Glob. Ecol. Conserv. 2020, 23, e01008. [Google Scholar] [CrossRef]
- Abdi, B.; Hami, A.; Zarehaghi, D. Impact of small-scale tree planting patterns on outdoor cooling and thermal comfort. Sustain. Cities Soc. 2020, 56, 102085. [Google Scholar] [CrossRef]
- Sodoudi, S.; Zhang, H.W.; Chi, X.L.; Müller, F.; Li, H.D. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Amani-beni, M.; Zhang, B.; Xie, G.; Xu, J. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban. For. Urban. Gree 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Gkatsopoulos, P. A Methodology for Calculating Cooling from Vegetation Evapotranspiration for Use in Urban Space Microclimate Simulations. Procedia Environ. Sci. 2017, 38, 477–484. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J.; Filipan, K.; Botteldooren, D. The influence of vegetation and surrounding traffic noise parameters on the sound environment of urban parks. Appl. Geogr. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ni, Z.B.; Wu, D.; Fan, C.; Lu, J.Q.; Xia, B.C. Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen, China. J. For. Res. 2019, 31, 2537–2547. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.J.; Wang, B.Y.; Fang, J.H.; Lang, J.D.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Chuang, M.T.; Chou, C.C.K.; Lin, N.H.; Takami, A.; Hsiao, T.C.; Lin, H.T.; Fu, J.S.; Pani, S.K.; Lu, Y.R.; Yang, T.Y. A Simulation Study on PM2.5 Sources and Meteorological Characteristics at the Northern Tip of Taiwan in the Early Stage of the Asian Haze Period. Aerosol Air Qual. Res. 2017, 17, 3166–3178. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.S.; Zhang, X.Y.; Huang, K.; Xu, C.; Tang, A.; Chen, J.M.; An, Z.S. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 2006, 40, 2935–2952. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, X.Y.; Han, Y.J.; Sun, W.; Liu, C.J.; Yin, S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere 2018, 9, 463. [Google Scholar] [CrossRef]
Plot No | Main Species of Plot | Tree Species | Shrub Species | Herbaceous Species | Greenbelt Types | Monitoring Points (Figure 1) |
---|---|---|---|---|---|---|
CK1 | Entrance of the park | control sites | 1, 2, 26 | |||
CK2 | hydrostatic region | control sites | 4, 18, 35 | |||
L | Poa annua | Lolium perenne, Poa annua | lawn | 22, 23, 30 | ||
A1 | Cinnamomum camphora | Cinnamomum camphora | evergreen tree | 3, 27, 32 | ||
A2 | Cinnamomum camphora-Nandina domestica | Cinnamomum camphora | Hibiscus syriacus., Photinia serratifolia, Nandina domestica | evergreen tree–shrub (herb) | 6, 21, 34 | |
A3 | Osmanthus fragrans-Photinia serratifolia -Pleioblastus amarus | Osmanthus fragrans ‘Latifolius’, Cinnamomum camphora, Magnolia Grandiflora | Nandina domesticaPhotinia serratifolia | Iris tectorum, Cortaderia selloana, Pleioblastus amarus | evergreen tree–shrub–herb | 5, 11, 33 |
B1 | Metasequoia glyptostroboides | Metasequoia glyptostroboides | deciduous tree | 10, 17, 19 | ||
B2 | Metasequoia glyptostroboides-Hosta plantaginea | Metasequoia glyptostroboides | Hosta plantaginea | deciduous tree–shrub (herb) | 12, 13, 20 | |
B3 | Pterocarya stenoptera-Nandina domestica-Hosta plantaginea | Pterocarya stenoptera | Nandina domestica, Photinia serratifolia | Hosta plantaginea, Cortaderia selloana, Dianthus chinensis | deciduous tree–shrub–herb | 8, 9, 31 |
C1 | Salix babylonica, Prunus persica | Salix babylonica, Prunus persica | water’s edge trees | 7, 28, 29 | ||
C2 | Metasequoia glyptostroboides-Iris pseudacorus | Metasequoia glyptostroboides | Iris pseudacorus, Reineckia carnea | water’s edge tree–shrub (herb) | 15, 25, 27 | |
C3 | Metasequoia glyptostroboides-Hibiscus mutabilis-Phragmites australis | Metasequoia glyptostroboide, Prunus serrulata var. lannesiana | Hibiscus mutabilis, Boehmeria penduliflora | Phragmites australis | water’s edge tree–shrub–herb | 14, 16, 24 |
Evaluation Grade | THI | Body Comfort | Body Feeling |
---|---|---|---|
I | ≥27.5 | Intense heat | Quite uncomfortable |
II | 25.5–27.5 | Hot | Not comfortable |
III | 17.0–25.5 | Warm | Comfortable |
IV | 14.0–16.9 | Cold | Not comfortable |
V | <14.0 | Very cold | Quite uncomfortable |
Index | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
THI (X1) | −0.008 | 0.688 | 0.519 |
PM2.5 (X2) | 0.370 | 0.080 | 0.189 |
PM10 (X3) | 0.371 | 0.090 | 0.156 |
NAI (X4) | −0.174 | −0.348 | 0.938 |
Noise (X5) | 0.281 | −0.419 | 0.141 |
Cumulative contribution to variance | 52.141 | 77.634 | 93.907 |
Evaluation Grade | Index Range | Level | Effect on Health |
---|---|---|---|
I | UPCHI ≥ 0.57 | Fabulous | Extremely beneficial |
II | 0.57–0.53 | Fabulous | Very beneficial |
III | 0.53–0.48 | Very good | Beneficial |
IV | 0.48–0.25 | Good | Normal |
V | 0.25–0.04 | General | Unfavorable |
VI | UPCHI < 0.04 | Very bad | Extremely unfavorable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; An, J.; Wang, H.; Miao, X.; Yang, G.; Feng, H.; Wu, Y.; Ma, X. The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks. Forests 2023, 14, 2257. https://doi.org/10.3390/f14112257
Feng H, An J, Wang H, Miao X, Yang G, Feng H, Wu Y, Ma X. The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks. Forests. 2023; 14(11):2257. https://doi.org/10.3390/f14112257
Chicago/Turabian StyleFeng, Huijun, Jing An, Haoyun Wang, Xiongyi Miao, Guangbing Yang, Hongbo Feng, Yuxiang Wu, and Xuyang Ma. 2023. "The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks" Forests 14, no. 11: 2257. https://doi.org/10.3390/f14112257
APA StyleFeng, H., An, J., Wang, H., Miao, X., Yang, G., Feng, H., Wu, Y., & Ma, X. (2023). The Ecological Healthcare Benefits and Influences of Plant Communities in Urban Wetland Parks. Forests, 14(11), 2257. https://doi.org/10.3390/f14112257