The Ginkgo biloba L. in China: Current Distribution and Possible Future Habitat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. Ginkgo biloba Sample Distribution Data
2.1.2. Environmental Variables Data
2.2. Methods
2.2.1. Evaluate the Main Environmental Variables
2.2.2. Model Accuracy Validation
2.2.3. Division of Suitable Area
3. Results
3.1. Accuracy Evaluation of Model Prediction
3.2. Main Environmental Variables Affecting the Ginkgo biloba Suitable Area
3.3. Simulation of Distribution of Ginkgo biloba Suitable Area under Climate Change Scenarios
3.3.1. Distribution of Suitable Area for Ginkgo biloba under Current Climate Scenario
3.3.2. Simulation of Suitable Areas for Ginkgo biloba under Future Climate Change Scenarios and Its Change Analysis
3.4. Changes in the Center of Gravity of the Ginkgo biloba Suitable Area
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dounne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. IPCC AR6 WGI Chapter 4—Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 1–195. [Google Scholar]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.-C.; Gégout, J.-C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Wang, B.; Chen, C.; Zhou, G.Y. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai-Tibet Plateau. Plants 2022, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.J.; Aitken, S.N.; Alía, R.; González-Martínez, S.C.; Hänninen, H.; Kremer, A.; Lefèvre, F.; Lenormand, T.; Yeaman, S.; Whetten, R.; et al. Potential for evolutionary responses to climate change-evidence from tree populations. Glob. Change Biol. 2013, 19, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Prober, S.; Potts, B.; Harrison, P.; Wiehl, G.; Bailey, T.; Silva, J.; Price, M.; Speijers, J.; Steane, D.; Vaillancourt, R. Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. Plants 2022, 11, 1846. [Google Scholar] [CrossRef]
- Hama, A.A.; Khwarahm, N.R. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecol. Inform. 2023, 73, 101930. [Google Scholar] [CrossRef]
- Fitzpatrick, M.C.; Gove, A.D.; Sanders, N.J.; Dunn, R.R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 2008, 14, 1337–1352. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Canning, A.D.; Waltham, N.J. Ecological impact assessment of climate change and habitat loss on wetland vertebrate assemblages of the Great Barrier Reef catchment and the influence of survey bias. Ecol. Evol. 2021, 11, 5244–5254. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Zhai, Y.P.; Meng, D.R.; Kou, G.Q.; Li, H.; Liu, J.Z. Predicting the potential distribution of wintering Asian Great Bustard (Otis tarda dybowskii) in China: Conservation implications. Glob. Ecol. Conserv. 2021, 31, e01817. [Google Scholar] [CrossRef]
- Box, E.; Kazue, F. A Comparative Look at Bioclimatic Zonation, Vegetation Types, Tree Taxa and Species Richness in Northeast Asia. Bot. Pacifica 2012, 1, 5–20. [Google Scholar] [CrossRef]
- Woodward, I.; Lomas, M. Vegetation Dynamics-Simulating responses to climatic change. Biol. Rev. Camb. Philos. Soc. 2004, 79, 643–670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Change Res. 2019, 15, 519–525. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Modell. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Bosso, L.; Smeraldo, S.; Russo, D.; Chiusano, M.; Bertorelle, G.; Johannesson, K.; Butlin, R.; Danovaro, R.; Raffini, F. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 2022, 24, 3169–3187. [Google Scholar] [CrossRef]
- Newman, J.; Riddell, E.; Williams, L.; Sears, M.; Barrett, K. Integrating physiology into correlative models can alter projections of habitat suitability under climate change for a threatened amphibian. Ecography 2022, 8, e06082. [Google Scholar] [CrossRef]
- Busby, J. BIOCLIM: A bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological Niche Factor Analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.; Huettmann, F.; Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.C.; Guisan, A. Climatic Niche Shifts Are Rare among Terrestrial Plant Invaders. Science 2012, 335, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Kanwar, N.; Bhatt, I.D.; Nandi, S.K.; Bisht, A.K. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE 2022, 17, e0269673. [Google Scholar]
- Barbosa, F.; Schneck, F. Characteristics of the top-cited papers in species distribution predictive models. Ecol. Modell. 2015, 313, 77–83. [Google Scholar] [CrossRef]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.S.; Ren, G.; Zhao, K.X.; Wang, X.F. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Li, J.J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [CrossRef]
- Shan, Y.M.; Gao, X.Y.; Hu, X.Y.; Hou, Y.F.; Wang, F. Current and future potential distribution of the invasive scale Ceroplastes rusci (L.; 1758) (Hemiptera: Coccidae) under climate niche. Pest Manag. Sci. 2022, 3, 1184–1192. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Ahmadi, K.; Heydari, M.; Karami, O.; Esmailzadeh, O.; Heung, B. Elevational shift of endangered European yew under climate change in Hyrcanian mountain forests: Rethinking conservation-restoration strategies and management. Forest Ecol. Manag. 2023, 529, 120693. [Google Scholar] [CrossRef]
- Liu, Y.X.; Xin, H.W.; Zhang, Y.C.; Che, F.Y.; Shen, N.; Cui, Y.L. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): A Comprehensive Review of Traditional Uses, phytochemistry, pharmacology, resource utilization and toxicity. J. Ethnopharmacol. 2022, 298, 115645. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Abdou, H.M.; Tass, M.A.; Alfwuaires, M.; Abdel-Moneim, A.M.; Essawy, A.E. Oral Supplements of Ginkgo biloba Extract Alleviate Neuroinflammation, Oxidative Impairments and Neurotoxicity in Rotenone-Induced Parkinsonian Rats. Curr. Pharm. Biotechnol. 2020, 21, 1259–1268. [Google Scholar] [CrossRef]
- Du, S.Y.; Yin, S.; Wang, Y.N.; Hao, W.Y.; Sun, X.C.; Li, S.Q. The Medicinal and Health Care Value of Ginkgo biloba leaves and Its Application. Food Nutr. China 2020, 26, 59–62. [Google Scholar]
- Fu, L.M.; Chin, C.M. China Plant Red Data Book: Rare and Endangered Plants; Science Press: Beijing China, 1992. [Google Scholar]
- Zhao, Y.P.; Paule, J.; Fu, C.X.; Koch, M.A. Out of China: Distribution history of Ginkgo biloba L. Taxon 2010, 59, 495–504. [Google Scholar] [CrossRef]
- Sun, W. Ginkgo biloba. The IUCN Red List of Threatened Species 1998: e.T32353A9700472. China. 1998. Available online: https://www.iucnredlist.org/species/32353/9700472 (accessed on 7 May 2022).
- Zhao, H.R.; Yang, X.T.; Shi, S.Y.; Xu, Y.D.; Yu, X.P.; Ye, X.P. Climate-driven distribution changes for Bashania fargesii in the Qinling Mountains and its implication for panda conservation. Glob. Ecol. Conserv. 2023, 46, e02610. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- O’Neill, B.; Tebaldi, C.; Vuuren, D.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Huang, Y.M.; Zhang, G.L.; Fu, W.D.; Zhang, Y.; Zhao, Z.H.; Li, Z.H.; Qin, Y.J. Impacts of climate change on climatically suitable regions of two invasive Erigeron weeds in China. Front. Plant Sci. 2023, 14, 1238656. [Google Scholar] [CrossRef]
- Wu, L.Z.; Data Set of 1 km Resolution DEM in China. National Cryosphere Desert Data Center. 2019. Available online: http://www.ncdc.ac.cn/portal/metadata/ba0e4b6b-8fef-4eec-9c84-81646f266282 (accessed on 3 June 2022).
- Lu, L.; Liu, C.; Chinese Soil Data Set Based on World Soil Database (HWSD) (v1.1). National Cryosphere Desert Data Center. 2019. Available online: http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09 (accessed on 7 June 2022).
- Li, Y.; Shao, W.; Jiang, J. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling. Environ. Sci. Pollut. R. 2022, 29, 21751–21768. [Google Scholar] [CrossRef]
- Fan, Z.F.; Zhou, B.J.; Ma, C.L.; Gao, C.; Han, D.N.; Chai, Y. Impacts of climate change on species distribution patterns of Polyspora sweet in China. Ecol. Evol. 2022, 12, e9516. [Google Scholar] [CrossRef]
- Radosavljević, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Fang, B.; Zhao, Q.; Qin, Q.L.; Yu, J. Prediction of Potentially Suitable Distribution Areas for Prunus tomentosa in China Based on an Optimized MaxEnt Model. Forests 2022, 13, 381. [Google Scholar] [CrossRef]
- Yan, Y.H.; Ceng, Y.F.; Zhang, P.Y.; Zhang, Y.; Liu, X.; Li, C.G.; Xu, S. Predicting distribution pattern and future change of Pinus massoniana in China based on MaxEnt model. Chin. J. Ecol. 2019, 38, 2896–2901. [Google Scholar]
- Zhao, Y.C.; Zhao, M.Y.; Zhang, L.; Wang, C.Y.; Xu, Y.L. Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture 2021, 11, 1122. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xie, B.Y.; Wan, F.H.; Xiao, Q.M.; Dai, L.Y. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biod. Sci. 2007, 15, 365–372. [Google Scholar]
- Şen, İ.; Sarıkaya, O.; Örücü, Ö.K. Predicting the future distributions of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae) under climate change. J. Plant Dis. Protect. 2022, 129, 325–337. [Google Scholar] [CrossRef]
- Araújo, M.; Pearson, R.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Mapunda, K.K.; Andrew, S.M. Predicting the distribution of critically endangered tree species Karomia gigas under climate change in Tanzania. Ecol. Eng. 2023, 195, 107065. [Google Scholar] [CrossRef]
- Lin, S.; Yao, D.; Jiang, H.; Qin, J.; Feng, Z. Predicting current and future potential distributions of the greater bandicoot rat (Bandicota indica) under climate change conditions. Pest Manag. Sci. 2023. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, Y.H.; Ren, H.; Wnag, L.Y.; Zhu, W.B.; Zhu, L.Q. Prediction of the suitable distribution of Cyclobalanopsis glauca and its implications for the northern boundary of subtropical zone of China. Geogr. Res. 2020, 39, 990–1001. [Google Scholar]
- Guo, X.; Wang, L.; Xu, X.; Tong, L. MaxEnt modeling for predicting potential suitable distribution areas of Styrax odoratissimus. Ecol. Sci. 2020, 39, 119–124. [Google Scholar]
- Miller, R.G. The jackknife-a review. Biometrika. 1974, 61, 1–15. [Google Scholar]
- Benabou, A.; Moukrim, S.; Lahssini, S.; Aboudi, A.; Menzou, K.; Elmalki, M.; Madihi, M.; Rhazi, L. Impact of climate change on potential distribution of Quercus suber in the conditions of North Africa. Biosyst. Divers. 2022, 30, 289–294. [Google Scholar] [CrossRef]
- Sanczuk, P.; De, P.K.; De, L.E.; Luoto, M.; Meeussen, C.; Govaert, S.; Vanneste, T.; Depauw, L.; Brunet, J.; Cousins, S.A.O.; et al. Microclimate and forest density drive plant population dynamics under climate change. Nat. Clim. Change 2023, 13, 840–847. [Google Scholar] [CrossRef]
- Guo, Y. Prediction of Ginkgo Distribution and Research on Environmental Response Mechanism of Phenotypic Traits under the Climate Change; Nanjing Forestry University: Nanjing, China, 2021. [Google Scholar] [CrossRef]
- Liu, J. Historical Distribution and Migration Trend of Relict Plant Ginkgo biloba Based on Random Forest Model; Shaanxi Normal University: Xi’an, China, 2019. [Google Scholar]
- Xu, Y. Prediction of Suitable Areas of Relict Plants Ginkgo biloba L. and Davidia Involucrata Based on Maximum Entropy Model; North China Electric Power University: Beijing, China, 2019. [Google Scholar]
- Wang, R.L.; Xia, Y.L.; Shen, Z.H.; Wang, Y.L.; Zhou, X.J.; Xiang, M.; Yang, Y.X. Genetic diversity analysis and potential suitable habitat of Chuanminshen violaceum for climate change. Ecol. Inform. 2023, 77, 102209. [Google Scholar] [CrossRef]
- Amaro, G.; Fidelis, E.G.; da Silva, R.S.; Marchioro, C.A. Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae). Ecol. Modell. 2023, 483, 110454. [Google Scholar] [CrossRef]
- Gong, H.D.; Cheng, Q.P.; Jin, H.Y.; Ren, Y.T. Effects of temporal, spatial, and elevational variation in bioclimatic indices on the NDVI of different vegetation types in Southwest China. Ecol. Indic. 2023, 154, 110499. [Google Scholar] [CrossRef]
- Alatawi, A.S.; Gilbert, F.; Reader, T. Modelling terrestrial reptile species richness, distributions and habitat suitability in Saudi Arabia. J. Arid Environ. 2020, 178, 104153. [Google Scholar] [CrossRef]
- Zahoor, B.; Liu, X.; Songer, M. The impact of climate change on three indicator Galliformes species in the northern highlands of Pakistan. Environ. Sci. Pollut. Res. Int. 2022, 29, 54330–54347. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.J.; Khan, J.; Guo, J.T.; Feng, Q.D.; Sun, Y.; Li, B.Q.; Wu, Y.; Wu, Z.D.; Zheng, X.Y. Predicting the Impact of Climate Change on the Distribution of a Neglected Arboviruses Vector (Armigeres subalbatus) in China. Trop. Med. Infect. Dis. 2022, 7, 431. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.H.; Jiang, J.; Lin, H.Y.; Chen, T.Y.; Zhang, S.Y.; Wang, T.L. Assessment of the impact of climate change on endangered conifer tree species by considering climate and soil dual suitability and interspecific competition. Sci. Total Environ. 2023, 877, 162722. [Google Scholar] [CrossRef]
- Royo, A.A.; Raymond, P.; Kern, C.C.; Adams, B.T.; Bronson, D.; Champagne, E.; Dumais, D.; Gustafson, E.; Marquardt, P.E.; McGraw, A.M.; et al. Desired REgeneration through Assisted Migration (DREAM): Implementing a research framework for climate-adaptive silviculture. Forest. Ecol. Manag. 2023, 546, 121298. [Google Scholar] [CrossRef]
- Nelson, K.N.; O’Dean, E.; Knapp, E.E.; Parker, A.J.; Bisbing, S.M. Persistent yet vulnerable: Resurvey of an Abies ecotone reveals few differences but vulnerability to climate change. Ecology 2021, 102, e03525. [Google Scholar] [CrossRef] [PubMed]
- Shareena, G.; Kumar, D. Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomed. Pharmacother. 2022, 153, 113299. [Google Scholar] [CrossRef]
- Kapuka, A.; Dobor, L.; Hlásny, T. Climate change threatens the distribution of major woody species and ecosystem services provision in southern Africa. Sci. Total Environ. 2022, 850, 158006. [Google Scholar] [CrossRef] [PubMed]
Data Type | Environment Variable | Contribution Rate (%) | Permutation Importance |
---|---|---|---|
Climate variables | Bio2 | 1.4 | 0.7 |
Bio3 | 2 | 1.4 | |
Bio4 | 3 | 0.8 | |
Bio6 | 43.5 | 52.1 | |
Bio10 | 0.3 | 0.4 | |
Bio13 | 21.8 | 9.7 | |
Bio14 | 0.6 | 2.4 | |
Bio15 | 2.7 | 2.2 | |
Soil variables | AWC_CLASS | 1.8 | 1.4 |
DRAINAGE | 2.7 | 1 | |
REF_DEPTH | 0.2 | 0 | |
S_CACO3 | 1.3 | 1.3 | |
S_CASO4 | 0.1 | 0.1 | |
S_CEC_SOLT | 0.5 | 0.7 | |
S_CLAY | 0.2 | 1 | |
S_ESP | 0.7 | 1.4 | |
S_GRAVEL | 0.7 | 0.7 | |
S_OC | 0.1 | 0.1 | |
S_SAND | 0.2 | 0.9 | |
S_USDA_TEX | 1.5 | 0.8 | |
T_CEC_CLAY | 0.4 | 0.7 | |
T_CEC_SOLT | 0.2 | 0.3 | |
T_CLAY | 0.3 | 1.2 | |
T_ESP | 0.3 | 0.1 | |
T_GRAVEL | 1.9 | 2.7 | |
T_OC | 0.1 | 0.2 | |
T_SILT | 0.6 | 1.3 | |
T_TEXTURE | 0.3 | 0 | |
T_USDA_TEX | 1.1 | 0.6 | |
Terrible variables | DEM | 4.6 | 8.9 |
Slop | 2.9 | 3.3 | |
Aspect | 2.2 | 1.3 |
AUC of Training Date | AUC of Test Date | AUC of Random Prediction | |
---|---|---|---|
Current | 0.9402 | 0.9050 | 0.5 |
2050s_ssp126 | 0.9421 | 0.9040 | 0.5 |
2050s_ssp245 | 0.9411 | 0.9124 | 0.5 |
2050s_ssp370 | 0.9390 | 0.9090 | 0.5 |
2050s_ssp585 | 0.9421 | 0.9080 | 0.5 |
2070s_ssp126 | 0.9425 | 0.9040 | 0.5 |
2070s_ssp245 | 0.9446 | 0.9120 | 0.5 |
2070s_ssp370 | 0.9404 | 0.9060 | 0.5 |
2070s_ssp585 | 0.9383 | 0.9001 | 0.5 |
Less Suitable Area | Moderately Suitable Area | Highly Suitable Area | Total Suitable Area | |
---|---|---|---|---|
Current | 80.81 | 69.02 | 64.36 | 214.19 |
2050s_ssp126 | 72.21 | 79.85 | 121.99 | 274.05 |
2050s_ssp245 | 85.50 | 86.93 | 113.37 | 285.79 |
2050s_ssp370 | 68.16 | 68.40 | 144.43 | 280.99 |
2050s_ssp585 | 85.83 | 83.34 | 127.27 | 296.44 |
2070s_ssp126 | 86.75 | 75.04 | 85.92 | 247.71 |
2070s_ssp245 | 96.13 | 79.91 | 83.57 | 259.61 |
2070s_ssp370 | 84.90 | 97.02 | 144.96 | 326.87 |
2070s_ssp585 | 95.61 | 91.92 | 111.46 | 298.98 |
Expansion (×104 km2) | Proportion | Contraction (×104 km2) | Proportion | No Change (×104 km2) | Proportion | ||
---|---|---|---|---|---|---|---|
2050s | ssp126 | 63.91 | 22.98% | 4.06 | 1.46% | 210.13 | 75.56% |
ssp245 | 80.14 | 27.23% | 8.55 | 2.90% | 205.65 | 69.87% | |
ssp370 | 75.87 | 26.16% | 9.07 | 3.13% | 205.13 | 70.72% | |
ssp585 | 91.04 | 29.83% | 8.79 | 2.88% | 205.40 | 67.29% | |
2070s | ssp126 | 55.44 | 20.56% | 21.92 | 8.13% | 192.28 | 71.31% |
ssp245 | 66.20 | 23.61% | 20.79 | 7.41% | 193.40 | 68.98% | |
ssp370 | 120.17 | 35.94% | 7.49 | 2.24% | 206.70 | 61.82% | |
ssp585 | 102.76 | 32.42% | 17.97 | 5.67% | 196.22 | 61.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Tian, L.; Huang, Y.; Shao, C. The Ginkgo biloba L. in China: Current Distribution and Possible Future Habitat. Forests 2023, 14, 2284. https://doi.org/10.3390/f14122284
Zhang Y, Zhang J, Tian L, Huang Y, Shao C. The Ginkgo biloba L. in China: Current Distribution and Possible Future Habitat. Forests. 2023; 14(12):2284. https://doi.org/10.3390/f14122284
Chicago/Turabian StyleZhang, Ying, Jinbing Zhang, Li Tian, Yaohui Huang, and Changliang Shao. 2023. "The Ginkgo biloba L. in China: Current Distribution and Possible Future Habitat" Forests 14, no. 12: 2284. https://doi.org/10.3390/f14122284
APA StyleZhang, Y., Zhang, J., Tian, L., Huang, Y., & Shao, C. (2023). The Ginkgo biloba L. in China: Current Distribution and Possible Future Habitat. Forests, 14(12), 2284. https://doi.org/10.3390/f14122284