The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.3. Methods
2.3.1. Multi-Scenario Setting
2.3.2. PLUS Model
2.3.3. InVEST Model
2.3.4. Ecosystem Service Vulnerability Assessment Methodology
2.3.5. Research Framework
3. Results
3.1. Impact of LUCC on Carbon Stocks, 2000–2020
3.1.1. LUCC in 2000–2020
3.1.2. Changes in Carbon Stocks, 2000–2020
3.2. Multi-Scenario Projection of Carbon Stocks in 2030
3.2.1. LUCC Multi-Scenario Simulation
3.2.2. Carbon Stock Response to LUCC under Different Scenarios
3.3. Vulnerability Analysis of ECS Services
4. Discussion
4.1. Analysis of the Contribution of LUCC Drivers
4.2. Carbon Stock Response to LUCC in Mountainous Areas of the Karst Plateau
4.3. ECS Service Vulnerability
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lempert, R.J. Measuring global climate risk. Nat. Clim. Change 2021, 11, 805–806. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- O’Neill, S. COP26: Some Progress, But Nations Still Fiddling While World Warms. Engineering 2022, 11, 6–8. [Google Scholar] [CrossRef]
- Chen, B.; Xu, C.; Wu, Y.; Li, Z.; Song, M.; Shen, Z. Spatiotemporal carbon emissions across the spectrum of Chinese cities: Insights from socioeconomic characteristics and ecological capacity. J. Environ. Manag. 2022, 306, 114510. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q. Soil Conservation Service Spatiotemporal Variability and Its Driving Mechanism on the Guizhou Plateau, China. Remote Sens. 2020, 12, 2187. [Google Scholar] [CrossRef]
- Zhuo, C.; Deng, F. How does China’s Western Development Strategy affect regional green economic efficiency? Sci. Total Environ. 2020, 707, 135939. [Google Scholar] [CrossRef]
- Pan, S.; Liang, J.; Chen, W.; Li, J.; Liu, Z. Gray Forecast of Ecosystem Services Value and Its Driving Forces in Karst Areas of China: A Case Study in Guizhou Province, China. Int. J. Environ. Res. Public Health 2021, 18, 12404. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Liu, J.; Zhao, D. Assessment of Carbon Storage under Different SSP-RCP Scenarios in Terrestrial Ecosystems of Jilin Province, China. Int. J. Environ. Res. Public Health 2023, 20, 3691. [Google Scholar] [CrossRef]
- Xie, L.; Bai, Z.; Yang, B.; Fu, S. Simulation Analysis of Land-Use Pattern Evolution and Valuation of Terrestrial Ecosystem Carbon Storage of Changzhi City, China. Land 2022, 11, 1270. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Richards, D.R.; Thompson, B.S.; Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 2020, 11, 4260. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Winkler, K.; Yang, H.; Ganzenmüller, R.; Fuchs, R.; Ceccherini, G.; Duveiller, G.; Grassi, G.; Pongratz, J.; Bastos, A.; Shvidenko, A.; et al. Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink. Commun. Earth Environ. 2023, 4, 237. [Google Scholar] [CrossRef]
- Woodbury, P.B.; Heath, L.S.; Smith, J.E. Land use change effects on forest carbon cycling throughout the southern United States. J. Environ. Qual. 2006, 35, 1348–1363. [Google Scholar] [CrossRef]
- Schulp, C.J.; Nabuurs, G.-J.; Verburg, P. Ecosystems; Environment. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Dantas De Paula, M.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef] [PubMed]
- Mugabowindekwe, M.; Brandt, M.; Chave, J.; Reiner, F.; Skole, D.L.; Kariryaa, A.; Igel, C.; Hiernaux, P.; Ciais, P.; Mertz, O. Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda. Nat. Clim. Change 2023, 13, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.S.; Li, W. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 2021, 12, 118. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ji, Y.; Bai, Y. Grassland carbon budget and its driving factors of the subtropical and tropical monsoon region in China during 1961 to 2013. Sci. Rep. 2017, 7, 14717. [Google Scholar] [CrossRef] [PubMed]
- Gosling, P.; van der Gast, C.; Bending, G. Converting highly productive arable cropland in Europe to grassland:–a poor candidate for carbon sequestration. Sci. Rep. 2017, 7, 10493. [Google Scholar] [CrossRef] [PubMed]
- Ogle, S.M.; Breidt, F.J.; Del Grosso, S.; Gurung, R.; Marx, E.; Spencer, S.; Williams, S.; Manning, D. Counterfactual scenarios reveal historical impact of cropland management on soil organic carbon stocks in the United States. Sci. Rep. 2023, 13, 14564. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Cao, J.; Degen, A.; Zhang, D.; Long, R.J. A four year study in a desert land area on the effect of irrigated, cultivated land and abandoned cropland on soil biological, chemical and physical properties. CATENA 2019, 175, 1–8. [Google Scholar] [CrossRef]
- Levin, P.S.; Fogarty, M.J.; Matlock, G.C.; Ernst, M. Integrated ecosystem assessments. NOAA Tech. Memo. NMFS-NWFSC 2008, 92, 20. [Google Scholar]
- Zhang, S.; Xiong, K.; Qin, Y.; Min, X.; Xiao, J. Evolution and determinants of ecosystem services: Insights from South China karst. Ecol. Indic. 2021, 133, 108437. [Google Scholar] [CrossRef]
- Chen, J.; Yu, J.; Bai, X.; Zeng, Y.; Wang, J. Fragility of karst ecosystem and environment: Long-term evidence from lake sediments. Agric. Ecosyst. Environ. 2020, 294, 106862. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Qiu, S.; Peng, J.; Zheng, H.; Xu, Z.; Meersmans, J. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Sci. Total Environ. 2022, 807, 150723. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Wu, L.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Koide, D.; Yokomizo, H.; Kim, J.Y.; Kadoya, T. Assessing ecosystem vulnerability under severe uncertainty of global climate change. Sci. Rep. 2023, 13, 5932. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I. The authorship structure of “ecosystem services” as a transdisciplinary field of scholarship. Ecosyst. Serv. 2012, 1, 16–25. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Liping, C.; Haijuan, Y.; Kun, B. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L. Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- National Geographic Information Resources Catalog Service System. 2016. Available online: https://www.webmap.cn/ (accessed on 5 March 2023).
- GSCloud. The Data Set is Provided by Geospatial Data Cloud Site, Computer Network Information Center, Chinese Academy of Sciences. 2020. Available online: http://www.gscloud.cn/ (accessed on 15 March 2023).
- Xu, X. Spatially Interpolated Dataset of Mean Conditions of Meteorological Elements in China. Resource and Environmental Science Data Registration and Publication System. 2017. Available online: https://www.resdc.cn/doi/doi.aspx?DOIid=39 (accessed on 15 March 2023).
- Xu, X. Spatial Distribution of China’s GDP on Kilometer Grid Dataset. Resource and Environmental Science Data Registration and Publication System. 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 15 March 2023).
- Xu, X. Kilometer Grid Dataset for Spatial Distribution of Population in China. Resource and Environmental Science Data Registration and Publication System. 2017. Available online: https://www.resdc.cn/doi/doi.aspx?DOIid=32 (accessed on 15 March 2023).
- Xu, X. DEM-Based Extraction of Chinese Watershed and River Network Datasets. Resource and Environmental Science Data Registration and Publication System. 2018. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=44 (accessed on 15 March 2023).
- OpenStreetMap© Online Mapping Project Database. Available online: http://www.openstreetmap.org/ (accessed on 17 March 2023).
- Qasim, W.; Cho, J.M.; Moon, B.E.; Basak, J.K.; Kahn, F.; Okyere, F.G.; Yoon, Y.C.; Kim, H.T. Predicting Common Patterns of Livestock-Vehicle Movement Using GPS and GIS: A Case Study on Jeju Island, South Korea. J. Biosyst. Eng. 2018, 43, 247–254. [Google Scholar]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage. Land 2022, 11, 1617. [Google Scholar]
- Çağlıyan, A.; Dağlı, D. Monitoring land use land cover changes and modelling of urban growth using a future land use simulation model (FLUS) in Diyarbakır, Turkey. Sustainability 2022, 14, 9180. [Google Scholar] [CrossRef]
- Mamitimin, Y.; Simayi, Z.; Mamat, A.; Maimaiti, B.; Ma, Y. FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City. Sustainability 2023, 15, 4912. [Google Scholar] [CrossRef]
- Daba, M.H.; You, S. Quantitatively assessing the future land-use/land-cover changes and their driving factors in the upper stream of the Awash River based on the CA–markov model and their implications for water resources management. Sustainability 2022, 14, 1538. [Google Scholar] [CrossRef]
- Floreano, I.X.; de Moraes, L.A.F. Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [Google Scholar] [CrossRef] [PubMed]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Wu, M.; Ren, X.; Che, Y.; Yang, K. A coupled SD and CLUE-S model for exploring the impact of land use change on ecosystem service value: A case study in Baoshan District, Shanghai, China. Environ. Manag. 2015, 56, 402–419. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Guo, W.; Teng, Y.; Yan, Y.; Zhao, C.; Zhang, W.; Ji, X. Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability 2022, 14, 13436. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Guo, R.; Yan, C. Effects of climate warming on net primary productivity in China during 1961–2010. Ecol. Evol. 2017, 7, 6736–6746. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-B.; Liu, J.-Y.; Shao, Q.-Q.; Liu, R.-G.; Fan, J.-W.; Chen, Z.-Q. Spatial-temporal patterns of net primary productivity for 1988-2004 based on GLOPEM-CEVSA model in the “Three-River Headwaters” Region of Qinghai Province, China. Chin. J. Plant Ecol. 2009, 33, 254. [Google Scholar]
- Kelong, C.; Yanli, H.; Shengkui, C.; Jin, M.; Guangchao, C.; Hui, L. The Study of Vegetation Carbon Storage in Qinghai Lake Valley Based on Remote Sensing and CASA Model. Procedia Environ. Sci. 2011, 10, 1568–1574. [Google Scholar] [CrossRef]
- Schaefer, K.; Collatz, G.J.; Tans, P.; Denning, A.S.; Baker, I.; Berry, J.; Prihodko, L.; Suits, N.; Philpott, A. Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model. Chin. J. Plant Ecol. 2008, 113. [Google Scholar] [CrossRef]
- KVG, R.K.; Barik, D.K. Assessment of carbon storage and erosion using invest model in Visakhapatnam district, Andhra Pradesh. J. Rural. Dev. 2018, 2018, 207–220. [Google Scholar]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef]
- Ding, F.; Pan, Z.; Wu, P.; Cui, Y.; Zhou, F. Carbon accumulation and distribution characteristics of the evergreen broadleaved and deciduous broad-leaved mixed forests in East Guizhou. Acta Ecol. Sin. 2015, 35, 8. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Li, K.; Wang, S.; Cao, M. Carbon storage of vegetation and soil in China. Sci. Sin. (Terrae) 2003, 33, 9. [Google Scholar] [CrossRef]
- Xie, X.; Sun, B.; Zhou, H.; Li, Z. Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedol. Sin. 2004, 41, 687–699. [Google Scholar]
- Li, M.; Du, M.; Yu, L. Carbon Storage and Density of Forest Vegetation and Its Spatial Distribution Pattern in Guizhou Province. J. Northwest For. Univ. 2016, 31, 8. [Google Scholar]
- Yang, Y.; Bao, W.; Liu, Y. Scenario simulation of land system change in the Beijing-Tianjin-Hebei region. Land Use Policy 2020, 96, 104677. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Gao, H.; Han, H.; Zhang, C.; Wang, H. Effects of Land Use Change on Carbon Storage in Wujiang River of Guizhou Province from 2000-2010. J. Sichuan Agric. Univ. 2016, 34, 7. [Google Scholar]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Zhang, Z.; Zhou, Q.; Zhao, X. Analysis on the spatial and temporal characteristics of land use in China. Acta Geogr. Sin. 2001, 56, 631–639. [Google Scholar]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Guo, H.; Cai, Y.; Li, B.; Tang, Y.; Qi, Z.; Huang, Y.; Yang, Z. An integrated modeling approach for ecological risks assessment under multiple scenarios in Guangzhou, China. Ecol. Indic. 2022, 142, 109270. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, R.; Zhang, Y.; Yin, J.; Huang, J. The Evolution and Determinants of Ecosystem Services in Guizhou— A Typical Karst Mountainous Area in Southwest China. Land 2022, 11, 1164. [Google Scholar]
- Fan, L.; Cai, T.; Wen, Q.; Han, J.; Wang, S.; Wang, J.; Yin, C. Scenario simulation of land use change and carbon storage response in Henan Province, China: 1990–2050. Ecol. Indic. 2023, 154, 110660. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Identifying the drivers of land expansion and evaluating multi-scenario simulation of land use: A case study of Mashan County, China. Ecol. Inform. 2023, 77, 102201. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Hayes, D.J.; Turner, D.P.; Stinson, G.; McGuire, A.D.; Wei, Y.; West, T.O.; Heath, L.S.; De Jong, B.; McConkey, B.G.; Birdsey, R.A. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data. Glob. Change Biol. 2012, 18, 1282–1299. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Nakakaawa, C.A.; Vedeld, P.O.; Aune, J.B. Spatial and temporal land use and carbon stock changes in Uganda: Implications for a future REDD strategy. Mitig. Adapt. Strateg. Glob. Change 2011, 16, 25–62. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Feng, X.; Liu, S.; Yin, L.; Chen, Y. Trade-offs and synergies of ecosystem services in karst area of China driven by grain-for-green Program. Chin. Geogr. Sci. 2020, 30, 101–114. [Google Scholar] [CrossRef]
- Sadat, M.; Zoghi, M.; Malekmohammadi, B. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: Case study in Qaem Shahr County, Iran. Environ. Dev. Sustain. 2020, 22, 8135–8158. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Fang, K.; Tang, Y.; Zhang, Q.; Song, J.; Wen, Q.; Sun, H.; Ji, C.; Xu, A. Will China peak its energy-related carbon emissions by 2030? Lessons 30 Chin. Prov. 2019, 255, 113852. [Google Scholar]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Hastie, A.; Honorio Coronado, E.N.; Reyna, J.; Mitchard, E.T.; Åkesson, C.M.; Baker, T.R.; Cole, L.E.; Oroche, C.J.C.; Dargie, G.; Dávila, G. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat. Geosci. 2022, 15, 369–374. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Y.; Tong, X.; Wang, K.; Qi, X.; Deng, C.; Brandt, M. Eco-engineering controls vegetation trends in southwest China karst. Sci. Total Environ. 2021, 770, 145160. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Yue, Y.; Qi, X. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, M.; Xia, B.-C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Pellikka, P.; Heikinheimo, V.; Hietanen, J.; Schäfer, E.; Siljander, M.; Heiskanen, J. Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Sci. Total Environ. 2018, 94, 178–189. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Liu, G.; Zhao, L.; Zhao, G. The response of carbon storage to the age of three forest plantations in the Loess Hilly Regions of China. CATENA 2017, 159, 106–114. [Google Scholar] [CrossRef]
- Chen, G.-S.; Yang, Y.-S.; Xie, J.-S.; Guo, J.-F.; Gao, R.; Qian, W. Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: Effects on carbon storage. Ann. For. Sci. 2005, 62, 659–668. [Google Scholar] [CrossRef]
Category | Data | Resolution | Source |
---|---|---|---|
Land use data | Land use | 30 m | National Geographic Information Resources Catalog Service System (https://www.webmap.cn, accessed on 5 March 2023) |
Natural factors | Digital elevation model (DEM) | 30 m | The dataset is provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (https://www.gscloud.cn, accessed on 5 March 2023) |
Slope | 30 m | ||
Average annual precipitation | 1000 m | Resource and Environment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn, accessed on 15 March 2023) | |
Average annual temperature | 1000 m | ||
Socioeconomic factors | Population | 1000 m | |
Gross domestic product (GDP) | 1000 m | ||
Accessibility factors | Distance to water sources | / | |
Distance to railroads | / | OpenStreetMap (https://www.openstreetmap.org, accessed on 17 March 2023) | |
Distance to highways | / | ||
Distance to major roads (Class I and II roads) | / | ||
Distance to secondary roads (Class III and IV roads) | / | ||
Distance to county government sites | / |
NT Scenario | EP Scenario | ED Scenario | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LUCC | FL | CL | GL | WB | UL | BL | FL | CL | GL | WB | UL | BL | FL | CL | GL | WB | UL | BL |
FL | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
CL | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
GL | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
WB | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
UL | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
BL | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
LUCC | Ci−a | Ci−b | Ci−s | Ci−d | Reference |
---|---|---|---|---|---|
Forest land | 20.36 | 67.50 | 170 | 7.80 | Ding et al. [67]; Stocker et al. [68] |
Cropland | 38.70 | 80.70 | 92.90 | 1 | Stocker et al. [68]; Li et al. [69]; Xie et al. [70] |
Grassland | 4.30 | 86.50 | 89.02 | 0 | Stocker et al. [68]; Li et al. [71] |
Water body | 0 | 0 | 0 | 0 | Yang et al. [72]; Yang et al. [73]; Zhang et al. [74] |
Unused land | 0.74 | 0.13 | 69.92 | 0 | Stocker et al. [68]; Li et al. [69]; Gao et al. [75] |
Built-Up land | 0 | 0 | 71 | 0 | Stocker et al. [68]; Gao et al. [75] |
2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | |
Forest land | 1052.78 | 59.76 | 1107.89 | 62.89 | 1130.62 | 64.18 |
Cropland | 661.25 | 37.54 | 612.54 | 34.77 | 587.39 | 33.34 |
Grassland | 39.29 | 2.23 | 28.62 | 1.62 | 23.36 | 1.33 |
Water body | 4.39 | 0.25 | 5.87 | 0.33 | 6.94 | 0.39 |
Unused land | 0.08 | <0.01 | 0.08 | <0.01 | 0.08 | 0.01 |
Built-Up land | 3.87 | 0.22 | 6.67 | 0.38 | 13.26 | 0.75 |
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | |
---|---|---|---|---|---|---|
Forest land | 2796.83 | 2943.24 | 3003.61 | 146.41 | 60.37 | 206.78 |
Cropland | 1410.45 | 1306.55 | 1252.91 | −103.9 | −53.64 | −157.54 |
Grassland | 70.66 | 51.46 | 42.02 | −19.20 | −9.44 | −28.64 |
Water body | 0 | 0 | 0 | 0 | 0 | 0 |
Unused land | 0.06 | 0.06 | 0.06 | 0 | 0 | 0 |
Built-Up land | 2.75 | 4.73 | 9.42 | 1.98 | 4.69 | 6.67 |
Total | 4280.75 | 4306.03 | 4308.02 | 25.28 | 1.99 | 27.27 |
2030 | 2020–2030 | |||||
---|---|---|---|---|---|---|
NT | EP | ED | NT | EP | ED | |
Forest land | 3009.63 | 3011.12 | 2914.9 | 6.02 | 7.51 | −88.71 |
Cropland | 1252.05 | 1237.09 | 1277.62 | −0.86 | −15.82 | 24.71 |
Grassland | 32.20 | 52.77 | 64.14 | −9.82 | 10.75 | 22.12 |
Water body | 0 | 0 | 0 | 0 | 0 | 0 |
Unused land | 0.05 | 0.05 | 0.06 | −0.01 | −0.01 | 0 |
Built-Up land | 12.23 | 6.79 | 16.98 | 2.81 | −2.63 | 7.56 |
Total | 4306.16 | 4307.84 | 4273.71 | −1.86 | −0.18 | −34.31 |
Year | C (Tg) | La | Time | △C (Tg) | △La | PI |
---|---|---|---|---|---|---|
2000 | 4280.75 | 237.97 | —— | —— | —— | —— |
2010 | 4306.03 | 235.52 | 2000–2010 | 25.28 | −2.45 | −0.57 |
2020 | 4308.02 | 234.84 | 2010–2020 | 1.99 | −0.68 | −0.16 |
2030 (NT) | 4306.16 | 235.27 | 2020–2030 (NT) | −1.86 | 0.43 | −0.24 |
2030 (EP) | 4307.84 | 234.01 | 2020–2030 (EP) | −0.18 | −0.83 | 0.01 |
2030 (ED) | 4273.71 | 236.71 | 2020–2030 (ED) | −34.31 | 1.87 | −1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Yang, Y. The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests 2023, 14, 2307. https://doi.org/10.3390/f14122307
Du S, Zhou Z, Huang D, Zhang F, Deng F, Yang Y. The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests. 2023; 14(12):2307. https://doi.org/10.3390/f14122307
Chicago/Turabian StyleDu, Shuanglong, Zhongfa Zhou, Denghong Huang, Fuxianmei Zhang, Fangfang Deng, and Yue Yang. 2023. "The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST" Forests 14, no. 12: 2307. https://doi.org/10.3390/f14122307
APA StyleDu, S., Zhou, Z., Huang, D., Zhang, F., Deng, F., & Yang, Y. (2023). The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests, 14(12), 2307. https://doi.org/10.3390/f14122307