Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods
Abstract
:1. Introduction
- (1)
- To develop prediction models to evaluate log moisture content (MC) of four commercially important softwood species based on high-frequency, high-resolution GPR signals acquired in the green state to approximately 10% MC—this range in MC being typically found along the fibre supply chain, from timber to wood products;
- (2)
- To evaluate whether GPR signals can predict log diameter and bark thickness;
- (3)
- To evaluate whether detailed knowledge of wood properties, including sapwood and heartwood MC, contributes to the improvement of MC prediction accuracy for newly harvested logs (i.e., in the green state);
- (4)
- To test and apply the MC prediction models on other materials (degraded logs, live but partially defoliated trees, and dead trees) to see whether the GPR technology could provide information on internal wood MC and potentially be deployed to inform about wood freshness and/or the shelf-life of trees or logs.
2. Materials and Methods
2.1. Trees
2.2. Determining Wood Properties and Log Moisture Content
2.3. GPR Signal Acquisition
2.4. GPR Signal Processing
2.5. Statistical Analysis and Modelling
2.6. Response Variables, Covariate Variables, and Time Window Selection
3. Results
3.1. Log Characteristics, Wood Properties and MC
3.2. Comparison of Single and Multi-Species Models
3.3. Prediction of Log Diameter and Bark Thickness
3.4. Log Characteristics and Wood Properties as Additional Predictors
3.5. Prediction of Bark, Sapwood and Heartwood MC
4. Discussion
4.1. Log Characteristics, Wood Properties and MCs
4.2. Comparison of Single and Multi-Species Models
4.3. Prediction of Log Diameter and Bark Thickness
4.4. Log Characteristics and Wood Properties as Additional Predictors
4.5. Prediction of Bark, Sapwood and Heartwood MC
4.6. Remarks on the Use of GPR to Characterise Various Wood Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PLSR | LWPLSR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Validation (n = 286) | Validation (n = 286) | ||||||||||||
Species | Drying Stage | GPR nTS | Covar | n Calib | n Valid | nLVs | RMSEv | R2v | RPD | nLVs | RMSEv | R2v | RPD |
Mix | 1 | 228 | 164 | 72 | 16 | 22.8 | 0.15 | 1.10 | 2 | 20.7 | 0.30 | 1.20 | |
Mix | 1 | 150 | 167 | 72 | 17 | 21.0 | 0.28 | 1.19 | 5 | 20.2 | 0.33 | 1.23 | |
Mix | 1 | 75 | 166 | 72 | 13 | 20.5 | 0.31 | 1.21 | 10 | 24.8 | −0.01 | 1.00 | |
Mix | 1 | 40 | 165 | 72 | 6 | 24.5 | 0.02 | 1.02 | 5 | 22.8 | 0.15 | 1.09 | |
Fir | 1 | 228 | 55 | 24 | 2 | 20.8 | 0.05 | 1.05 | 2 | 20.4 | 0.08 | 1.07 | |
Fir | 1 | 150 | 55 | 24 | 8 | 15.6 | 0.47 | 1.40 | 2 | 17.6 | 0.32 | 1.24 | |
Fir | 1 | 75 | 55 | 24 | 3 | 19.2 | 0.18 | 1.13 | 3 | 18.7 | 0.23 | 1.16 | |
Fir | 1 | 40 | 56 | 24 | 2 | 22.7 | −0.14 | 0.96 | 2 | 21.7 | −0.03 | 1.01 | |
Spruces | 1 | 228 | 109 | 48 | 8 | 23.0 | −0.23 | 0.91 | 2 | 15.9 | 0.42 | 1.32 | |
Spruces | 1 | 150 | 107 | 48 | 11 | 20.2 | 0.06 | 1.04 | 3 | 17.7 | 0.27 | 1.19 | |
Spruces | 1 | 75 | 110 | 48 | 5 | 14.9 | 0.49 | 1.41 | 5 | 14.8 | 0.49 | 1.42 | |
Spruces | 1 | 40 | 110 | 48 | 6 | 17.4 | 0.30 | 1.21 | 1 | 18.0 | 0.25 | 1.17 | |
Mix | 1 | 228 | Dob, THb | 164 | 72 | 15 | 23.0 | 0.14 | 1.09 | 12 | 20.9 | 0.29 | 1.19 |
Mix | 1 | 150 | Dob, THb | 167 | 72 | 17 | 21.9 | 0.22 | 1.14 | 19 | 24.3 | 0.04 | 1.03 |
Mix | 1 | 75 | Dob, THb | 166 | 72 | 6 | 23.6 | 0.09 | 1.06 | 4 | 24.6 | 0.01 | 1.01 |
Mix | 1 | 40 | Dob, THb | 165 | 72 | 8 | 24.9 | −0.01 | 1.00 | 8 | 23.9 | 0.07 | 1.04 |
Fir | 1 | 228 | Dob, THb | 55 | 24 | 2 | 20.8 | 0.04 | 1.05 | 2 | 18.1 | 0.28 | 1.20 |
Fir | 1 | 150 | Dob, THb | 55 | 24 | 3 | 18.2 | 0.27 | 1.20 | 2 | 17.1 | 0.36 | 1.28 |
Fir | 1 | 75 | Dob, THb | 55 | 24 | 2 | 20.3 | 0.10 | 1.07 | 2 | 19.5 | 0.17 | 1.12 |
Fir | 1 | 40 | Dob, THb | 56 | 24 | 2 | 22.9 | −0.16 | 0.95 | 2 | 20.1 | 0.11 | 1.08 |
Spruces | 1 | 228 | Dob, THb | 109 | 48 | 8 | 24.8 | −0.43 | 0.85 | 6 | 28.2 | −0.85 | 0.74 |
Spruces | 1 | 150 | Dob, THb | 107 | 48 | 10 | 25.5 | −0.50 | 0.83 | 1 | 15.2 | 0.46 | 1.38 |
Spruces | 1 | 75 | Dob, THb | 110 | 48 | 4 | 17.1 | 0.32 | 1.23 | 4 | 18.0 | 0.25 | 1.17 |
Spruces | 1 | 40 | Dob, THb | 110 | 48 | 9 | 16.7 | 0.36 | 1.26 | 9 | 16.6 | 0.36 | 1.27 |
Mix | 1234 | 228 | 660 | 286 | 20 | 15.8 | 0.78 | 2.16 | 13 | 13.9 | 0.83 | 2.46 | |
Mix | 1234 | 150 | 655 | 286 | 17 | 16.4 | 0.77 | 2.08 | 13 | 14.1 | 0.83 | 2.41 | |
Mix | 1234 | 75 | 654 | 286 | 15 | 16.9 | 0.75 | 2.01 | 11 | 15.2 | 0.80 | 2.24 | |
Mix | 1234 | 40 | 659 | 286 | 17 | 19.8 | 0.66 | 1.72 | 10 | 19.1 | 0.68 | 1.78 | |
Fir | 1234 | 228 | 221 | 96 | 12 | 17.0 | 0.74 | 1.97 | 5 | 16.3 | 0.76 | 2.06 | |
Fir | 1234 | 150 | 222 | 96 | 12 | 16.8 | 0.75 | 1.99 | 11 | 17.1 | 0.74 | 1.96 | |
Fir | 1234 | 75 | 219 | 96 | 17 | 16.8 | 0.75 | 1.99 | 17 | 15.7 | 0.78 | 2.13 | |
Fir | 1234 | 40 | 218 | 96 | 14 | 20.5 | 0.62 | 1.63 | 15 | 20.2 | 0.63 | 1.66 | |
Spruces | 1234 | 228 | 443 | 191 | 20 | 13.0 | 0.82 | 2.34 | 19 | 10.8 | 0.87 | 2.81 | |
Spruces | 1234 | 150 | 439 | 191 | 16 | 13.6 | 0.80 | 2.24 | 11 | 11.7 | 0.85 | 2.60 | |
Spruces | 1234 | 75 | 435 | 191 | 14 | 14.1 | 0.78 | 2.15 | 6 | 12.6 | 0.83 | 2.41 | |
Spruces | 1234 | 40 | 438 | 191 | 15 | 17.4 | 0.67 | 1.74 | 11 | 18.0 | 0.65 | 1.69 | |
Mix | 1234 | 228 | Dob | 660 | 286 | 23 | 16.8 | 0.76 | 2.03 | 21 | 14.7 | 0.81 | 2.32 |
Mix | 1234 | 150 | Dob | 655 | 286 | 18 | 16.8 | 0.76 | 2.02 | 17 | 14.7 | 0.81 | 2.33 |
Mix | 1234 | 75 | Dob | 654 | 286 | 16 | 17.0 | 0.75 | 2.01 | 11 | 15.4 | 0.79 | 2.21 |
Mix | 1234 | 40 | Dob | 659 | 286 | 14 | 19.9 | 0.66 | 1.71 | 11 | 18.6 | 0.70 | 1.83 |
Fir | 1234 | 228 | Dob | 221 | 96 | 20 | 14.9 | 0.80 | 2.25 | 19 | 14.1 | 0.82 | 2.37 |
Fir | 1234 | 150 | Dob | 222 | 96 | 25 | 16.9 | 0.74 | 1.99 | 7 | 16.7 | 0.75 | 2.01 |
Fir | 1234 | 75 | Dob | 219 | 96 | 17 | 16.6 | 0.75 | 2.02 | 14 | 15.6 | 0.78 | 2.15 |
Fir | 1234 | 40 | Dob | 218 | 96 | 11 | 20.2 | 0.63 | 1.66 | 11 | 18.5 | 0.69 | 1.81 |
Spruces | 1234 | 228 | Dob | 443 | 191 | 21 | 13.0 | 0.82 | 2.33 | 20 | 10.4 | 0.88 | 2.92 |
Spruces | 1234 | 150 | Dob | 439 | 191 | 20 | 13.2 | 0.81 | 2.30 | 15 | 11.7 | 0.85 | 2.59 |
Spruces | 1234 | 75 | Dob | 435 | 191 | 17 | 14.1 | 0.78 | 2.16 | 8 | 13.9 | 0.79 | 2.18 |
Spruces | 1234 | 40 | Dob | 438 | 191 | 10 | 17.1 | 0.68 | 1.78 | 11 | 15.8 | 0.73 | 1.92 |
Mix | 1234 | 228 | THb | 659 | 285 | 24 | 15.8 | 0.78 | 2.12 | 23 | 13.9 | 0.83 | 2.40 |
Mix | 1234 | 150 | THb | 652 | 285 | 17 | 16.4 | 0.76 | 2.04 | 16 | 14.5 | 0.81 | 2.30 |
Mix | 1234 | 75 | THb | 653 | 285 | 16 | 17.8 | 0.72 | 1.88 | 14 | 16.2 | 0.76 | 2.06 |
Mix | 1234 | 40 | THb | 656 | 285 | 13 | 20.8 | 0.61 | 1.61 | 11 | 19.9 | 0.65 | 1.68 |
Fir | 1234 | 228 | THb | 217 | 95 | 17 | 15.8 | 0.83 | 2.40 | 17 | 15.6 | 0.83 | 2.43 |
Fir | 1234 | 150 | THb | 220 | 95 | 15 | 15.9 | 0.82 | 2.38 | 20 | 15.3 | 0.83 | 2.47 |
Fir | 1234 | 75 | THb | 217 | 95 | 14 | 16.7 | 0.80 | 2.27 | 14 | 16.7 | 0.80 | 2.27 |
Fir | 1234 | 40 | THb | 216 | 95 | 11 | 20.0 | 0.72 | 1.89 | 11 | 20.3 | 0.71 | 1.86 |
Spruces | 1234 | 228 | THb | 443 | 191 | 20 | 13.2 | 0.81 | 2.30 | 19 | 10.5 | 0.88 | 2.89 |
Spruces | 1234 | 150 | THb | 439 | 191 | 19 | 13.3 | 0.81 | 2.29 | 16 | 11.8 | 0.85 | 2.57 |
Spruces | 1234 | 75 | THb | 435 | 191 | 17 | 14.1 | 0.78 | 2.15 | 8 | 14.2 | 0.78 | 2.13 |
Spruces | 1234 | 40 | THb | 438 | 191 | 11 | 16.6 | 0.70 | 1.82 | 11 | 16.5 | 0.70 | 1.84 |
Mix | 1234 | 228 | Dob, THb | 659 | 285 | 23 | 16.1 | 0.77 | 2.08 | 22 | 14.1 | 0.82 | 2.38 |
Mix | 1234 | 150 | Dob, THb | 652 | 285 | 18 | 16.3 | 0.76 | 2.05 | 16 | 14.3 | 0.82 | 2.34 |
Mix | 1234 | 75 | Dob, THb | 653 | 285 | 17 | 17.8 | 0.72 | 1.88 | 13 | 16.2 | 0.77 | 2.07 |
Mix | 1234 | 40 | Dob, THb | 656 | 285 | 14 | 20.9 | 0.61 | 1.60 | 13 | 19.5 | 0.66 | 1.71 |
Fir | 1234 | 228 | Dob, THb | 217 | 95 | 17 | 15.7 | 0.83 | 2.42 | 18 | 15.5 | 0.83 | 2.44 |
Fir | 1234 | 150 | Dob, THb | 220 | 95 | 16 | 15.6 | 0.83 | 2.43 | 16 | 15.6 | 0.83 | 2.43 |
Fir | 1234 | 75 | Dob, THb | 217 | 95 | 15 | 16.6 | 0.81 | 2.28 | 15 | 17.5 | 0.78 | 2.16 |
Fir | 1234 | 40 | Dob, THb | 216 | 95 | 12 | 19.8 | 0.72 | 1.91 | 12 | 20.0 | 0.72 | 1.89 |
Spruces | 1234 | 228 | Dob, THb | 443 | 191 | 20 | 13.1 | 0.81 | 2.31 | 20 | 10.3 | 0.88 | 2.94 |
Spruces | 1234 | 150 | Dob, THb | 439 | 191 | 19 | 13.4 | 0.80 | 2.26 | 16 | 11.5 | 0.86 | 2.63 |
Spruces | 1234 | 75 | Dob, THb | 435 | 191 | 18 | 14.1 | 0.79 | 2.16 | 8 | 13.9 | 0.79 | 2.19 |
Spruces | 1234 | 40 | Dob, THb | 438 | 191 | 12 | 16.8 | 0.69 | 1.80 | 12 | 16.4 | 0.71 | 1.86 |
References
- Gauthier, S.; Bernier, P.Y.; Boulanger, Y.; Guo, J.; Guindon, L.; Beaudoin, A.; Boucher, D. Vulnerability of Timber Supply to Projected Changes in Fire Regime in Canada’s Managed Forests. Can. J. For. Res. 2015, 45, 1439–1447. [Google Scholar] [CrossRef]
- Boucher, D.; Boulanger, Y.; Aubin, I.; Bernier, P.Y.; Beaudoin, A.; Guindon, L.; Gauthier, S. Current and Projected Cumulative Impacts of Fire, Drought, and Insects on Timber Volumes across Canada. Ecol. Appl. 2018, 28, 1245–1259. [Google Scholar] [CrossRef]
- Berguet, C.; Martin, M.; Arseneault, D.; Morin, H. Spatiotemporal Dynamics of 20th-Century Spruce Budworm Outbreaks in Eastern Canada: Three Distinct Patterns of Outbreak Severity. Front. Ecol. Evol. 2021, 8, 544088. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; Van Der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Laurens, S. Non-Destructive Evaluation of Concrete Moisture by GPR: Experimental Study and Direct Modeling. Mater. Struct. 2005, 38, 827–832. [Google Scholar] [CrossRef]
- Mai, T.C.; Razafindratsima, S.; Sbartaï, Z.M.; Demontoux, F.; Bos, F. Non-Destructive Evaluation of Moisture Content of Wood Material at GPR Frequency. Constr. Build. Mater. 2015, 77, 213–217. [Google Scholar] [CrossRef]
- Xiao, X.; Wen, J.; Xiao, Z.; Li, W. Detecting and Measuring Internal Anomalies in Tree Trunks Using Radar Data for Layer Identification. J. Sens. 2018, 2018, 1430381. [Google Scholar] [CrossRef]
- Giannakis, I.; Tosti, F.; Lantini, L.; Alani, A.M. Health Monitoring of Tree Trunks Using Ground Penetrating Radar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8317–8326. [Google Scholar] [CrossRef]
- Giannakis, I.; Tosti, F.; Lantini, L.; Alani, A.M. Diagnosing Emerging Infectious Diseases of Trees Using Ground Penetrating Radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1146–1155. [Google Scholar] [CrossRef]
- Chen, S.-L.; Liu, S.-T.; Lin, C.-H.; Liu, C.-C. Application of Ground-Penetrating Radar for Living Trees Detection. IOP Conf. Ser. Earth Environ. Sci. 2021, 706, 012008. [Google Scholar] [CrossRef]
- Sudakova, M.; Terentyeva, E.; Kalashnikov, A. Assessment of Health Status of Tree Trunks Using Ground Penetrating Radar Tomography. AIMS Math. 2021, 7, 162–179. [Google Scholar] [CrossRef]
- Li, W.; Wen, J.; Xiao, Z.; Xu, S. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours. Sensors 2018, 18, 649. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, G.; Jiao, Z.; Wang, X. Reliability of Acoustic Tomography and Ground-penetrating Radar for Tree Decay Detection. Appl. Plant Sci. 2018, 6, e01187. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.P.; Senalik, C.A.; Wu, X.; Wacker, J. Use of Ground Penetrating Radar in the Evaluation of Wood Structures: A Review. Forests 2021, 12, 492. [Google Scholar] [CrossRef]
- Hans, G.; Redman, D.; Leblon, B.; Nader, J.; La Rocque, A. Determination of Log Moisture Content Using Early-Time Ground Penetrating Radar Signal. Wood Mater. Sci. Eng. 2015, 10, 112–129. [Google Scholar] [CrossRef]
- Redman, J.D.; Hans, G.; Diamanti, N. Impact of Wood Sample Shape and Size on Moisture Content Measurement Using a GPR-Based Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 221–227. [Google Scholar] [CrossRef]
- Senalik, C.A.; Wacker, J.P.; Wang, X.; Jalinoos, F. Assessing the Ability of Ground-Penetrating Radar to Detect Fungal Decay in Douglas-Fir Beams. In Proceedings of the 25th ASNT Research Symposium: Summaries and Abstracts, Columbus, OH, USA, 26–30 June 2023; American Society for Nondestructive Testing, Inc.: Columbus, OH, USA, 2016. [Google Scholar]
- Senalik, C.A.; Wacker, J.P.; Wang, X. Evaluating the Efficacy of Ground-Penetrating Radar as an Inspection Tool for Timber Bridges. In Proceedings of the 4th International Conference on Timber Bridges, Biel/Bienne, Switzerland, 9–12 May 2022; Bern University of Applied Sciences and Dubendorf: Bern, Switzerland, 2022. [Google Scholar]
- ASTM D4442-20; Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. American Society of Testing and Materials: Philadelphia, PA, USA,, 2020.
- ASTM D2395-22; Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. American Society of Testing and Materials: Philadelphia, PA, USA, 2022.
- Huber, E.; Hans, G.; Huber, E.; Hans, G. RGPR–An Open-Source Package to Process and Visualize GPR Data. In Proceedings of the 17th International Conference on Ground Penetrating Radar, Rapperswil, Switzerland, 18–21 June 2018; Available online: https://emanuelhuber.github.io/RGPR/2018_huber-and-hans_RGPR-new-R-package_notes.pdf (accessed on 25 June 2022).
- Lesnoff, M.; Metz, M.; Roger, J. Comparison of Locally Weighted PLS Strategies for Regression and Discrimination on Agronomic NIR Data. J. Chemom. 2020, 34, e3209. [Google Scholar] [CrossRef]
- Hans, G.; Redman, D.; Leblon, B.; Nader, J.; La Rocque, A. Determination of Log Moisture Content Using Ground Penetrating Radar (GPR). Part 1. Partial Least Squares (PLS) Method. Holzforschung 2015, 69, 1117–1123. [Google Scholar] [CrossRef]
- Lesnoff, M. Rchemo: Dimension Reduction, Regression and Discrimination for Chemometrics. R Package Version 0.0-17. Available online: https://Github.Com/Mlesnoff/Rchemo (accessed on 20 April 2022).
- Cech, M.Y.; Pfaff, F. Kiln Operator’s Manual for Eastern Canada; Special Publication SP504E; Forintek Canada Corp.: Ottawa, ON, Canada, 1980; p. 163. [Google Scholar]
- Powell, M.A.; Eaton, R.A. Fungal Defacement of Water-Stored Softwoods; Document No. IRG/WP 93-10009; The International Research Group on Wood Preservation: Stockholm, Sweden, 1993; 14p. [Google Scholar]
- Uzunovic, A.; Byrne, T.; Gignac, M.; Yang, D.-Q. Wood Discolourations & Their Prevention with an Emphasis on Bluestain; Special Publication SP-50; FPInnovations: Vancouver, BC, Canada, 2008; 50p. [Google Scholar]
- Ježová, J.; Mertens, L.; Lambot, S. Ground-Penetrating Radar for Observing Tree Trunks and Other Cylindrical Objects. Constr. Build. Mater. 2016, 123, 214–225. [Google Scholar] [CrossRef]
- Ježová, J.; Harou, J.; Lambot, S. Reflection Waveforms Occurring in Bistatic Radar Testing of Columns and Tree Trunks. Constr. Build. Mater. 2018, 174, 388–400. [Google Scholar] [CrossRef]
- Xu, Q.; Qin, M.; Ni, Y.; Defo, M.; Dalpke, B.; Sherson, G. Predictions of Wood Density and Module of Elasticity of Balsam Fir (Abies Balsamea) and Black Spruce (Picea Mariana) from near Infrared Spectral Analyses. Can. J. For. Res. 2011, 41, 352–358. [Google Scholar] [CrossRef]
- Giroud, G.; Defo, M.; Bégin, J.; Ung, C.-H. Application of Near-Infrared Spectroscopy to Determine the Juvenile–Mature Wood Transition in Black Spruce. For. Prod. J. 2015, 65, 129–138. [Google Scholar] [CrossRef]
- Butnor, J.R.; Pruyn, M.L.; Shaw, D.C.; Harmon, M.E.; Mucciardi, A.N.; Ryan, M.G. Detecting Defects in Conifers with Ground Penetrating Radar: Applications and Challenges. For. Pathol. 2009, 39, 309–322. [Google Scholar] [CrossRef]
Site | Species | No. of Trees | DBH (cm) | Tree Height (m) | Crown Base Height (m) | Cambial Age (BH) |
---|---|---|---|---|---|---|
SOPFIM 1 | BS | 23 | 15.4 (4.47) | 9.9 (2.38) | - | 50.8 (16.71) |
WS | 23 | 17.5 (6.07) | 10.8 (2.47) | - | 49.1 (11.92) | |
BF | 25 | 15.4 (3.98) | 11.8 (2.81) | - | 49.8 (17.27) | |
CFS 2 | BS | 15 | 23.1 (5.41) | 18.3 (2.18) | 10.1 (1.50) | 68.3 (24.93) |
WS | 32 | 22.0 (4.68) | 16.0 (3.12) | 8.0 (2.91) | 51.5 (19.14) | |
RS | 15 | 23.6 (6.78) | 17.6 (3.38) | 11.0 (3.35) | 64.2 (16.96) | |
BF | 32 | 22.9 (5.51) | 16.0 (3.52) | 6.5 (3.20) | 40.7 (14.24) | |
Total | 165 | 51.4 (18.71) |
Site | Species | No. of Logs | No. of GPR Traces | Log MC (%) Min–Max | Mean Log MC (%) |
---|---|---|---|---|---|
SOPFIM | BS | 23 | 92 | 18.1–116.6 | 56 (23.3) |
WS | 23 | 91 | 13.4–133.3 | 65 (30.6) | |
BF | 25 | 99 | 27.4–161.8 | 74 (33.8) | |
CFS | BS | 30 | 107 | 14.1–92.5 | 50 (17.7) |
WS | 64 | 231 | 17.6–158.8 | 75 (33.2) | |
RS | 30 | 114 | 9.1–121.2 | 64 (26.3) | |
BF | 62 | 219 | 22.6–167.6 | 92 (39.1) | |
Total | 257 | 953 |
Model Group | Response * | Covariate | Species | Drying Stage | Time Window (Sampling Points) | Calibration Size | Validation Size |
---|---|---|---|---|---|---|---|
1 | MC | - | Spruces, BF | 6.1 ns (228) 4.0 ns (150) 2.0 ns (75) 1.1 ns (40) | 654–660 | 286 | |
- | Spruces only | 1, 2, 3, 4 | 435–443 | 191 | |||
- | BF only | 218–222 | 96 | ||||
2 | DOB | - | |||||
THb | - | Spruces, BF | 1 | 164–167 | 72 | ||
3 | MC | DOB | Spruces, BF | 1, 2, 3, 4 | |||
Thb | |||||||
DOB, THb | 164–167 | 72 | |||||
4 | MC | - | Spruces, BF | 1 | 164–167 | 72 | |
MCb + MCsw + MChw | - | Spruces, BF | 1 | 164–167 | 72 |
Site | Species | No. of Logs | Log Diameter (cm) | Ring Width (mm) | Basic Density (kg/m3) | Green Wood | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Green Density (kg/m3) | Green Log MC (%) | Sapwood MC (%) | Heartwood MC (%) | Bark MC (%) | Bark Thickness (mm) | ||||||
SOPFIM | BS | 23 | 16.6 (4.01) | 1.9 (0.42) | 415 (39.4) | 844 (117.6) | 79 (15.9) | 102 (23.0) | 45 (14.7) | 109 (26.3) | 5.0 (1.05) |
WS | 23 | 19.0 (5.89) | 1.9 (0.56) | 376 (29.1) | 853 (79.7) | 94 (21.3) | 133 (37.2) | 46 (14.2) | 120 (32.0) | 5.2 (1.63) | |
BF | 25 | 17.9 (4.42) | 1.9 (0.42) | 349 (28.0) | 864 (96.7) | 107 (23.1) | 130 (33.9) | 78 (37.9) | 108 (18.9) | 5.1 (1.35) | |
CFS | BS | 30 | 21.0 (4.93) | 1.8 (0.38) | 394 (23.1) | 806 (323.6) | 65 (9.1) | 96 (19.9) | 41 (10.5) | 92 (24.2) | 5.1 (1.47) |
WS | 64 | 19.6 (4.74) | 2.4 (1.02) | 375 (58.5) | 843 (114.8) | 99 (22.6) | 131 (31.7) | 47 (21.8) | 112 (18.0) | 5.1 (1.20) | |
RS | 30 | 21.1 (5.96) | 1.9 (0.46) | 371 (20.2) | 795 (176.1) | 83 (17.5) | 112 (41.7) | 37 (9.7) | 100 (13.8) | 5.5 (1.29) | |
BF | 62 | 20.5 (4.86) | 3.1 (1.19) | 328 (26.3) | 867 (88.1) | 123 (16.1) | 138 (28.5) | 120 (36.8) | 93 (14.4) | 5.4 (1.37) | |
Total | 257 |
Species Mix | nTS (TW) | Calibration n | PLSR | LWPLSR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
nLVs | RMSE | R2 | RPD | nLVs | RMSE | R2 | RPD | |||
Validation n = 286 | ||||||||||
Spruces, | 228 (6.1) | 660 | 20 | 15.80 | 0.78 | 2.16 | 13 | 13.87 | 0.83 | 2.46 |
Balsam fir | 150 (4.0) | 655 | 17 | 16.37 | 0.77 | 2.08 | 13 | 14.14 | 0.83 | 2.41 |
75 (2.0) | 654 | 15 | 16.93 | 0.75 | 2.01 | 11 | 15.19 | 0.80 | 2.24 | |
40 (1.1) | 659 | 17 | 19.80 | 0.66 | 1.72 | 10 | 19.14 | 0.68 | 1.78 | |
Validation n = 191 | ||||||||||
Spruces | 228 (6.1) | 443 | 20 | 13.00 | 0.82 | 2.34 | 19 | 10.82 | 0.87 | 2.81 |
150 (4.0) | 439 | 16 | 13.56 | 0.80 | 2.24 | 11 | 11.67 | 0.85 | 2.60 | |
75 (2.0) | 435 | 14 | 14.13 | 0.78 | 2.15 | 6 | 12.60 | 0.83 | 2.41 | |
40 (1.1) | 438 | 15 | 17.43 | 0.67 | 1.74 | 11 | 17.95 | 0.65 | 1.69 | |
Validation n = 96 | ||||||||||
Balsam fir | 228 (6.1) | 221 | 12 | 16.98 | 0.74 | 1.97 | 5 | 16.26 | 0.76 | 2.06 |
150 (4.0) | 222 | 12 | 16.84 | 0.75 | 1.99 | 11 | 17.07 | 0.74 | 1.96 | |
75 (2.0) | 219 | 17 | 16.83 | 0.75 | 1.99 | 17 | 15.72 | 0.78 | 2.13 | |
40 (1.1) | 218 | 14 | 20.51 | 0.62 | 1.63 | 15 | 20.21 | 0.63 | 1.66 |
Response Variable | nTS (TW) | Calibration (n) | nLVs | RMSE | R2 | RPD |
---|---|---|---|---|---|---|
Log diameter | 150 (4.0) | 167 | 5 | 2.26 | 0.81 | 2.30 |
Bark thickness | 40 (1.1) | 165 | 3 | 1.08 | 0.46 | 1.37 |
Log diameter 1 | 150 (4.0) | 167 | 5 | 2.31 | 0.80 | 2.25 |
Bark thickness 1 | 40 (1.1) | 165 | 9 | 1.11 | 0.43 | 1.34 |
Predictors | nTS (TW) | Calibration (n) | nLVs | RMSE | R2 | RPD |
---|---|---|---|---|---|---|
GPR | 150 (4.0) | 167 | 5 | 20.20 | 0.33 | 1.23 |
GPR, DOB, THb | 228 (6.1) | 164 | 12 | 20.93 | 0.29 | 1.19 |
GPR, DOB, Db | 228 (6.1) | 164 | 8 | 16.78 | 0.54 | 1.49 |
GPR, DOB, Db, THb, Wr, Dg | 228 (6.1) | 164 | 14 | 13.95 | 0.68 | 1.79 |
Response Variable | Model Type | nTS (TW) | Calibration (n) | nLVs | RMSE | R2 | RPD |
---|---|---|---|---|---|---|---|
Bark MC | PLSR | 75 (2.0) | 166 | 7 | 18.16 | 0.28 | 1.18 |
LWPLSR | 40 (1.1) | 165 | 9 | 18.37 | 0.26 | 1.17 | |
Sapwood MC | LWPLSR | 150 (4.0) | 167 | 2 | 28.27 | 0.30 | 1.21 |
Heartwood MC | LWPLSR | 150 (4.0) | 167 | 2 | 27.56 | 0.21 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchesne, I.; Tong, Q.; Hans, G. Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods. Forests 2023, 14, 2396. https://doi.org/10.3390/f14122396
Duchesne I, Tong Q, Hans G. Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods. Forests. 2023; 14(12):2396. https://doi.org/10.3390/f14122396
Chicago/Turabian StyleDuchesne, Isabelle, Queju Tong, and Guillaume Hans. 2023. "Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods" Forests 14, no. 12: 2396. https://doi.org/10.3390/f14122396
APA StyleDuchesne, I., Tong, Q., & Hans, G. (2023). Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods. Forests, 14(12), 2396. https://doi.org/10.3390/f14122396