Landscape Characteristics in Mountain Parks across Different Urban Gradients and Their Relationship with Public Response
Abstract
:1. Introduction
- Compositional characteristics of landscape elements within urban mountain park settings across various urban areas and typologies;
- The variances in human physiological and psychological perception across diverse scene locations and types;
- The impact of landscape elements on human physiological and psychological perception;
2. Materials and Methods
2.1. Research Area
2.2. Data Collection
2.2.1. Panoramic Acquisition and Stimuli
2.2.2. Classification and Calculation of Physical Features
2.2.3. Measures
- (1)
- Physiological measurement
- (2)
- psychological measurement
2.2.4. Procedure
2.2.5. Participants
2.2.6. Analysis
3. Results
3.1. Reliability
3.2. Physical Features Description
3.3. Changes in Physiological Parameters
3.4. Changes in Psychological Parameters
3.5. The Correlation
3.6. Landscape Elements Predictors of Physiological and Psychological Paramaters
SVUMP = −5.609 + 1.750P3 + 2.328S3 + 1.793C9 + 2.359C6 − 4.409C1 |
SVCL = −5.20 + 1.850P1 + 2.421S1 + 1.662S6 + 2.321C6 − 4.029C7 |
SVFL = −6.611 + 1.485P3 + 2.210S3 − 2.112S6 + 2.021S5 + 2.010C6 |
SVFRL = −6.002 + 1.623P3 + 2.221S5 + 1.995C8 |
SRUMP = 5.493 + 2.462P3 + 2.338S1 + 1.985S3 + 2.577C6 |
SRCL = 4.385 + 3.102S1 + 3.568S2 + 2.784S6 + 2.922C1 + 2.857C7 |
SRFL = 5.152 + 2.444P3 + 2.998S1 + 2.001S6 + 3.142C6 |
SRFRL = 4.785 + 3.102P3 + 1.998W2 + 2.104C8 |
EAUMP = −6.250 + 3.844P3 + 3.985S3 + 4.019C6 − 4.075C1 |
EACL = −5.270 + 2.741S1 + 3.502S6 + 3.812C7 + 3.958C1 |
EAFL = −5.860 + 4.252P3 + 4.002S1 + 3.632S6 + 3.770S5 + 4.114C6 |
EAFRL = −6.002 + 3.785P3 + 3.568S5 + 4.002C6 + 4.003C4 + 3.985C1 |
ARUMP = −5.283 + 2.232S3 + 3.011P1 + 4.540C6 − 4.990C1 |
ARcL = −4.253 + 1.892S1 − 2.751S6 + 5.002C6 + 2.951C7 + 5.001C1 |
ARFL = −4.332 + 4.252P3 + 4.011S5 − 3.590S6 + 2.590C1 |
ARFRL = −4.200 − 1.532S6 + 4.051C6 + 3.550C8 + 2.205C4 |
EMGUMP = −5.828 − 3.276S3 − 1.677S6 + 1.773C6 |
EMGcL = −5.828 − 4.286S2 − 2.157S5−0.905C6 + 1.293C7 |
EMGFL = −4.328 − 2.760W2 − 2.227S6 − 0.775S5 |
EMGFRL = −3.581 − 2.236P3 − 3.627W2 − 4.228C8 |
HRVUMP = −12.034 + 1.283S1 + 1.483C1 + 1.401C6 |
HRVcL = −11.034 + 1.130S1 + 1.283C7 + 1.487C6 |
HRVFL = −13.024 + 1.352W2 + 1.002C8 + 1.807S5 |
HRVFRL = −11.030 + 1.283W2 + 1.487C8 |
4. Discussion
4.1. Landscape Elements and Public Physiological and Psychological Perception in Different Scenes
4.2. Landscape Element Predictors Driving Psychological and Physiological Perception
4.3. Practical Application
4.4. Limitation and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Landscape Type | Perception Index | P1 | P2 | P3 | P4 | P5 | W1 | W2 | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban mountain park | SV | NS | NS | 0.311 ** | NS | NS | NS | NS | 0.253 * | NS | 0.324 ** | NS | NS | NS | NS |
SR | NS | NS | −0.320 ** | NS | NS | NS | NS | 0.285 ** | NS | 0.336 ** | 0.217 * | NS | −0.211 * | NS | |
EA | NS | NS | 0.301 ** | NS | NS | NS | NS | 0.248 * | NS | 0.293 ** | NS | NS | NS | NS | |
AR | NS | NS | 0.283 ** | NS | NS | NS | NS | 0.229 * | NS | 0.293 ** | 0.214 * | NS | NS | NS | |
EMG | NS | −0.208 * | NS | NS | NS | NS | NS | NS | NS | 0.287 ** | NS | 0.345 ** | −0.358 ** | NS | |
HRV | NS | NS | NS | NS | NS | NS | NS | 0.259 ** | NS | NS | NS | NS | NS | NS | |
CL | SV | 0.195 * | NS | NS | NS | NS | NS | NS | 0.352 ** | NS | 0.316 ** | NS | NS | 0.225 ** | NS |
SR | NS | NS | NS | NS | NS | NS | NS | 0.328 ** | 0.162 * | 0.313 ** | NS | 0.185 * | 0.251 ** | NS | |
EA | NS | NS | NS | NS | NS | NS | NS | 0.382 ** | NS | 0.266 ** | NS | 0.151 * | 0.178 ** | NS | |
AR | NS | NS | NS | NS | NS | NS | NS | 0.314 ** | 0.224 ** | 0.301 ** | NS | NS | 0.211 ** | NS | |
EMG | NS | NS | NS | NS | NS | NS | NS | NS | 0.188 ** | NS | NS | 0.421 ** | NS | NS | |
HRV | NS | NS | NS | NS | NS | NS | NS | 0.268 ** | 0.176 * | NS | NS | 0.219 ** | NS | NS | |
FL | SV | NS | NS | 0.477 ** | NS | NS | NS | NS | 0.120 * | NS | 0.352 ** | NS | 0.344 ** | −0.454 ** | NS |
SR | NS | NS | 0.469 ** | NS | NS | NS | NS | 0.233 ** | NS | 0.220 * | NS | 0.157 ** | −0.228 ** | NS | |
EA | NS | NS | 0.436 ** | NS | NS | NS | NS | 0.231 ** | NS | 0.336 * | NS | 0.265 ** | −0.426 ** | NS | |
AR | NS | NS | 0.405 ** | NS | NS | NS | NS | 0.161 ** | NS | NS | NS | 0.324 ** | −0.218 ** | NS | |
EMG | NS | NS | NS | NS | NS | −0.312 ** | −0.122 * | NS | NS | NS | 0.437 ** | 0.256 ** | −0.378 ** | NS | |
HRV | NS | NS | NS | NS | NS | −0.183 * | −0.261 ** | NS | NS | NS | NS | 0.252 ** | NS | NS | |
FRL | SV | NS | NS | 0.330 ** | NS | NS | NS | NS | NS | NS | NS | NS | 0.352 ** | −0.164 * | NS |
SR | NS | NS | 0.325 ** | NS | NS | 0.203 * | 0.211 ** | NS | NS | NS | NS | 0.220 * | −0.232 * | NS | |
EA | NS | NS | 0.307 ** | NS | NS | NS | NS | NS | NS | NS | NS | 0.336 * | −0.162 * | NS | |
AR | NS | NS | 0.275 * | NS | NS | NS | NS | NS | NS | NS | NS | NS | −0.122 * | NS | |
EMG | NS | NS | 0.266 * | NS | NS | −0.158 * | −0.187 * | NS | NS | NS | NS | NS | NS | NS | |
HRV | NS | NS | NS | NS | −0.139 * | −0.221 ** | NS | NS | NS | NS | NS | NS | NS | ||
Landscape Type | Perception Index | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |||||
Urban mountain park | SV | 0.266 ** | NS | NS | NS | NS | 0.335 ** | 0.242 * | NS | 0.211 * | |||||
SR | 0.257 * | NS | NS | NS | NS | 0.285 ** | NS | NS | NS | ||||||
EA | 0.277 ** | NS | NS | NS | NS | 0.341 ** | 0.212 * | 0.208 * | 0.224 * | ||||||
AR | 0.327 ** | NS | NS | NS | NS | 0.303 ** | 0.234 * | NS | NS | ||||||
EMG | NS | NS | 0.252 * | NS | NS | 0.219 * | 0.271 ** | NS | NS | ||||||
HRV | −0.327 ** | NS | NS | NS | NS | 0.278 ** | NS | NS | NS | ||||||
CL | SV | 0.647 ** | NS | NS | NS | NS | 0.549 ** | 0.580 ** | NS | NS | |||||
SR | 0.624 ** | NS | NS | NS | NS | 0.615 ** | 0.532 ** | NS | NS | ||||||
EA | 0.618 ** | NS | NS | NS | NS | 0.680 ** | 0.537 ** | NS | NS | ||||||
AR | 0.633 ** | NS | NS | NS | NS | 0.606 ** | 0.615 ** | NS | NS | ||||||
EMG | NS | NS | NS | NS | NS | 0.669 ** | 0.543 ** | NS | NS | ||||||
HRV | NS | NS | NS | NS | NS | 0.625 ** | 0.593 ** | NS | NS | ||||||
FC | SV | 0.256 ** | NS | NS | NS | NS | 0.257 ** | 0.256 * | 0.256 ** | 0.225 * | |||||
SR | 0.407 * | NS | NS | NS | NS | 0.262 ** | 0.127 * | 0.407 * | 0.156 * | ||||||
EA | 0.337 ** | NS | NS | NS | NS | 0.578 ** | 0.225 * | 0.337 ** | NS | ||||||
AR | 0.247 ** | NS | NS | NS | NS | 0.543 ** | 0.158 * | 0.247 ** | 0.188 * | ||||||
EMG | NS | NS | NS | NS | NS | NS | −0.122 * | NS | NS | ||||||
HRV | −0.422 ** | NS | NS | NS | NS | NS | −0.151 * | −0.422 ** | NS | ||||||
FRL | SV | NS | NS | NS | NS | NS | 0.570 ** | NS | 0.558 ** | NS | |||||
SR | NS | NS | NS | NS | NS | 0.543 ** | NS | 0.603 ** | NS | ||||||
EA | NS | NS | NS | 0.366 ** | 0.283 * | 0.594 ** | NS | 0.645 ** | 0.272 * | ||||||
AR | NS | NS | NS | 0.300 * | NS | 0.596 ** | NS | 0.602 ** | NS | ||||||
EMG | NS | NS | NS | NS | 0.313 * | 0.411 ** | 0.361 ** | 0.412 ** | NS | ||||||
HRV | NS | NS | NS | NS | NS | 0.353 * | NS | 0.392 ** | NS |
Appendix B
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | −0.751 | 0.134 | −5.609 | 0.000 | 0.334 | |
P3 | 0.102 | 0.058 | 0.155 | 1.750 | 0.024 | ||
S3 | 0.073 | 0.032 | 0.206 | 2.328 | 0.022 | ||
C9 | 0.067 | 0.037 | 0.192 | 1.793 | 0.076 | ||
C6 | 0.069 | 0.029 | 0.251 | 2.359 | 0.020 | ||
C1 | −0.013 | 0.003 | −0.384 | −4.409 | 0.000 | ||
CL | Constant | −0.811 | 0.124 | −5.20 | 0.000 | 0.421 | |
P1 | 0.092 | 0.072 | 0.122 | 1.850 | 0.011 | ||
S1 | 0.082 | 0.036 | 0.185 | 2.421 | 0.032 | ||
S6 | −0.088 | 0.042 | −0.205 | 1.662 | 0.046 | ||
C6 | 0.072 | 0.031 | 0.178 | 2.321 | 0.020 | ||
C7 | 0.014 | 0.008 | 0.220 | −4.029 | 0.000 | ||
FC | Constant | −0.698 | 0.112 | −6.611 | 0.000 | 0.442 | |
P3 | 0.133 | 0.042 | 0.201 | 1.485 | 0.024 | ||
S3 | 0.082 | 0.029 | 0.152 | 2.210 | 0.015 | ||
S6 | −0.088 | 0.042 | −0.132 | −2.112 | 0.044 | ||
S5 | 0.073 | 0.033 | 0.245 | 2.021 | 0.002 | ||
C6 | 0.014 | 0.002 | 0.300 | 2.010 | 0.009 | ||
FRL | Constant | −0.902 | 0.201 | −6.002 | 0.000 | 0.398 | |
P3 | 0.102 | 0.047 | 0.211 | 1.623 | 0.003 | ||
S5 | 0.103 | 0.019 | 0.302 | 2.221 | 0.022 | ||
C8 | 0.089 | 0.021 | 0.156 | 1.995 | 0.041 |
Appendix C
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | 1.167 | 0.212 | 5.493 | 0.000 | 0.278 | |
P3 | 0.109 | 0.044 | 0.225 | 2.462 | 0.016 | ||
S1 | 0.137 | 0.058 | 0.217 | 2.338 | 0.022 | ||
S3 | 0.064 | 0.032 | 0.188 | 1.985 | 0.050 | ||
C6 | 0.095 | 0.037 | 0.234 | 2.577 | 0.012 | ||
CL | Constant | 1.002 | 0.208 | 4.385 | 0.000 | 0.352 | |
S1 | 0.112 | 0.052 | 0.212 | 3.102 | 0.016 | ||
S2 | 0.142 | 0.042 | 0.195 | 3.568 | 0.017 | ||
S6 | −0.104 | 0.033 | −0.172 | 2.784 | 0.025 | ||
C1 | 0.072 | 0.019 | 0.199 | 2.922 | 0.009 | ||
C7 | 0.086 | 0.034 | 0.212 | 2.857 | 0.011 | ||
FC | Constant | 1.142 | 0.198 | 5.152 | 0.000 | 0.377 | |
P3 | 0.121 | 0.057 | 0.211 | 2.444 | 0.014 | ||
S1 | 0.095 | 0.047 | 0.256 | 2.998 | 0.006 | ||
S6 | −0.059 | 0.024 | −0.175 | 2.001 | 0.047 | ||
C6 | 0.102 | 0.036 | 0.241 | 3.142 | 0.033 | ||
FRC | Constant | 1.321 | 0.199 | 4.785 | 0.000 | 0.402 | |
P3 | 0.132 | 0.041 | 0.119 | 3.102 | 0.014 | ||
W2 | 0.145 | 0.102 | 0.241 | 1.998 | 0.009 | ||
C8 | 0.102 | 0.154 | 0.225 | 2.104 | 0.044 |
Appendix D
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | −0.882 | 0.141 | −6.250 | 0.028 | 0.386 | |
P3 | 0.097 | 0.025 | 0.330 | 3.844 | 0.000 | ||
S3 | 0.116 | 0.029 | 0.345 | 3.985 | 0.000 | ||
C6 | 0.090 | 0.022 | 0.345 | 4.019 | 0.000 | ||
C1 | −0.011 | 0.003 | 0.344 | −4.075 | 0.000 | ||
CL | Constant | −1.013 | 0.141 | −5.270 | 0.011 | 0.388 | |
S1 | 0.089 | 0.025 | 0.329 | 2.741 | 0.002 | ||
S6 | 0.132 | 0.029 | 0.355 | 3.502 | 0.000 | ||
C7 | 0.089 | 0.022 | 0.321 | 3.812 | 0.000 | ||
C1 | 0.014 | 0.003 | 0.303 | 3.958 | 0.000 | ||
FC | Constant | −0.975 | 0.141 | −5.860 | 0.014 | 0.406 | |
P3 | 0.101 | 0.025 | 0.318 | 4.252 | 0.001 | ||
S1 | 0.096 | 0.029 | 0.369 | 4.002 | 0.002 | ||
S6 | 0.089 | 0.022 | 0.352 | 3.632 | 0.001 | ||
S5 | 0.102 | 0.022 | 0.322 | 3.770 | 0.000 | ||
C6 | 0.011 | 0.003 | 0.299 | 4.114 | 0.000 | ||
FRC | Constant | −0.902 | 0.141 | −6.002 | 0.005 | 0.361 | |
P3 | 0.088 | 0.025 | 0.311 | 3.785 | 0.000 | ||
S5 | 0.152 | 0.029 | 0.382 | 3.568 | 0.002 | ||
CC6 | 0.078 | 0.022 | 0.297 | 4.002 | 0.001 | ||
C4 | 0.082 | 0.022 | 0.309 | 4.003 | 0.000 | ||
C1 | 0.013 | 0.003 | 0.366 | 3.985 | 0.001 |
Appendix E
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | −0.849 | 0.161 | −5.283 | 0.000 | 0.352 | |
S3 | 0.062 | 0.028 | 0.191 | 2.232 | 0.028 | ||
P1 | 0.099 | 0.033 | 0.252 | 3.011 | 0.003 | ||
C6 | 0.099 | 0.022 | 0.393 | 4.540 | 0.000 | ||
C1 | −0.013 | 0.003 | −0.423 | −4.990 | 0.000 | ||
CL | Constant | −0.792 | 0.161 | −4.253 | 0.000 | 0.428 | |
S1 | 0.100 | 0.026 | 0.215 | 1.892 | 0.028 | ||
S6 | −0.052 | 0.087 | −0.192 | −2.751 | 0.003 | ||
C6 | 0.282 | 0.054 | 0.442 | 5.002 | 0.000 | ||
C7 | 0.109 | 0.061 | 0.144 | 2.951 | 0.001 | ||
C1 | 0.021 | 0.004 | 0.302 | 5.001 | 0.000 | ||
FL | Constant | −0.798 | 0.103 | −4.332 | 0.000 | 0.500 | |
P3 | 0.072 | 0.022 | 0.200 | 4.252 | 0.008 | ||
S5 | 0.102 | 0.053 | 0.332 | 4.011 | 0.003 | ||
S6 | −0.089 | 0.034 | −0.302 | −3.590 | 0.001 | ||
C1 | 0.031 | 0.004 | −0.083 | 2.590 | 0.000 | ||
FRL | Constant | −0.922 | 0.099 | −4.200 | 0.000 | 0.483 | |
S6 | −0.062 | 0.032 | −0.170 | −1.532 | 0.015 | ||
C6 | 0.103 | 0.031 | 0.251 | 4.051 | 0.002 | ||
C8 | 0.087 | 0.025 | 0.393 | 3.550 | 0.003 | ||
C4 | 0.013 | 0.002 | 0.523 | 2.205 | 0.001 |
Appendix F
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | −7.910 | 1.357 | −5.828 | 0.000 | 0.432 | |
S3 | −0.945 | 0.289 | −0.323 | −3.276 | 0.001 | ||
S6 | −0.586 | 0.349 | −0.173 | −1.677 | 0.009 | ||
C6 | −0.481 | 0.271 | 0.169 | 1.773 | 0.008 | ||
CL | Constant | −8.080 | 1.725 | −5.828 | 0.000 | 0.502 | |
S2 | −0.445 | 0.300 | −0.521 | −4.286 | 0.003 | ||
S5 | −0.786 | 0.289 | −0.253 | −2.157 | 0.002 | ||
C6 | −0.568 | 0.248 | −0.423 | −0.905 | 0.003 | ||
C1 | −0.471 | 0.199 | 0.169 | 1.293 | 0.001 | ||
FC | Constant | −8.125 | 1.258 | −4.328 | 0.000 | 0.399 | |
W2 | −0.875 | 0.302 | −0.502 | −2.760 | 0.001 | ||
S6 | 0.626 | 0.311 | −0.413 | −2.227 | 0.010 | ||
S5 | −0.792 | 0.285 | 0.159 | −0.775 | 0.006 | ||
FRC | Constant | −7.998 | 1.485 | −3.581 | 0.000 | 0.582 | |
P3 | −0.785 | 0.205 | −0.293 | −2.236 | 0.001 | ||
W2 | −0.689 | 0.156 | −0.203 | −3.627 | 0.011 | ||
C7 | −0.452 | 0.071 | 0.185 | −4.228 | 0.007 |
Appendix G
Landscape Type | Unstandardized Coefficients | Standardized Coefficients | t | p | R2 | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | |||||
Urban mountain park | Constant | −0.024 | 0.002 | −12.034 | 0.000 | 0.482 | |
S1 | 0.001 | 0.001 | 0.158 | 1.283 | 0.020 | ||
C1 | 0.001 | 0.001 | 0.128 | 1.483 | 0.031 | ||
C6 | 0.002 | 0.001 | 0.183 | 1.401 | 0.014 | ||
CL | Constant | −0.026 | 0.002 | −11.034 | 0.000 | 0.398 | |
S1 | 0.001 | 0.001 | 0.148 | 1.130 | 0.049 | ||
C7 | 0.001 | 0.001 | 0.118 | 1.283 | 0.002 | ||
C6 | 0.001 | 0.001 | 0.103 | 1.487 | 0.014 | ||
FC | Constant | −0.035 | 0.001 | −13.024 | 0.000 | 0.541 | |
W2 | 0.001 | 0.001 | 0.058 | 1.352 | 0.034 | ||
C8 | 0.002 | 0.001 | 0.094 | 1.002 | 0.019 | ||
S5 | 0.001 | 0.001 | 0.152 | 1.807 | 0.004 | ||
FRC | Constant | −0.027 | 0.002 | −11.030 | 0.000 | 0.388 | |
W2 | 0.001 | 0.001 | 0.208 | 1.283 | 0.017 | ||
C8 | 0.001 | 0.001 | 0.136 | 1.487 | 0.010 |
References
- Yang, C. Fujian city planning and constructi. Fujian Environ. Prot. 1996, 13, 36. (In Chinese) [Google Scholar]
- Shen, L. Study on sustainable competitiveness of Fujian city from multi-dimensional perspective. Dev. Res. 2022, 39, 63–71. (In Chinese) [Google Scholar]
- Li, Z. Practice thinking of creative transformation and innovative development of Fujian historical and cultural famous towns. J. Fujian Prov. Inst. Social. 2020, 5, 56–62. (In Chinese) [Google Scholar]
- Chen, W. Urban double repair—The 11th Jiangsu Horticultural Exposition Exposition Park. J. Archit. 2022, 8, 1. (In Chinese) [Google Scholar]
- Wang, Y.; Mao, Y.; Yang, X.Y.; Lu, G.X. Study on the relationship between urban development scale and natural environmental factors in China. Nat. Resour. Informatiz. 2022, 4, 61–65. (In Chinese) [Google Scholar]
- Sun, J.W.; Jiang, Z.; Hu, J.Y. Spatial and temporal evolution pattern and driving factors of high-quality urban development in China in the new era. Geogr. Res. 2022, 41, 1864–1882. (In Chinese) [Google Scholar]
- Qin, B.; Zhu, W.; Wang, J.; Peng, Y. Understanding the relationship between neighbourhood green space and mental wellbeing: A case study of Beijing, China. Cities 2021, 109, 103039. [Google Scholar] [CrossRef]
- Aicher, J. Designing Healthy Cities: Prescriptions, Principles, and Practice. Landsc. Urban Plan. 2000, 49, 191–197. [Google Scholar]
- Brągoszewska, E. Health Effects and Exposure Assessment to Bioaerosols in Indoor and Outdoor Environments. Atmosphere 2021, 12, 359. [Google Scholar] [CrossRef]
- World Health Organization. Twenty Steps for Developing a Healthy Cities Project; WHO: Geneva, Switzerland, 1997. [Google Scholar]
- Tabrizi, J.S.; Bazargani, H.S.; Ardakani, M.A.; Saadati, M. Developing safe community and healthy city joint model. J. Inj. Violence Res. 2020, 12, 3–14. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.A.; Irvine, K.N.; Devine-Wright, P.; Warren, P.H.; Gaston, K.J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007, 3, 390–394. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Tzoulas, K.; Adams, M.D.; Barber, A.; Box, J.; Breuste, J.; Elmqvist, T.; Frith, M.; Gordon, C.; Greening, K.L.; et al. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 2009, 8, 65–75. [Google Scholar] [CrossRef]
- Zhou, X.; Cen, Q.; Qiu, H. Effects of urban waterfront park landscape elements on visual behavior and public preference: Evidence from eye-tracking experiments. Urban For. Urban Green. 2023, 82, 127889. [Google Scholar] [CrossRef]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Nordh, H.; Hagerhall, C.M.; Holmqvist, K. Tracking Restorative Components: Patterns in Eye Movements as a Consequence of a Restorative Rating Task. Landsc. Res. 2013, 38, 101–116. [Google Scholar] [CrossRef]
- Morgan, P. Towards a developmental theory of place attachment. J. Environ. Psychol. 2010, 30, 11–22. [Google Scholar] [CrossRef]
- Kyle, G.; Graefe, A.; Manning, R.; Bacon, J. Effects of place attachment on users’ perceptions of social and environmental conditions in a natural setting. J. Environ. Psychol. 2004, 24, 213–225. [Google Scholar] [CrossRef]
- Raymond, C.M.; Brown, G.; Weber, D. The measurement of place attachment: Personal, community, and environmental connections. J. Environ. Psychol. 2010, 30, 422–434. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L. Panoramic visual perception and identification of architectural cityscape elements in a virtual-reality environment. Future Gener. Comput. Syst. 2021, 118, 107–117. [Google Scholar] [CrossRef]
- Yuan, S.; Browning, M.H.E.M.; McAnirlin, O.; Sindelar, K.; Shin, S.; Drong, G.; Hoptman, D.; Heller, W. A virtual reality investigation of factors influencing landscape preferences: Natural elements, emotions, and media creation. Landsc. Urban Plan. 2023, 230, 104616. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing urban greenery by harvesting street view data: A review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.; Sullivan, W.C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Honjo, T.; Lin, T.-P.; Seo, Y. Sky view factor measurement by using a spherical camera. J. Agric. Meteorol. 2019, 75, 59–66. [Google Scholar] [CrossRef]
- Tabrizian, P.; Baran, P.K.; Van Berkel, D.; Mitasova, H.; Meentemeyer, R. Modeling restorative potential of urban environments by coupling viewscape analysis of lidar data with experiments in immersive virtual environments. Landsc. Urban Plan. 2020, 195, 103704. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Adli, M.; Berger, M.; Brakemeier, E.L.; Engel, L.; Fingerhut, J.; Gomez-Carrillo, A.; Hehl, R.; Heinz, A.; Mayer, J.; Mehran, N.; et al. Neurourbanism: Towards a new discipline. Lancet Psychiatry 2017, 4, 183–185. [Google Scholar] [CrossRef]
- Choe, E.Y.; Jorgensen, A.; Sheffield, D. Does a natural environment enhance the effectiveness of Mindfulness-Based Stress Reduction (MBSR)? Examining the mental health and wellbeing, and nature connectedness benefits. Landsc. Urban Plan. 2020, 202, 103886. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, Y.; Zhang, Z.; Zhang, W.; Meng, H.; Zhang, T. Visual Behaviour and Cognitive Preferences of Users for Constituent Elements in Forest Landscape Spaces. Forests 2022, 13, 47. [Google Scholar] [CrossRef]
- Welke, D.; Vessel, E.A. Naturalistic viewing conditions can increase task engagement and aesthetic preference but have only minimal impact on EEG quality. Neuroimage 2022, 256, 119218. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Jana, A.; Ramamritham, K. Machine-based understanding of manually collected visual and auditory datasets for urban perception studies. Landsc. Urban Plan. 2019, 190, 103604. [Google Scholar] [CrossRef]
- Spielhofer, R.; Hunziker, M.; Kienast, F.; Wissen Hayek, U.; Grêt-Regamey, A. Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. Landsc. Urban Plan. 2021, 209, 104000. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, Z.; Kang, Y.; Hu, Y.; Ratti, C. “Perception bias”: Deciphering a mismatch between urban crime and perception of safety. Landsc. Urban Plan. 2021, 207, 104003. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Corazon, S.S.; Sidenius, U.; Refshauge, A.D.; Grahn, P. Forest design for mental health promotion—Using perceived sensory dimensions to elicit restorative responses. Landsc. Urban Plan. 2017, 160, 1–15. [Google Scholar] [CrossRef]
- Hassan, A.; Chen, Q.B.; Jiang, T.; Lyu, B.Y.; Li, N.; Li, S.; Shangguan, Z.Y.; Li, Y.T.; Jun, Z.L.; Luo, Q.; et al. Psychophysiological Effects of Bamboo Plants on Adults. Biomed. Environ. Sci. 2017, 30, 846–850. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Igarashi, M.; Takagaki, M.; Miyazaki, Y. Physiological and Psychological Effects of a Walk in Urban Parks in Fall. Int. J. Environ. Res. Public Health 2015, 12, 14216–14228. [Google Scholar] [CrossRef]
- Lee, J. Nature Therapy and Preventive Medicine; IntechOpen: London, UK, 2012. [Google Scholar]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Luo, S.; Shi, J.; Lu, T.; Furuya, K. Sit down and rest: Use of virtual reality to evaluate preferences and mental restoration in urban park pavilions. Landsc. Urban Plan. 2022, 220, 104336. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Kobayashi, M.; Miura, T.; Li, Q.; Kagawa, T.; Kumeda, S.; Imai, M.; Miyazaki, Y. Effects of viewing forest landscape on middle-aged hypertensive men. Urban For. Urban Green. 2017, 21, 247–252. [Google Scholar] [CrossRef]
- Sung, J.; Woo, J.M.; Kim, W.; Lim, S.K.; Chung, E.J. The Effect of Cognitive Behavior Therapy-Based “Forest Therapy” Program on Blood Pressure, Salivary Cortisol Level, and Quality of Life in Elderly Hypertensive Patients. Clin. Exp. Hypertens. 2012, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Kohli, D.; Sun, Q.; Zhang, Y.; Liu, S.; Sun, D. Remote sensing modeling of urban density dynamics across 36 major cities in China: Fresh insights from hierarchical urbanized space. Landsc. Urban Plan. 2020, 203, 103896. [Google Scholar] [CrossRef]
- Wu, J.; Yang, M.; Xiong, L.; Wang, C.; Ta, N. Health-oriented vegetation community design: Innovation in urban green space to support respiratory health. Landsc. Urban Plan. 2021, 205, 103973. [Google Scholar] [CrossRef]
- John, E.E.; Astell-Burt, T.; Yu, P.; Brennan-Horley, C.; Feng, X. Green space type and healthy ageing in place: An Australian longitudinal study. Urban For. Urban Green. 2023, 84, 127903. [Google Scholar] [CrossRef]
- Yu, C.; Lee, H.; Lu, W.; Huang, Y.; Browning, M.H.E.M. Restorative effects of virtual natural settings on middle-aged and elderly adults. Urban For. Urban Green. 2020, 56, 126863. [Google Scholar] [CrossRef]
- Kabisch, N.; Püffel, C.; Masztalerz, O.; Hemmerling, J.; Kraemer, R. Physiological and psychological effects of visits to different urban green and street environments in older people: A field experiment in a dense inner-city area. Landsc. Urban Plan. 2021, 207, 103998. [Google Scholar] [CrossRef]
- Yu, C.; Lee, H.; Luo, X. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban For. Urban Green. 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Rahnema, S.; Sedaghathoor, S.; Allahyari, M.S.; Damalas, C.A.; Bilali, H.E. Preferences and emotion perceptions of ornamental plant species for green space designing among urban park users in Iran. Urban For. Urban Green. 2019, 39, 98–108. [Google Scholar] [CrossRef]
- Buttazzoni, A.; Doherty, S.; Minaker, L. How do urban environments affect young people’s mental health? a novel conceptual framework to bridge public health, planning, and neuro-urbanism. Public Health Rep. 2022, 137, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health. 2002, 56, 913–918. [Google Scholar] [CrossRef]
- Tamosiunas, A.; Grazuleviciene, R.; Luksiene, D.; Dedele, A.; Reklaitiene, R.; Baceviciene, M.; Vencloviene, J.; Bernotiene, G.; Radisauskas, R.; Malinauskiene, V.; et al. Accessibility and use of urban green spaces, and cardiovascular health: Findings from a Kaunas cohort study. Environ Health. 2014, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Cao, Y.; Lan, X.; He, Z.; Chen, Z.; Wang, Y.; Hu, X.; Lv, Y.; Wang, G.; Yan, J. Therapeutic effect of forest bathing on human hypertension in the elderly. J. Cardiol. 2012, 60, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wei, Z.; Li, Z.; Zhang, Y.; Feng, X.; Gori, L. Threshold Research on Highway Length under Typical Landscape Patterns Based on Drivers’ Physiological Performance. Discret. Dyn. Nat. Soc. 2015, 2015, 753732. [Google Scholar] [CrossRef]
- Alcock, I.; White, M.P.; Wheeler, B.W.; Fleming, L.E.; Depledge, M.H. Longitudinal Effects on Mental Health of Moving to Greener and Less Green Urban Areas. Environ. Sci. Technol. 2014, 48, 1247–1255. [Google Scholar] [CrossRef]
- Yang, B.; Markevych, I.; Bloom, M.S.; Heinrich, J.; Guo, Y.; Morawska, L.; Dharmage, S.C.; Knibbs, L.D.; Jalaludin, B.; Jalava, P.; et al. Community greenness, blood pressure, and hypertension in urban dwellers: The 33 Communities Chinese Health Study. Environ. Int. 2019, 126, 727–734. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Lu, Y. Using Google Street View to investigate the association between street greenery and physical activity. Landsc. Urban Plan. 2019, 191, 103435. [Google Scholar] [CrossRef]
- Liu, W.; Hu, X.; Song, Z.; Yuan, X. Identifying the integrated visual characteristics of greenway landscape: A focus on human perception. Sustain. Cities Soc. 2023, 99, 104937. [Google Scholar] [CrossRef]
- World Health Organization. Reducing Global Health Risks through Mitigation of Short-Lived Climate Pollutants. Scopong Report for Policymakers; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Peng, Y. Spatial and temporal change of outsize mountainous city landscape pattern of urban green space. J. West China For. Sci. 2014, 43, 48–56. (In Chinese) [Google Scholar]
- Schirpke, U.; Tasser, E.; Lavdas, A.A. Potential of eye-tracking simulation software for analyzing landscape preferences. PLoS ONE 2022, 17, e273519. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qu, H.; Ma, Y.; Wang, K.; Qu, H. Restorative benefits of urban green space: Physiological, psychological restoration and eye movement analysis. J. Environ. Manag. 2022, 301, 113930. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Yan, Q.; Pan, Y.; Gu, X.; Liu, Y. Medical empirical research on forest bathing (Shinrin-yoku): A systematic review. Environ. Health Prev. 2019, 24, 70. [Google Scholar] [CrossRef]
- Yau, K.K.; Loke, A.Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: A review of the literature. Environ. Health Prev. 2020, 25, 23. [Google Scholar] [CrossRef]
- Evensen, K.H.; Hemsett, G.; Nordh, H. Developing a place-sensitive tool for park-safety management experiences from green-space managers and female park users in Oslo. Urban For. Urban Green. 2021, 60, 127057. [Google Scholar] [CrossRef]
No. | Landscape Element Index | Explanation | Quantification Method |
---|---|---|---|
1 | Viewshed area | / | ArcGIS |
2 | Longest sight distance | / | |
3 | Average sight distance | Select the average sight distance of 16 directions: east, southeast, South, southwest, west, northwest, North, northeast, north-northeast, east-northeast, east-southeast, south-southeast, south-southwest, west-southwest, west-northwest, north-northwest | |
4 | Distant hills | / | semantic segmentation with manual distinguish |
5 | Sky | The proportion of the sky in the panoramic scene | |
6 | Enclosure | The sum of the proportion of tree, shub, building, structure and fence in the panoramic scene. | |
7 | Ground | The proportion of ground. | |
8 | GVI | The proportion of vegetation. | |
9 | Tree and shrub | The proportion of trees and shrubs. | |
10 | Grass | The proportion of grass. | |
11 | Vegetation hierarchy | 1 for single layer, 2 for double layer, 3 for triple layer, and so on. | |
12 | Waterscape | 1 for none, 2 for presence. | |
13 | Water surface area | The proportion of water. | |
14 | Fence | The proportion of fence. | |
15 | Structures | The proportion of structures (street lights, trash cans, etc.). | |
16 | Building | The proportion of buildings. | |
17 | Pavement | 0 for none,1 for presence. | |
18 | Paved area | The proportion of paving. | |
19 | Humanistic vibe | The proportion of building and structure. | |
20 | Scene clutter | The proportion of garbage, graffiti, and damaged objects. | |
21 | Contemporary element | The proportion of contemporary-style buildings and structures. | |
22 | Traditional element | The proportion of traditional-style buildings and structures. | |
23 | Vegetation color richness | 1 point for no obvious color difference, 2 points for different shades of green, 3 points for flowers or colored leaves | Color Impact |
Group | 1 | 2 | 3 | 4 | 5 | 6 | Total |
---|---|---|---|---|---|---|---|
Total | 31 | 30 | 32 | 31 | 30 | 30 | 184 |
Male | 14 (45.2%) | 15 (50%) | 16 (50%) | 15 (48.4%) | 15 (50%) | 15 (50%) | 90 (48.9%) |
Female | 17 (54.8%) | 15 (50%) | 16 (50%) | 16 (51.6%) | 15 (50%) | 15 (50%) | 94 (51.1%) |
P1 (%) | P2 (%) | P3 | P4 | P5 (%) | W2 (%) | W1 | |
UA | 41.62 | 34.98 | 2.52 | 3.52 | 6.64 | 0.95 | 11.11 |
SA | 33.76 | 28.53 | 1.66 | 3.02 | 5.22 | 0.05 | 3.33 |
EA | 38.17 | 32.88 | 1.81 | 2.78 | 5.29 | 1.04 | 3.33 |
S1 (ha) | S2 (km) | S3 (km) | S4 (%) | S5 (%) | S6 (%) | ||
UA | 138.19 | 1.39 | 1.26 | 0.00 | 13.10 | 47.55 | |
SA | 1093.84 | 30.68 | 8.39 | 0.15 | 20.02 | 41.73 | |
EA | 1204.09 | 12.72 | 4.21 | 0.24 | 18.50 | 42.86 | |
C1 (%) | C2 (%) | C3 (%) | C5 (%) | C6 | C7 (%) | C9 (%) | |
UA | 6.64 | 0.81 | 1.68 | 34.22 | 9.13 | 3.36 | 0.02 |
SA | 6.74 | 1.32 | 3.12 | 31.19 | 11.18 | 6.32 | 0.05 |
EA | 3.12 | 0.60 | 1.57 | 30.44 | 5.30 | 2.12 | 0.13 |
P1 (%) | P2 (%) | P3 | P4 | P5 (%) | W2 (%) | W1 | |
CL | 25.67 | 24.07 | 1.26 | 1.50 | 1.60 | 0.36 | 7.41 |
FL | 38.12 | 32.43 | 2.52 | 4.06 | 5.69 | 0.05 | 3.33 |
FLS | 49.11 | 40.40 | 2.56 | 3.28 | 8.71 | 1.82 | 6.67 |
S1 (ha) | S2 (km) | S3 (km) | S4 (%) | S5 (%) | S6 (%) | ||
CL | 2411.44 | 38.05 | 14.39 | 0.76 | 31.10 | 36.16 | |
FL | 12.17 | 1.28 | 0.37 | 0.05 | 19.81 | 40.00 | |
FLS | 0.68 | 0.34 | 0.06 | 0.00 | 12.96 | 47.20 | |
C1 (%) | C2 (%) | C3 (%) | C5 (%) | C6 | C7 (%) | C9 (%) | |
CL | 1.39 | 1.31 | 7.53 | 27.77 | 10.23 | 6.36 | 0.00 |
FL | 1.11 | 0.90 | 0.94 | 37.34 | 2.95 | 0.75 | 0.11 |
FLS | 1.86 | 0.69 | 0.67 | 25.32 | 3.22 | 1.68 | 0.09 |
Perception Index | P1 | P2 | P3 | P4 | P5 | W1 | W2 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SV | NS | NS | 0.311 ** | NS | NS | NS | NS | 0.253 * | NS | 0.324 ** | NS | NS | NS | NS | 0.266 ** | NS | NS | NS | NS | 0.335 ** | 0.242 * | NS | 0.211 * |
SR | NS | NS | −0.320 ** | NS | NS | NS | NS | 0.285 ** | NS | 0.336 ** | 0.217 * | NS | −0.211 * | NS | 0.257 * | NS | NS | NS | NS | 0.285 ** | NS | NS | NS |
EA | NS | NS | 0.301 ** | NS | NS | NS | NS | 0.248 * | NS | 0.293 ** | NS | NS | NS | NS | 0.277 ** | NS | NS | NS | NS | 0.341 ** | 0.212 * | 0.208 * | 0.224 * |
AR | NS | NS | 0.283 ** | NS | NS | NS | NS | 0.229 * | NS | 0.293 ** | 0.214 * | NS | NS | NS | 0.327 ** | NS | NS | NS | NS | 0.303 ** | 0.234 * | NS | NS |
EMG | NS | −0.208 * | NS | NS | NS | NS | NS | NS | NS | 0.287 ** | NS | 0.345 ** | −0.358 ** | NS | NS | NS | 0.252 * | NS | NS | 0.219 * | 0.271 ** | NS | NS |
HRV | NS | NS | NS | NS | NS | NS | NS | 0.259 ** | NS | NS | NS | NS | NS | NS | −0.327 ** | NS | NS | NS | NS | 0.278 ** | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Sheng, Y.; Luo, D.; Huang, Y.; Huang, J.; Zhu, Z.; Yao, X.; Fu, W.; Dong, J.; Lan, Y. Landscape Characteristics in Mountain Parks across Different Urban Gradients and Their Relationship with Public Response. Forests 2023, 14, 2406. https://doi.org/10.3390/f14122406
Chen Z, Sheng Y, Luo D, Huang Y, Huang J, Zhu Z, Yao X, Fu W, Dong J, Lan Y. Landscape Characteristics in Mountain Parks across Different Urban Gradients and Their Relationship with Public Response. Forests. 2023; 14(12):2406. https://doi.org/10.3390/f14122406
Chicago/Turabian StyleChen, Ziru, Yuanping Sheng, Daosong Luo, Yaling Huang, Jingkai Huang, Zhipeng Zhu, Xiong Yao, Weicong Fu, Jiaying Dong, and Yuxiang Lan. 2023. "Landscape Characteristics in Mountain Parks across Different Urban Gradients and Their Relationship with Public Response" Forests 14, no. 12: 2406. https://doi.org/10.3390/f14122406
APA StyleChen, Z., Sheng, Y., Luo, D., Huang, Y., Huang, J., Zhu, Z., Yao, X., Fu, W., Dong, J., & Lan, Y. (2023). Landscape Characteristics in Mountain Parks across Different Urban Gradients and Their Relationship with Public Response. Forests, 14(12), 2406. https://doi.org/10.3390/f14122406