High Species Diversity but Low Specificity to Ectomycorrhizal Tree Partners Exhibited by Native Truffle Species (Tuber spp., Pezizales) in Poland, Central Europe
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Distribution of ECM Fungi as Ectomycorrhizas
4.2. Specificity between Truffle Species and Tree Partners for Symbiosis
4.3. Protection Requirements of Truffle Species in Poland
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Hall, I.; Brown, G.; Zambonelli, A. Taming the Truffle: The History, Lore, and Science of the Ultimate Mushroom; Timber Press: Portland, OR, USA, 2008; ISBN 978-0-88162-860-0. [Google Scholar]
- Lefevre, C. Native and Cultivated Truffles of North America. In Edible Ectomycorrhizal Mushrooms; Zambonelli, A., Bonito, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 209–226. [Google Scholar]
- Berch, S.M.; Bonito, G. Cultivation of Mediterranean Species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza 2014, 24, 473–479. [Google Scholar] [CrossRef] [PubMed]
- GBIF.org (2023) GBIF Occurrence of Tuber P.Micheli ex F.H.Wigg. Available online: https://www.gbif.org/occurrence/download/0016714-230828120925497 (accessed on 1 December 2023). [CrossRef]
- Wedén, C.; Chevalier, G.; Danell, E. Tuber Aestivum (Syn. T. Uncinatum) Biotopes and Their History on Gotland, Sweden. Mycol. Res. 2004, 108, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Otsing, E.; Tedersoo, L. Temporal Dynamics of Ectomycorrhizal Fungi and Persistence of Tuber melanosporum in Inoculated Quercus Robur Seedlings in North Europe. Mycorrhiza 2015, 25, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Büntgen, U. First Harvest of Périgord Black Truffle in the UK as a Result of Climate Change. Clim. Res. 2017, 74, 67–70. [Google Scholar] [CrossRef]
- Hilszczańska, D.; Sierota, Z.; Palenzona, M. New Tuber Species Found in Poland. Mycorrhiza 2008, 18, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Stobbe, U.; Büntgen, U.; Sproll, L.; Tegel, W.; Egli, S.; Fink, S. Spatial Distribution and Ecological Variation of Re-Discovered German Truffle Habitats. Fungal Ecol. 2012, 5, 591–599. [Google Scholar] [CrossRef]
- Rosa-Gruszecka, A.; Hilszczańska, D.; Gil, W.; Kosel, B. Truffle Renaissance in Poland—History, Present and Prospects. J. Ethnobiol. Ethnomed. 2017, 13, 36. [Google Scholar] [CrossRef]
- Stobbe, U.; Egli, S.; Tegel, W.; Peter, M.; Sproll, L.; Büntgen, U. Potential and Limitations of Burgundy Truffle Cultivation. Appl. Microbiol. Biotechnol. 2013, 97, 5215–5224. [Google Scholar] [CrossRef]
- Moser, B.; Büntgen, U.; Molinier, V.; Peter, M.; Sproll, L.; Stobbe, U.; Tegel, W.; Egli, S. Ecological Indicators of Tuber Aestivum Habitats in Temperate European Beech Forests. Fungal Ecol. 2017, 29, 59–66. [Google Scholar] [CrossRef]
- Lefevre, C.K.; Hall, I.R. The Status of Truffle Cultivation: A Global Perspective. Acta Hortic. 2001, 556, 513–520. [Google Scholar] [CrossRef]
- Stobbe, U.; Stobbe, A.; Sproll, L.; Tegel, W.; Peter, M.; Büntgen, U.; Egli, S. New Evidence for the Symbiosis between Tuber Aestivum and Picea Abies. Mycorrhiza 2013, 23, 669–673. [Google Scholar] [CrossRef]
- García-Montero, L.G.; Manjón, J.L.; Martín-Fernández, S.; Di Massimo, G. Problems of Using Pines in Tuber melanosporum Culture: Soils and Truffle Harvest Associated with Pinus Nigra and P. Sylvestris. Agrofor. Syst. 2007, 70, 243–249. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Taccoen, A.; Piedallu, C.; Seynave, I.; Perez, V.; Gégout-Petit, A.; Nageleisen, L.M.; Bontemps, J.D.; Gégout, J.C. Background Mortality Drivers of European Tree Species: Climate Change Matters. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190386. [Google Scholar] [CrossRef] [PubMed]
- Gryndler, M.; Šmilauer, P.; Šťovíček, V.; Nováková, K.; Hršelová, H.; Jansa, J. Truffle biogeography—A Case Study Revealing Ecological Niche Separation of Different Tuber Species. Ecol. Evol. 2017, 7, 4275–4288. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Büntgen, U. A Risk Assessment of Europe’s Black Truffle Sector under Predicted Climate Change. Sci. Total Environ. 2019, 655, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Thurm, E.A.; Hernandez, L.; Baltensweiler, A.; Ayan, S.; Rasztovits, E.; Bielak, K.; Zlatanov, T.M.; Hladnik, D.; Balic, B.; Freudenschuss, A.; et al. Alternative Tree Species under Climate Warming in Managed European Forests. For. Ecol. Manag. 2018, 430, 485–497. [Google Scholar] [CrossRef]
- Pietras, M. First Record of North American Fungus Rhizopogon Pseudoroseolus in Australia and Prediction of Its Occurrence Based on Climatic Niche and Symbiotic Partner Preferences. Mycorrhiza 2019, 29, 397–401. [Google Scholar] [CrossRef]
- Pietras, M.; Kolanowska, M. Predicted Potential Occurrence of the North American False Truffle Rhizopogon Salebrosus in Europe. Fungal Ecol. 2019, 39, 225–230. [Google Scholar] [CrossRef]
- Andrew, C.; Heegaard, E.; Halvorsen, R.; Martinez-Peña, F.; Egli, S.; Kirk, P.M.; Bässler, C.; Büntgen, U.; Aldea, J.; Høiland, K.; et al. Climate Impacts on Fungal Community and Trait Dynamics. Fungal Ecol. 2016, 22, 17–25. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate Change and European Forests: What Do We Know, What Are the Uncertainties, and What Are the Implications for Forest Management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Spathelf, P.; Van Der Maaten, E.; Van Der Maaten-Theunissen, M.; Campioli, M.; Dobrowolska, D. Climate Change Impacts in European Forests: The Expert Views of Local Observers. Ann. For. Sci. 2014, 71, 131–137. [Google Scholar] [CrossRef]
- Guiot, J.; Cramer, W. Climate Change: The 2015 Paris Agreement Thresholds and Mediterranean Basin Ecosystems. Science 2016, 354, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 Tracks Cumulative CO2 Emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Trisos, C.H.; Merow, C.; Pigot, A.L. The Projected Timing of Abrupt Ecological Disruption from Climate Change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef]
- Leski, T.; Rudawska, M.; Kujawska, M.; Stasińska, M.; Janowski, D.; Karliński, L.; Wilgan, R. Both Forest Reserves and Managed Forests Help Maintain Ectomycorrhizal Fungal Diversity. Biol. Conserv. 2019, 238, 108206. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Stasińska, M.; Karliński, L.; Wilgan, R.; Kujawska, M. The Contribution of Forest Reserves and Managed Forests to the Diversity of Macrofungi of Different Trophic Groups in European Mixed Coniferous Forest Ecosystem. For. Ecol. Manag. 2022, 518, 120274. [Google Scholar] [CrossRef]
- Rudawska, M.; Kujawska, M.; Leski, T.; Janowski, D.; Karliński, L.; Wilgan, R. Ectomycorrhizal Community Structure of the Admixture Tree Species Betula pendula, Carpinus betulus, and Tilia cordata Grown in Bare-Root Forest Nurseries. For. Ecol. Manag. 2019, 473, 113–125. [Google Scholar] [CrossRef]
- Rudawska, M.; Wilgan, R.; Janowski, D.; Iwański, M.; Leski, T. Shifts in Taxonomical and Functional Structure of Ectomycorrhizal Fungal Community of Scots Pine (Pinus sylvestris L.) Underpinned by Partner Tree Ageing. Pedobiologia 2018, 71, 20–30. [Google Scholar] [CrossRef]
- Kujawska, M.; Rudawska, M.; Wilgan, R.; Banach, J.; Leski, T. Comparable Ectomycorrhizal Fungal Species Richness but Low Species Similarity among Native Abies alba and Alien abies Grandis from Provenance Trials in Poland. For. Ecol. Manag. 2023, 546, 121355. [Google Scholar] [CrossRef]
- Wilgan, R.; Leski, T. Ectomycorrhizal Assemblages of Invasive Quercus rubra L. and Non-Invasive Carya Nutt. Trees under Common Garden Conditions in Europe. Forests 2022, 13, 676. [Google Scholar] [CrossRef]
- Wilgan, R.; Leski, T.; Kujawska, M.; Karliński, L.; Janowski, D.; Rudawska, M. Ectomycorrhizal Fungi of Exotic Carya ovata in the Context of Surrounding Native Forests on Central European Sites. Fungal Ecol. 2020, 44, 100908. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Wilgan, R.; Karliński, L.; Kujawska, M.; Janowski, D. Mycorrhizal Associations of the Exotic Hickory Trees, Carya laciniosa and Carya cordiformis, Grown in Kórnik Arboretum in Poland. Mycorrhiza 2018, 28, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Leski, T. Grzyby. In Wyniki Inwentaryzacji Elementów Przyrodniczych i Kulturowych Puszczy Białowieskiej; Matuszkiewicz, J.M., Tabor, J., Eds.; Instytut Badawczy Leśnictwa: Sękocin Stary, Poland, 2023. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Aučina, A.; Rudawska, M.; Wilgan, R.; Janowski, D.; Skridaila, A.; Dapkūnienė, S.; Leski, T. Functional Diversity of Ectomycorrhizal Fungal Communities along a Peatland–forest Gradient. Pedobiologia 2019, 74, 15–23. [Google Scholar] [CrossRef]
- Janowski, D.; Wilgan, R.; Leski, T.; Karlinski, L.; Rudawska, M. Effective Molecular Identification of Ectomycorrhizal Fungi: Revisiting DNA Isolation Methods. Forests 2019, 10, 218. [Google Scholar] [CrossRef]
- Tedersoo, L.; Smith, M.E. Lineages of Ectomycorrhizal Fungi Revisited: Foraging Strategies and Novel Lineages Revealed by Sequences from Belowground. Fungal Biol. Rev. 2013, 27, 83–99. [Google Scholar] [CrossRef]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal Lifestyle in Fungi: Global Diversity, Distribution, and Evolution of Phylogenetic Lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Tedersoo, L. Evolutionary History of Mycorrhizal Symbioses and Global Host Plant Diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Wurzburger, N.; Brookshire, E.N.J.; McCormack, M.L.; Lankau, R.A. Mycorrhizal Fungi as Drivers and Modulators of Terrestrial Ecosystem Processes. New Phytol. 2017, 213, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Coevolution of Roots and Mycorrhiza of Land Plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef] [PubMed]
- Agerer, R. Exploration Types of Ectomycorrhizae: A Proposal to Classify Ectomycorrhizal Mycelial Systems according to Their Patterns of Differentiation and Putative Ecological Importance. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Mrak, T.; Gričar, J. Atlas of Woody Plant Roots: Morphology and Anatomy with Special Emphasis on Fine Roots; The Silva Slovenica Publishing Centre: Ljubljana, Slovenia, 2016. [Google Scholar]
- Ryberg, M.; Andreasen, M.; Björk, R.G. Weak Habitat Specificity in Ectomycorrhizal Communities Associated with Salix Herbacea and Salix Polaris in Alpine Tundra. Mycorrhiza 2011, 21, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Richard, F.; Millot, S.; Gardes, M.; Selosse, M.A. Diversity and Specificity of Ectomycorrhizal Fungi Retrieved from an Old-Growth Mediterranean Forest Dominated by Quercus Ilex. New Phytol. 2005, 166, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, S.M.; Sakakibara, S.M.; Durall, D.M. The Potential for Woody Understory Plants to Provide Refuge for Ectomycorrhizal Inoculum at an Interior Douglas-Fir Forest after Clear-Cut Logging. Can. J. For. Res. 2001, 31, 711–721. [Google Scholar] [CrossRef]
- Wojewoda, W.; Ławrynowicz, M. Czerwona Lista Roślin I Grzybów Polski. In Czerwona Lista Roślin i Grzybów Polski; Zarzycki, K., Mirek, Z., Eds.; Instytut Botaniki im. W. Szafera PAN: Kraków, Poland, 2006. [Google Scholar]
- Nehls, U.; Göhringer, F.; Wittulsky, S.; Dietz, S. Fungal Carbohydrate Support in the Ectomycorrhizal Symbiosis: A Review. Plant Biol. 2010, 12, 292–301. [Google Scholar] [CrossRef]
- Boddy, L.; Büntgen, U.; Egli, S.; Gange, A.C.; Heegaard, E.; Kirk, P.M.; Mohammad, A.; Kauserud, H. Climate Variation Effects on Fungal Fruiting. Fungal Ecol. 2014, 10, 20–33. [Google Scholar] [CrossRef]
- De la Varga, H.; Águeda, B.; Martínez-Peña, F.; Parladé, J.; Pera, J. Quantification of Extraradical Soil Mycelium and Ectomycorrhizas of Boletus Edulis in a Scots Pine Forest with Variable Sporocarp Productivity. Mycorrhiza 2012, 22, 59–68. [Google Scholar] [CrossRef]
- Queralt, M.; Parladé, J.; Pera, J.; De Miguel, A.M. Seasonal Dynamics of Extraradical Mycelium and Mycorrhizas in a Black Truffle (Tuber melanosporum) Plantation. Mycorrhiza 2017, 27, 565–576. [Google Scholar] [CrossRef]
- Oliach, D.; Colinas, C.; Castaño, C.; Fischer, C.R.; Bolaño, F.; Bonet, J.A.; Oliva, J. The Influence of Forest Surroundings on the Soil Fungal Community of Black Truffle (Tuber melanosporum) Plantations. For. Ecol. Manage. 2020, 470–471, 118212. [Google Scholar] [CrossRef]
- Kujawska, M.B.; Rudawska, M.; Wilgan, R.; Leski, T. Similarities and Differences among Soil Fungal Assemblages in Managed Forests and Formerly Managed Forest Reserves. Forests 2021, 12, 353. [Google Scholar] [CrossRef]
- Pacioni, G.; Comandini, O. Tuber. In Ectomycorrhizal Fungi Key Genera in Profile; Springer Science & Business Media: Berlin/Heidelberg, Germay, 1999. [Google Scholar]
- Leski, T.; Pietras, M.; Rudawska, M. Ectomycorrhizal Fungal Communities of Pedunculate and Sessile Oak Seedlings from Bare-Root Forest Nurseries. Mycorrhiza 2010, 20, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Pietras, M.; Rudawska, M.; Leski, T.; Karliński, L. Diversity of Ectomycorrhizal Fungus Assemblages on Nursery Grown European Beech Seedlings. Ann. For. Sci. 2013, 70, 115–121. [Google Scholar] [CrossRef]
- Iotti, M.; Lancellotti, E.; Hall, I.; Zambonelli, A. The Ectomycorrhizal Community in Natural Tuber Borchii Grounds. FEMS Microbiol. Ecol. 2010, 72, 250–260. [Google Scholar] [CrossRef]
- Ge, Z.W.; Brenneman, T.; Bonito, G.; Smith, M.E. Soil pH and Mineral Nutrients Strongly Influence Truffles and Other Ectomycorrhizal Fungi Associated with Commercial Pecans (Carya illinoinensis). Plant Soil 2017, 418, 493–505. [Google Scholar] [CrossRef]
- Rosa-Gruszecka, A.; Hilszczańska, D.; Pacioni, G. Virtual Truffle Hunting—A New Method of Burgundy Truffle (Tuber aestivum Vittad.) Site Typing. Forests 2021, 12, 1239. [Google Scholar] [CrossRef]
Phylogenetic Lineage (Clade) | Species | Species Hypothesis (Unite) | No. Records | Conservation Value | ||
---|---|---|---|---|---|---|
EU * | PL ** | Current Status in Poland | Comments | |||
/puberulum | T. anniae | SH1224467.09FU | ~900 | ~15 | - | - |
T. puberulum | SH1224371.09FU | ~600 | >20 | - | - | |
T. borchii | SH0962131.09FU | ~500 | ~5 | - | rare in Poland | |
T. dryophilum | SH1224371.09FU | ~150 | >20 | Red List of Fungi–R *** | - | |
/maculatum | T. maculatum | SH1217618.09FU | ~400 | ~15 | Red List of Fungi–R | - |
T. rapaeodorum | SH1217608.09FU | ~200 | ~15 | Red List of Fungi–V | - | |
T. foetidum | SH3757880.09FU | <50 | ~5 | - | rare in Europe | |
/rufum | T. rufum | SH0004945.09FU | ~5000 | >30 | - | - |
T. nitidum | SH0193504.09FU | <50 | ~5 | Red List of Fungi–I | rare in Europe | |
T. ferrugineum | SH1358150.09FU | <50 | ~5 | - | rare in Europe | |
/excavatum | T. excavatum | SH0053785.09FU | ~250 | >20 | - | - |
T. fulgens | SH0987804.09FU | <50 | ~15 | - | rare in Europe | |
/aestivum | T. aestivum | SH0173700.09FU | ~500 | >20 | Red List of Fungi–Ex | - |
T. mesentericum | SH0220147.09FU | ~150 | ~15 | protected by law | - | |
/macrosporum | T. macrosporum | SH1198150.09FU | <50 | ~5 | - | rare in Europe |
T. brumale | SH0172502.09FU | ~150 | ~5 | - | rare in Poland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilgan, R. High Species Diversity but Low Specificity to Ectomycorrhizal Tree Partners Exhibited by Native Truffle Species (Tuber spp., Pezizales) in Poland, Central Europe. Forests 2023, 14, 2407. https://doi.org/10.3390/f14122407
Wilgan R. High Species Diversity but Low Specificity to Ectomycorrhizal Tree Partners Exhibited by Native Truffle Species (Tuber spp., Pezizales) in Poland, Central Europe. Forests. 2023; 14(12):2407. https://doi.org/10.3390/f14122407
Chicago/Turabian StyleWilgan, Robin. 2023. "High Species Diversity but Low Specificity to Ectomycorrhizal Tree Partners Exhibited by Native Truffle Species (Tuber spp., Pezizales) in Poland, Central Europe" Forests 14, no. 12: 2407. https://doi.org/10.3390/f14122407
APA StyleWilgan, R. (2023). High Species Diversity but Low Specificity to Ectomycorrhizal Tree Partners Exhibited by Native Truffle Species (Tuber spp., Pezizales) in Poland, Central Europe. Forests, 14(12), 2407. https://doi.org/10.3390/f14122407