Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation
Abstract
:1. Introduction
2. Material and Methods
2.1. WV Production
2.2. Industrial-Grade WV Refining and Contaminant Analysis
2.3. Gas Chromatography/Mass Spectrometry (GC/MS) Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, J.B.G.; Ré-Popii, N.; Raposo, J.L., Jr. Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. J. Braz. Chem. Soc. 2012, 23, 610–617. [Google Scholar] [CrossRef]
- Li, R.; Narita, R.; Nishimura, H.; Marumoto, S.; Yamamoto, S.P.; Ouda, R.; Yatagai, M.; Fujita, T.; Watanabe, T. Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, softwood, and bamboo. Sustain. Chem. Eng. 2017, 6, 119–126. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; Nozal, L.; González, S.; Manjón, J.L.; Peinado, M. Composition, aging and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 2020, 13, 2418. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Fasciotti, M.; Monteiro, T.V.C.; Lima, K.M.G. Chemical composition of pyroligneous acid obtained from Eucalyptus GG100 Clone. Molecules 2018, 23, 426. [Google Scholar] [CrossRef] [PubMed]
- Theapparat, Y.; Chandumpai, A.; Leelasuphakul, W.; Faroongsarng, D. Physicochemistry and Utilization of Wood Vinegar from Carbonization of Tropical Biomass Waste; IntechOpen: London, UK, 2018; Chapter 8. [Google Scholar]
- Gama, G.S.P.; Pimenta, A.S.; Feijó, F.M.C.; Santos, C.S.; Fernandes, B.C.C.; Oliveira, M.F.; Souza, E.C.; Monteiro, T.V.C.; Fasciotti, M.; Azevedo, T.K.B.; et al. Antimicrobial activity and chemical profile of wood vinegar from eucalyptus (Eucalyptus urophylla x Eucalyptus grandis—clone I144) and bamboo (Bambusa vulgaris). World J. Microbiol. Biotechnol. 2023, 39, 186. [Google Scholar] [CrossRef]
- Chukeatirote, E.; Jenajai, N. Antimicrobial activity of wood vinegar from Dimocarpus longan. Environment. Asia 2018, 11, 161–169. [Google Scholar] [CrossRef]
- Akkus, M.; Akçay, C.; Alçim, N. Antifungal and larvicidal effects of wood vinegar on wood-destroying fungi and insects. Maderas Cienc. Tecnol. 2022, 37, 1–10. [Google Scholar] [CrossRef]
- Bouket, A.C.; Narmani, A.; Sharifi, K.; Naeimi, S.; Mogaddam, M.R.A.; Hamidi, A.A.; Luptakova, L.; Alenezi, F.N.; Belbahri, L. Semi-VOCs of wood vinegar display strong antifungal activities against oomycete species Globisporangium ultimum and Pythium aphanidermatum. Microbiol. Res. 2023, 14, 371–389. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Budaraga, I.K.; Arnim, Y.M.; Bulanin, U. Analysis of liquid smoke chemical components with GC/MS from different raw materials: Variation, production and pyrolysis temperature level. Int. J. ChemTech Res. 2016, 9, 694–708. [Google Scholar]
- Montazeri, N.; Oliveira, A.C.M.; Himelbloom, B.H.; Leigh, M.B.; Crapo, C.A. Chemical characterization of commercial liquid smoke products. Food Sci. Nutr. 2013, 1, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Achmadi, S.S.; Mubarik, N.R.; Nursyamsi, R.; Septiaji, P. Characterization of redistilled liquid smoke of oil-palm shells and its application as fish preservatives. J. Appl. Sci. 2013, 13, 401–408. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Elemental Analysis Manual. Section 4.4: Inductively Coupled Plasma-Atomic Emission Spectrometric Determination of Elements in Food Using Microwave-Assisted Digestion. US Department of Health and Human Services, August, USA. 2010. Available online: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm2006954.htm (accessed on 10 October 2023).
- Hanchai, K.; Trairatapiwan, T.; Lertpatarakomol, R. Drinking water supplemented with wood vinegar on growth performance, intestinal morphology, and gut microbial of broiler chickens. Vet. World 2021, 14, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Tiilikkala, K.; Fagernas, L.; Tiilikkala, J. History and Use of Wood Pyrolysis Liquids as Biocide and Plant Protection Product. Open Agric. J. 2010, 4, 111–118. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Moeller, P.E. Liquid smoke: Product of hardwood pyrolysis. Fuel Chem. Div. Prepr. 2002, 47, 366. [Google Scholar]
- Feijó, F.M.C.; Pimenta, A.S.; Pereira, A.F.; Soares, W.N.C.; Benício, L.D.M.; Silva Júnior, E.C.; Ribeiro, Y.S.R.; Santos, C.S.; Praxedes, D.A.E.; Sousa, E.M.M.; et al. Use of eucalyptus wood vinegar as antiseptic in goats. In Goat Science; Kukovics, S., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Yatagai, M.; Nishimoto, M.; Hori, K.; Ohira, T.; Shibata, A. Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci. 2002, 4, 338–342. [Google Scholar] [CrossRef]
- Rahmat, B.; Pangesti, D.; Natawijaya, D.; Sufyadi, D. Generation of wood-waste vinegar and Its effectiveness as a plant growth regulator and pest insect repellent. Bioresources 2014, 9, 6350–6360. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_09_4_6350_Rahmat_Generation_Wood_Waste_Vinegar/3030 (accessed on 10 October 2023). [CrossRef]
- Ibrahim, D.; Kassim, J.; Sheh-Hong, L.; Rusli, W. Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. J. Appl. Pharm. Sci. 2013, 3, 7–13. [Google Scholar]
- Hwang, Y.H.; Matsushita, Y.; Sugamoto, K.; Matsui, T. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 2005, 15, 1106–1109. [Google Scholar]
- Suresh, G.; Pakdel, H.; Roussi, T.; Brar, S.K.; Fliss, I.; Roy, C. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechenol. Res. E Innov. 2019, 3, 47–53. [Google Scholar] [CrossRef]
- Desvita, H.; Faisal, M.; Mahidin, S. Antimicrobial potential of wood vinegar from cocoa pod shells (Theobroma cacao L.) against Candida albicans and Aspergillus niger. Mater. Today Proc. 2022, 63, S210–S213. [Google Scholar] [CrossRef]
- Xue, R.; Cui, E.R.; Hu, G.Q.; Zhu, M.Q. The composition, physicochemical properties, antimicrobial and antioxidant activity of wood vinegar prepared by pyrolysis of Eucommia ulmoides Oliver branches under different refining methods and storage conditions. Ind. Crops Prod. 2022, 178, 114586. [Google Scholar] [CrossRef]
- Feng, T.H.; Xue, R.; Zhu, L.; Zhu, Y.H. Comparison of antioxidant and antibacterial effects of the Eucommia wood vinegar under the refining methods of atmospheric distillation and vacuum distillation. Ind. Crops Prod. 2023, 192, 116013. [Google Scholar] [CrossRef]
- Silva, B.A.; Feijó, F.M.C.; Alves, N.D.; Pimenta, A.S.; Benicio, L.D.M.; Silva, E.C., Jr.; Santos, C.S.; Pereira, A.F.; Mora, Y.B.F.; Gama, G.S.P.; et al. Use of a product based on wood vinegar of Eucalyptus clone I144 used in the control of bovine mastites. Vet. Microbiol. 2023, 279, 109670. [Google Scholar] [CrossRef] [PubMed]
- Kurlansky, M. Salt: A World History, 1st ed.; Penguin Books: Los Angeles, CA, USA, 2002. [Google Scholar]
- Campos, A.D. Técnicas Para Produção De Extrato Pirolenhoso Para Uso Agricola; Embrapa Clima Temperado, Circular Técnica: Pelotas, Brazil, 2007; Volume 65, 8p, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/30826/1/Circular-65.pdf (accessed on 10 October 2023).
- Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main routes for the thermoconversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers. Manag. 2009, 50, 3147–3157. [Google Scholar] [CrossRef]
- Yang, J.F.; Yang, C.H.; Liang, M.T.; Gao, Z.J.; Wu, Y.W.; Chuang, L.Y. Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Qiu, L.; Luo, S.; Kang, K.; Zhu, M.; Yao, Y. Chemical constituents and antimicrobial activity of wood vinegars at different pyrolysis temperature ranges obtained from Eucommia ulmoides Olivers branches. RSC Adv. 2018, 8, 40941–40949. [Google Scholar] [CrossRef]
- Indústria Brasileira de Árvores (IBÁ). Relatório Anual 2021; IBÁ: Brasilia, Brazil, 2022; Available online: https://iba.org/publicacoes/relatorios (accessed on 10 October 2023).
- Pakdel, H.; Roy, C. Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 1991, 5, 427–436. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Bayona, J.M.; García, M.T.; Solanas, A.M. Evaluation of acute toxicity and genotoxicity of liquid products from pyrolysis of Eucalyptus grandis wood. Arch. Environ. Contam. Toxicol. 2000, 38, 169–175. [Google Scholar] [CrossRef]
- Barbosa, J.M.S.; Ré-Poppi, N.; Santiago-Silva, M. Polycyclic aromatic hydrocarbons from wood pyrolysis in charcoal production furnaces. Environ. Res. 2006, 101, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Higashino, T.; Shibata, A. Basic study for establishing specifications for wood vinegar by distillation. Mokuzai Gakkaishi 2005, 51, 180–188. [Google Scholar] [CrossRef]
- Araújo, E.S.; Pimenta, A.S.; Feijó, F.M.C.; Castro, R.V.O.; Fasciotti, M.; Monteiro, T.V.C.; Lima, K.M.G. Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. Appl. Microbiol. 2017, 124, 85–96. [Google Scholar] [CrossRef]
- Furtado, C.M.; Stols, A.S.; Pinto, F.L.; Moura, A.B.D.; Morisso, F.D.P.; Pitarelo, A.P.; Ramos, L.P.; Mühlen, C.V.; Riegel-Vidotti, I.C. Pyroligneous liquor produced from Acacia mearnsii de wild wood under controlled conditions as a renewable source of chemicals. Química Nova 2015, 38, 1068–1074. [Google Scholar] [CrossRef]
- D4940; Standard Test Method for Conductimetric Analysis of Water-Soluble Ionic Contamination of Blasting Abrasives. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2020.
- Environmental Protection Agency (EPA). EPA Archives—Polycyclic Aromatic Hydrocarbons—PAHs; EPA: Washington, DC, USA, 2018. Available online: https://www.epa.gov (accessed on 10 October 2023).
- AOAC International—Association of Official Agricultural Chemists. Official Methods of Analysis, 21st ed.; AOAC International: Baltimore, MD, USA, 2019. [Google Scholar]
- American Public Health Association (APHA); American Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association: Washington, DC, USA, 2023. [Google Scholar]
- Merchant, S.S. The elements of plant micronutrients. Plant Physiol. 2010, 154, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction between macro- and micro-nutrients in plants. Front. Plant Sci. Sec. Plant Nutr. 2021, 12, e665583. [Google Scholar] [CrossRef] [PubMed]
- Ofoe, R.; Thomas, R.H.; Asiedu1, S.K.; Gefu Wang-Pruski, G.; Fofana, B.; Abbey, L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Front. Plant Sci. 2023, 13, e1085998. [Google Scholar] [CrossRef] [PubMed]
- Rajendram, R.; Rajendram, R.; Preedy, V.R. Chapter 51—Acetaldehyde: A reactive metabolite. In Neuropathology of Drug Addictions and Substance Misuse; Victor, R.P., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 552–562. [Google Scholar] [CrossRef]
- National Research Council (US). Committee on Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants. In Acetaldehyde: Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants; Academies Press: Washington, DC, USA, 2009; Volume 3. Available online: https://www.ncbi.nlm.nih.gov/books/NBK219914/ (accessed on 10 October 2023).
- Toxicological Profile for Acetone; Chapter 2; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK590387/ (accessed on 10 October 2023).
- Ashurst, J.V.; Nappe, T.M. Methanol Toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482121/ (accessed on 10 October 2023).
- Iqbal, A.; Glagola, J.J.; Nappe, T.M. Ethylene Glycol Toxicity. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537009/ (accessed on 10 October 2023).
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2015, 25, 107–123. [Google Scholar] [CrossRef]
- Duedahl-Olesen, L. Polycyclic aromatic hydrocarbons (PAHs) in foods. In Persistent Organic Pollutants and Toxic Metals in Foods; Woodhead Publishing: Cambridge, UK, 2013; pp. 308–333. [Google Scholar]
- Ayvaz, Z.; Atar, M.H.e. The use of liquid smoke condensate in foods and its effects on health. In Proceedings of the World Congress on Public Health and Nutrition OMICS International Conference Series.com, Madrid, Spain, 10–12 March 2016. [Google Scholar]
- Cadwallader, K.R. Wood Smoke Flavor Handbook of Meat, Poultry and Seafood Quality. Nollet, L.M.L., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; 705p. [Google Scholar]
Classes | Chemical Species |
---|---|
Heavy metals and other elements | Aluminum, boron, cadmium, calcium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, phosphorous, potassium, sodium, sulfur, and zinc |
Insecticides, fungicides, and herbicides (carbamates, organochlorines, organophosphates, pyrethroids, and others) | 4,4-DDD (p,p′-DDD ou p,p′-TDE), 4,4-DDE (p,p′-DDE), 4,4-DDT (p,p′-DDT), (aldicarb + aldicarb sulfone + aldicarb sulfoxide), aldrin, aminocarb, atrazine, carbaryl, carbofuran, cis-permethrin, cyanazine, cypermethrin, chlordane (sum of cis-, trans-, and oxychlordane), chlorfenvinphos, chlorobenzylate, chloroneb, chlorothalonil, chlorpyrifos (dursban), coumaphos, deltamethrin, demeton-O, demeton-S, dieldrin, disulfoton, dihydrodicyclopentadienyl acrylate (DCPA), diuron, drins sum (aldrin + dieldrin + endrin), endosulfan I, endosulfan I (a + b + sulfate), endosulfan, endosulfan sulfate, endrin, etoprofos, fenchlorfós (fenchlorphos + fenchlorphos-oxan), fenitrothion (metation), fensulfothion, fenthion, phentoate, phorate, fosalone, phosmet, heptachlor (heptachlor epoxide cis + trans), hexachlorobenzene (HCB), hexachloroethane, iprovalicarb, L-cyhalothrin, linuron, malathion, mancozeb, merphos, methamidophos, methidathion, metolachlor, methoxychlor, mevinphos, molinate, oxamyl, permethrin, pirimicarb, propenofos, propaphos, propachlor, propanil, quinalphos, simazine, tebuconazole, terbufos, tetrachlorvinphos (stirophos), tokuthion, trans-nonachlor, triazophos, and trichloronate |
Mycotoxins | Aflatoxins B1, B2, G1, and G2, deoxynivalenol, fumonisins, ochratoxin A, patulin, and zearalenone |
Polychlorinated dioxins and furans | 1,2,3,4,6,7,8-heptachlorodibenzofuran, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 1,2,3,4,7,8,9-heptachlorodibenzofuran, 1,2,3,4,7,8-hexachlorodibenzofuran, 1,2,3,4,7-pentachlorodibenzo-p-dioxin, 1,2,3,4- tetrachlorodibenzo-p-dioxin, 1,2,3,6,7,8-hexachlorodibenzofuran, 1,2,3,7,8,9-hexachlorodibenzofuran, 1,2,3,7,8,9-hexachlorodibenzo- p-dioxin, 1,2,3,7,8-pentachlorodibenzofuran, 1,2,3,7,8- pentachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, 2,3,7,8-tetrachlorodibenzofuran, 2,3,7,8-tetrachlorodibenzo-p-dioxin, octachlorodibenzofuran, and octachlorodibenzo-p-dioxin |
Polycyclic aromatic hydrocarbons | Acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, phenanthrene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene; and total PAHs |
Volatile organic compounds | Acetone, acetaldehyde, acetic acid, ethylene glycol, and methanol |
Refining Step | Initial Volume (L) | Final Volume (L) | Yield (%) |
---|---|---|---|
1 | 2400 | 2304 | 96.0 |
2 | 2304 | 2234.9 | 97.0 |
Properties (Units) | LQ or LD | Raw WV | Step 1 | Step 2 |
---|---|---|---|---|
Conductivity (μS cm−1) | LQ = 0.1 μS cm−1 | 1290 | 980 | 864 |
Density at 25 °C (g cm−3) | LQ = 0.14 g cm−3 | 1.01 | 1.00 | 1.00 |
pH at 25 °C | LQ = 1.00 | 2.90 | 2.60 | 2.60 |
Chemical Classes and Analytical Methods | Chemical Species | LQ or LD | Raw WV | Step 1 | Step 2 |
---|---|---|---|---|---|
Heavy metals and other elements (mg kg−1) | Aluminum | LQ = 5.0 | 152 | <LQ | <LQ |
Boron | LQ = 50 | <1 | <LQ | <LQ | |
Cadmium | LQ = 0.080 | <LQ | <LQ | <LQ | |
Calcium | LQ = 50 | 14 | <LQ | <LQ | |
Cobalt | LQ = 5.0 | <2 | <LQ | <LD | |
Copper | LQ = 1.0 | <2 | 1.0 | <LQ | |
Iron | LQ = 0.20 | 18 | 1.90 | 1.80 | |
Lead | LQ = 0.40 | <LQ | <LQ | <LQ | |
Magnesium | LQ = 50 | 2.8 | <LQ | <LQ | |
Manganese | LQ = 1.0 | 3.9 | <LQ | <LQ | |
Mercury | LQ = 0.80 | <LQ | <LQ | <LQ | |
Molibdenum | LD = 0.12 | <2 | <LD | <LD | |
Nickel | LQ = 0.20 | <2 | <LQ | 1,1 | |
Phosphorous | LQ = 50.0 | <30 | 17.0 | 16.2 | |
Potassium | LQ = 1.0 | <2 | <LQ | <LQ | |
Sodium | LQ = 50 | <2 | <LQ | <LQ | |
Sulfur | LQ = 3.0 | 36 | 9.0 | 8.0 | |
Zinc | LQ = 1.0 | <2.0 | 1.0 | 1.0 | |
Insecticides, fungicides, and herbicides (mg L−1) | All species | LD = 0.006 | <LD | <LD | <LD |
Mycotoxins (µg L−1) | Aflatoxin B1 | LD = 0.2 | <LD | <LD | <LD |
Aflatoxin B2 | LD = 0.06 | <LD | <LD | <LD | |
Aflatoxin G1 | LD = 0.2 | <LD | <LD | <LD | |
Aflatoxin G2 | LD = 0.06 | <LD | <LD | <LD | |
Deoxynivalenol | LD = 10 | <LD | <LD | <LD | |
Fumonisin B1 and B2 | LD = 20 | <LD | <LD | <LD | |
Ochratoxin A | LD = 1.0 | <LD | <LD | <LD | |
Patulin | LD = 3.0 | <LD | <LD | <LD | |
Zearalenone | LD = 10 | <LD | <LD | <LD | |
Polychlorinated dioxins and furans (µg kg−1) | All species | LD = 0.5 | <LD | <LD | <LD |
Polycyclic aromatic hydrocarbons (µg kg−1) | Acenaphthylene | LD = 2.0 | 2110 | <LD | <LD |
Acenaphthene | LD = 2.0 | 73 | <LD | <LD | |
Fluorene | LD = 2.0 | 330 | <LD | <LD | |
Fenanthrene + anthracene | LD = 2.0 | 50 | <LD | <LD | |
Fluoranthene | LD = 2.0 | 32 | <LD | <LD | |
Pyrene | LD = 2.0 | 38 | <LD | <LD | |
Benzo[a]anthracene + crysene | LD = 2.0 | 56 | <LD | <LD | |
Benzo[b] + benzo[k]fluoranthene | LD = 2.0 | 59 | <LD | <LD | |
Benzo[a]pyrene | LD = 2.0 | 31 | <LD | <LD | |
Indeno[1,2,3 cd]pyrene | LD = 2.0 | 79 | <LD | <LD | |
Dibenzo[a,h]anthracene | LD = 2.0 | 33 | <LD | <LD | |
Benzo[g,h,i]perylene | LD = 2.0 | 37 | <LD | <LD | |
Naphtalene | LD = 2.0 | 881 | <LD | <LD | |
Volatile organic compounds | Acetic acid (% m/m) | LD = 0.003 mg kg−1 | 3.8 | 2.8 | 2.8 |
Acetaldehyde (mg kg−1) | LD = 0.01 mg kg−1 | 2100 | <LD | <LD | |
Acetone (µg kg−1) | LD = 10 µg kg−1 | 15,300 | <LD | <LD | |
Ethylene glycol (% m/m) | LD = 0.05 µg kg−1 | 90 | <LD | <LD | |
Methanol (% m/m) | LD = 1.0 µg kg−1 | 3400 | <LD | <LD |
Compound | Area (%) |
---|---|
2-Cyclopenten-1-one | 1.9 |
2-Cyclopenten-1-one, 2-methyl- | 1.5 |
1-Hydroxy-2-butanone | 1.0 |
2-Furanmethanol, tetrahydro- | 1.0 |
Furfural | 17.2 |
Ethanone, 1-(2-furanyl)- | 1.5 |
2-Cyclopenten-1-one, 3-methyl- | 2.4 |
2-Cyclopenten-1-one, 2,3-dimethyl- | 1.4 |
2-Furancarboxaldehyde, 5-methyl- | 4.4 |
Butyrolactone | 0.8 |
2-Furanone, 2,5-dihydro-3,5-dimethyl | 1.0 |
1,2-Cyclopentanedione, 3-methyl- | 3.3 |
Phenol, 2-methoxy- | 9.4 |
Phenol, 2-methoxy-4-methyl- | 0.4 |
2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- | 1.0 |
Phenol, 2-methoxy-4-methyl- | 4.4 |
Phenol | 8.5 |
Phenol, 4-ethyl-2-methoxy- | 1.8 |
Phenol, 2,3-dimethyl- | 0.5 |
Phenol, 4-methyl- | 2.3 |
Phenol, 3-methyl- | 3.3 |
Phenol, 2-methoxy-4-propyl- | 0.3 |
Phenol, 3,4-dimethyl- | 0.8 |
Phenol, 2,6-dimethoxy- | 10.7 |
1,2,3-Trimethoxybenzene | 3.5 |
Benzene, 1,2,3-trimethoxy-5-methyl- | 1.9 |
Total | 69.3 |
Others | 30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, A.S.; Gama, G.S.P.; Feijó, F.M.C.; Braga, R.M.; de Azevedo, T.K.B.; de Melo, R.R.; de Oliveira Miranda, N.; de Andrade, G.S. Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation. Forests 2023, 14, 2414. https://doi.org/10.3390/f14122414
Pimenta AS, Gama GSP, Feijó FMC, Braga RM, de Azevedo TKB, de Melo RR, de Oliveira Miranda N, de Andrade GS. Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation. Forests. 2023; 14(12):2414. https://doi.org/10.3390/f14122414
Chicago/Turabian StylePimenta, Alexandre Santos, Gil Sander Próspero Gama, Francisco Marlon Carneiro Feijó, Renata Martins Braga, Tatiane Kelly Barbosa de Azevedo, Rafael Rodolfo de Melo, Neyton de Oliveira Miranda, and Gabriel Siqueira de Andrade. 2023. "Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation" Forests 14, no. 12: 2414. https://doi.org/10.3390/f14122414
APA StylePimenta, A. S., Gama, G. S. P., Feijó, F. M. C., Braga, R. M., de Azevedo, T. K. B., de Melo, R. R., de Oliveira Miranda, N., & de Andrade, G. S. (2023). Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation. Forests, 14(12), 2414. https://doi.org/10.3390/f14122414