Quantification and Determinants of Carbonization Yield in the Rural Zone of Lubumbashi, DR Congo: Implications for Sustainable Charcoal Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Village Selection and Sampling
2.2.2. Data Collection
2.2.3. Data Analysis
3. Results
3.1. Characteristics of Kilns Built by Charcoal Producers in the Rural Area of Lubumbashi
3.1.1. Kilns Dimensions, Diameter, and Wood Moisture Content
3.1.2. Wood Species Used in Charcoal Production
3.2. Carbonization Yield
3.3. Factors Influencing Kiln Yields
3.3.1. Quantitative Variables
3.3.2. Qualitative Variables
4. Discussion
4.1. Method Used
4.2. Characteristics of Kilns Built in the Rural Area of Lubumbashi
4.2.1. Diameter, Wood Moisture Content, and Kiln Dimensions
4.2.2. Tree Species Used for Charcoal Production
4.2.3. Kiln Yield
4.3. Implications for Carbonization and Conservation of Forest Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krieger, D.J. Economic Value of Forest Ecosystem Services: A Review; The Wilderness Society: Washington, DC, USA, 2001; pp. 1–31. [Google Scholar]
- Talukdar, N.R.; Choudhury, P.; Barbhuiya, R.A.; Singh, B. Importance of Non-Timber Forest Products (NTFPs) in rural livelihood: A study in Patharia Hills Reserve Forest, northeast India. Trees For. People 2021, 3, 100042. [Google Scholar] [CrossRef]
- Derebe, B.; Alemu, A. Non-timber forest product types and its income contribution to rural households in the Horn of Africa: A systematic review. For. Sci. Technol. 2023, 19, 210–220. [Google Scholar] [CrossRef]
- Miller, D.C.; Cheek, J.Z.; Mansourian, S.; Wildburger, C. Forests, trees and the eradication of poverty. For. Pol. Econ. 2022, 140, 102753. [Google Scholar] [CrossRef]
- Yadav, V.S.; Yadav, S.S.; Gupta, S.R.; Meena, R.S.; Lal, R.; Sheoran, N.S.; Jhariya, M.K. Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol. Eng. 2022, 176, 106541. [Google Scholar] [CrossRef]
- Kokou, K.; Sopkon, N. Les forêts sacrées du couloir du Dahomey. Bois Forêts Trop. 2006, 288, 15–23. [Google Scholar] [CrossRef]
- Mpanzu, B.P.; Ngonde, N.H.; Bonkena, P. Forêts, exploitation et consommation du bois-énergie en République Démocratique du Congo: Cas des provinces de Kinshasa, du Kwango et du Kongo Central. Tropicultura 2018, 36, 553–564. [Google Scholar]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation displaced: Trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 2019, 14, 055003. [Google Scholar] [CrossRef]
- Tchatchou, B.; Sonwa, D.J.; Tiani, A.M. Déforestation et Dégradation des Forêts dans le Bassin du Congo: Etat des Lieux, Causes Actuelles et Perspectives; Papier Occasionnel; CIFOR: Bogor Barat, Indonesia, 2015; p. 47. ISBN 978-602-1504-69-7. [Google Scholar]
- Eba’a, R.; Hiol Hiol, F.; Lescuyer, G.; Mayaux, P.; Defourny, P.; Bayol, N.; Saracco, F.; Kankeu, R.; Pokem, D.; Nasi, R. Les Forêts du Bassin du Congo: Etat des Forêts 2021; CIFOR: Bogor Barat, Indonesia, 2021; p. 446. [Google Scholar] [CrossRef]
- Malaisse, F. Le Katanga, une Mosaïque D’écosystèmes en Mutation: Une Approche Globale. Prologue. In Anthropisation des Paysages Katangais; Bogaert, J., Colinet, G., Mahy, G., Eds.; Presses Universitaires de Liège-Agronomie: Gembloux, Belgium, 2018; pp. 17–39. [Google Scholar]
- Malaisse, F. L’homme dans la forêt claire zambezienne. Contribution à l’étude de l’écosystème forêt claire (Miombo). Afr. Econ. Hist. 1979, 7, 38–64. [Google Scholar] [CrossRef]
- Useni, S.Y.; Mpanda, M.M.; Khoji, M.H.; Cirezi, C.N.; Malaisse, F.; Bogaert, J. Vegetation Fires in the Lubumbashi Charcoal Production Basin (The Democratic Republic of the Congo): Drivers, Extent and Spatiotemporal Dynamics. Land 2023, 12, 2171. [Google Scholar] [CrossRef]
- Kabulu, D.J.-P.; Vranken, I.; Bastin, J.-F.; Malaisse, F.; Nyembwe, S.; Useni, S.Y.; Ngongo, L.M.; Bogaert, J. Approvisionnement des ménages Lushois en charbon de bois: Quantités, alternatives et conséquences. In Anthropisation des Territoires Katangais; Bogaert, J., Colinet, G., Mahy, G., Eds.; Presses Universitaires de Liège-Agronomie: Gembloux, Belgium, 2018; pp. 297–308. [Google Scholar]
- Péroches, A.; Nge, O.A.; Gazull, L.; Dubiez, E. Rapport D’étude sur la Filière Bois-Energie de la ville de Lubumbashi. In Programme de Consommation Durable et de Substitution Partielle au Bois-Energie; CIFOR: Bogor Barat, Indonesia, 2021; Available online: https://agritrop.cirad.fr/600201/1/20211118_Rapport_Filière_Lubumbashi_Vf.pdf (accessed on 13 June 2022).
- Trefon, T.; Hendriks, T.; Kabuyaya, N.; Ngoy, B. L’économie Politique de la Filière du Charbon de bois à Kinshasa et à Lubumbashi: Appui Stratégique à la Politique de Reconstruction Post-Conflit en RDC; Institute of Development Policy and Management University of Antwerp: Antwerp, Belgium, 2010; Available online: https://lirias.kuleuven.be/1914691?limo=0 (accessed on 13 June 2022).
- Rasoazanamanana, T. Effets Externes de la Production de Charbon de Bois; Grand Mémoire d’études Approfondies, Université d’Antananarivo: Antananarivo, Madagascar, 2009; p. 69. [Google Scholar]
- Schure, J.; Pinta, F.; Cerutti, P.O.; Kasereka, M.L. Efficiency of charcoal production in Sub-Saharan Africa: Solutions beyond the kiln. Bois Forêts Trop. 2019, 340, 57–70. [Google Scholar] [CrossRef]
- Nge, O.A. Diagnostic Socioeconomique et Environnemental de la Chaine de Valeur Charbon de Bois à Lubumbashi (Haut-Katanga, RDC): Perspectives Pour une Gestion Durable des Ressources Ligneuses de Miombo. Ph.D. Thesis, Université de Lubumbashi, Lubumbashi, Congo, 2021; p. 296. [Google Scholar]
- Trégourès, A. La Structuration des Filières D’approvisionnement en Bois Energie Dans la Province du Zambèze (Mozambique). Programme Sous-National de Réduction des Emissions de Carbone Liées à la Déforestation et à la Dégradation Forestière (REDD+). Master’s Thesis, Nature et Société (AgroParis Tech), Paris, France, 2015; p. 120. [Google Scholar]
- García-Quezada, J.; Musule-Lagunes, R.; Wehenkel, C.; Prieto-Ruíz, J.A.; Núñez-Retana, V.; Carrillo-Parra, A. Effect of Firewood Moisture Content on Quality, Yield, and Economic Gain during Charcoal Production in a Modified Half-Orange Kiln. Fuels 2023, 5, 1–16. [Google Scholar] [CrossRef]
- Rodrigues, T.; Braghini, J.A. Charcoal: A discussion on carbonization kilns. J. Anal. Appl. Pyrolysis. 2019, 143, 104670. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Ramos, D.C.; Pereira, B.L.C.; Carneiro, A.C.O. Carbonization temperature and charcoal properties at different positions in rectangular kiln. Rev. Bras. Ciênc. Agrár.-Braz. J. Agric. Sci. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Orabi, M.A.; Bahnasawy, A.H.; Ali, S.A.; Ashour, T.H.; Yehia, I. Development of environment friendly kilns for production of charcoal. Misr. J. Agric. Eng. 2020, 37, 313–324. [Google Scholar] [CrossRef]
- Kamperidou, V.; Terzopoulou, P.; Barboutis, L. Marginal lands providing tree-crop biomass as feedstock for solid biofuels. Biofuels Bioprod. Bioref. 2021, 15, 1395–1405. [Google Scholar] [CrossRef]
- Schenkel, Y.; Bertaux, P.; Vanwijnsberghe, S.; Carré, J. Une Evaluation de la Technique de la Carbonisation en Meule. Biotechnol. Agron. Soc. Environ. 1997, 1, 113–124. Available online: https://popups.uliege.be/1780-4507/index.php?id=17602&file=1&pid=16126 (accessed on 17 May 2022).
- Mundhenk, P.; Gomis, O.; Sy, M.C. Comparaison des rendements de production de charbon de bois entre la meule traditionnelle et la meule Casamance dans la forêt communautaire de Sambandé. Peracod 2010, 20. Available online: https://energypedia.info/images/3/38/Meule_casamancaise_PERACOD_Mundhenk.pdf (accessed on 1 March 2023).
- Girard, P. Quel futur pour la production et l’utilisation du charbon de bois en Afrique? Unasylva 2002, 53, 30–35. Available online: https://www.fao.org/3/y4450f/y4450f05.pdf (accessed on 14 February 2023).
- Mbuangi, L.M.; Ntoto, M.R.; Kisombe, M.; Khonde, B.C. Les enjeux socioéconomiques et écologiques de la production du charbon de bois dans la périphérie de la ville de Boma en RDC. J. Int. Sci. Tech. L’eau L’environ. 2021, 3, 42–54. Available online: https://jistee.org/wp-content/uploads/2021/09/Mbuangi-Lusuadi-Maurice42-54.pdf (accessed on 6 August 2023).
- Schure, J.; Hubert, D.; Ducenne, H.; Kirimi, M.; Awomo, A.; Mpuruta-Ka-Tito, R.; Mumbere, G.; Njenga, M. Carbonisation 2.0: Comment Produire Plus de Charbon de Bois Tout en Réduisant la Quantité de bois et D’émissions de gaz à effet de Serre? Dossier n° 1; Série de dossiers sur le bois-énergie durable; CIFOR: Bogor, Indonesia, 2021. [Google Scholar]
- Mencarelli, A.; Cavalli, R.; Greco, R.; Grigolato, S. Comparison of Technical and Operational Conditions of Traditional and Modern Charcoal Kilns: A Case Study in Italy. Energies 2023, 16, 7757. [Google Scholar] [CrossRef]
- Issifou, Y.A.; Tonouewa, F.M.; Biaou, H.S.; Houehanou, D.T.; Idrissou, Y. Technique de carbonisation du bois au Nord-Ouest du Bénin, Afrique de l’Ouest. Afr. Sci. 2020, 16, 49–58. Available online: https://www.afriquescience.net/PDF/16/2/5.pdf (accessed on 17 August 2023).
- Malaisse, F.; Ilunga, K. The Influence of Deforestation on the Hydric Balance of Soils in the Lubumbashi Environment (Shaba, Zaïre). Bull. Société R. Bot. Belg./Bull. Van K. Belg. Bot. Ver. 1986, 2, 161–178. Available online: https://www.jstor.org/stable/20794086 (accessed on 11 May 2023).
- Dikumbwa, N.; Alexandre-Pyre, S.; Nawej, T.S.; Malaisse, F. Etude des Températures des sols de Trois Ecosystèmes Naturels du Haut-Katanga. Geo-Eco-Trop 2020, 44, 237–253. Available online: https://www.geoecotrop.be/uploads/publications/pub_442_03.pdf (accessed on 2 June 2023).
- Malaisse, F. Se nourrir en Forêt Claire Africaine: Approche Ecologique et Nutritionnelle; Les Presses Agronomiques de Gembloux: Gembloux, Belgium, 1997; ISBN 2-87016-045-3. [Google Scholar]
- Bruneau, J.C.; Numbi, A.M. Nature et citadinité à Lubumbashi (Congo-RDC): A la recherche d’un équilibre perdu. Esp. Trop. 2011, 20, 553–562. Available online: https://www.persee.fr/doc/etrop_1147-3991_2011_act_20_11_1258 (accessed on 14 November 2023).
- N’tambwe, N.D.; Muteya, K.H.; Kasongo, K.B.; Sambiéni, K.R.; Malaisse, F.; Useni, S.Y.; Masengo, K.W.; Bogaert, J. Towards an Inclusive Approach to Forest Management: Highlight of the Perception and Participation of Local Communities in the Management of miombo Woodlands around Lubumbashi (Haut-Katanga, D.R. Congo). Forests 2023, 14, 687. [Google Scholar] [CrossRef]
- Münkner, C.A.; Bouquet, M.; Muakana, R. Analyse des Chaines de Valeur Ajoutée en Bois-Energie et Bois D’œuvre de la Ville de Lubumbashi Dans la Province du Katanga; Rapport du programme Biodiversité et Forêts (PBF) Projet Filière Bois; Chaînes de Valeur Ajoutée, GIZ et MEDD: Lubumbashi, Democratic Republic of the Congo, 2015; p. 92. [Google Scholar]
- Muteba, K.D. Caractérisation des Modes de Consommation Alimentaire des Ménages à KINSHASA: Analyse des Interrelations entre Modes de vie et Habitudes Alimentaires. Ph.D. Thesis, Université de Liège Gembloux-Agro Biotech, Gembloux, Belgium, 2014; p. 179. Available online: https://orbi.uliege.be/handle/2268/166356 (accessed on 15 April 2023).
- Sabuhungu, E.G. Analyse de la Demande en Charbon de Bois par les Ménages Urbains de Bujumbura au Burundi. Ph.D. Thesis, Université de Liège Gembloux-Agro Biotech, Gembloux, Belgium, 2016; p. 192. Available online: https://orbi.uliege.be/handle/2268/200912 (accessed on 15 April 2023).
- Chidumayo, E.N. Is charcoal production in Brachystegia-Julbernardia woodlands of Zambia sustainable? Biomass Bioenergy 2019, 125, 1–7. [Google Scholar] [CrossRef]
- OSFAC. Cartographie de la Stratification des Classes de Végétation des Forêts Miombo, Haut-Katanga RDC, Rapport Final. 2019; p. 23. Available online: https://gofcgold.umd.edu/node/1300 (accessed on 15 April 2023).
- Meerts, P.; Hasson, M. Arbres et Arbustes du Haut-Katanga; Editions Jardins Botaniques de Meise: Brussels, Belgium, 2016; p. 386. [Google Scholar]
- Mana, P.; Rajaonarivelo, S.; Milleville, P. Production de Charbon de Bois Dans Deux Situations Forestières de la Région de Tuléar. Sociétés Paysannes, Transitions Agraires et Dynamiques Ecologiques dans le Sud-Ouest de Madagascar. Sci. Pays. 2001, 199–210. Available online: https://www.documentation.ird.fr/hor/fdi:010046406 (accessed on 4 January 2024).
- Rousson, V. Statistique appliquée aux sciences de la vie. In Collection Statistique et Probabilités Appliquées; Springer: Paris, France, 2013; p. 320. ISBN 978-2-8178-0393-7. [Google Scholar]
- Alemayehu, H.; Abebe, T.; Asabeneh, A. Analysis of Charcoal Producers Perceptions of Its Production, Forest Degradation, and Governance in Wolaita, Southern Ethiopia’s Dry Afromontane Forests. Int. J. For. Res. 2023, 2023, 3352702. [Google Scholar] [CrossRef]
- Kouicem, M. Sur Quelques Méthodes D’analyses Multivariée et Applications. Master’s Thesis, Université Kasdi Merbah Ouargla, Algérie, 2020; p. 74. Available online: https://dspace.univ-ouargla.dz/jspui/handle/123456789/24698 (accessed on 17 September 2023).
- Nyarko, I.; Nwaogu, C.; Miroslav, H.; Peseu, P.O. Socio-Economic Analysis of Wood Charcoal Production as a Significant Output of Forest Bioeconomy in Africa. Forests 2021, 12, 568. [Google Scholar] [CrossRef]
- Ramamonjisoa, N.; Rajoelison, L.G.; Rakoto, R.H.; Rabenilalana, F.M. Etude de l’importance Socioéconomique des Produits Forestiers Non Ligneux et des Produits Agroforestiers en vue de L’amélioration des Revenus de la Population Locale: Cas de la Zone de Mandraka, Région Analamanga, Madagascar. Eastern and Southern Africa Patnership Program (ESAPP), 2008; p. 75. Available online: https://core.ac.uk/display/33087788 (accessed on 10 February 2024).
- Seboka, Y. Charcoal production: Opportunities and barriers for improving efficiency and sustainability. In Harnessing Carbon Finance to Promote Sustainable Forestry, Agro-Forestry and Bio-Energy; UNDP: Washington, DC, USA, 2008; pp. 102–126. Available online: https://www.compete-bioafrica.net/financing/D5-7/Bio-Carbon%20opportunities%20in%20Africa.pdf (accessed on 4 January 2024).
- Tazebew, E.; Sato, S.; Addisu, S.; Bekele, E.; Alemu, A.; Belay, B. Improving traditional charcoal production system for sustainable charcoal income and environmental benefits in highlands of Ethiopia. Heliyon 2023, 9, 1–14. [Google Scholar] [CrossRef]
- Bernardes, F.F.; Romanelli, T.L.; Pereira, A.K.; Cupertino, G.F.; Fernandes, M.A.; Brito, J.O.; De Souza, E.C.; Saloni, D.; Dias, A.F. Energy Performance of Different Charcoal Production Systems. Energies 2023, 16, 7318. [Google Scholar] [CrossRef]
- Bisiaux, F.; Peltier, R.; Muliele, J.-C. Plantations industrielles et agroforesterie au service des populations des plateaux Batéké, Mampu, en République Démocratique du Congo. Bois Forêts Trop. 2009, 301, 21–32. [Google Scholar] [CrossRef]
- García-Quezada, J.; Musule-Lagunes, R.; Prieto-Ruíz, J.A.; Vega-Nieva, D.J.; Carrillo-Parra, A. Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico. Energies 2022, 16, 333. [Google Scholar] [CrossRef]
- Falcão, M.P. Charcoal production and use in Mozambique, Malawi, Tanzania, and Zambia: Historical overview, present situation and outlook. In Proceedings of the Conference on Charcoal and Communities in Africa, INBAR, Maputo, Mozambique, 16–18 June 2008; pp. 20–34. [Google Scholar]
- Kouami, K.; Yaovi, N.; Honan, K.A. Impact of charcoal production on woody plant species in West Africa: A case study in Togo. Sci. Res. Essay 2009, 4, 881–893. [Google Scholar]
- Canal, W.D.; Carvalho, A.M.; Figueiró, C.G.; Carneiro, A.D.; Fialho, L.D.; Donato, D.B. Impact of Wood Moisture in Charcoal Production and Quality. Flor. Amb. 2020, 27, 1. [Google Scholar] [CrossRef]
- Temmerman, M.; Andrianirina, R.; Richter, F. Performances techniques et environnementales du four de carbonisation Green Mad Retort à Madagascar. Bois Forêts Trop. 2019, 340, 43–55. [Google Scholar] [CrossRef]
- Akossou, A.Y.; Gbozo, E.; Darboux, A.E.; Kokou, K. Influence of Wood Humidity of Tree Species (Prosopsis africana, Anogeissus leiocarpa and Tectona grandis) on the production of charcoal by the traditional wheel. J. Pet. Technol. Altern. Fuels 2013, 4, 64–71. Available online: https://academicjournals.org/journal/JPTAF/article-full-text-pdf/4B0C9979262 (accessed on 6 December 2023).
- Kissanga, R.; Catarino, L.; Máguas, C.; Cabral, I.R.; Chozas, S. Assessing the Impact of Charcoal Production on Southern Angolan Miombo and Mopane Woodlands. Forests 2023, 15, 78. [Google Scholar] [CrossRef]
- Hick, A.; Maud, H.; Kizila, W.P.; Tshibungu, A.; Seleck, M.; Mahy, G. Ces Essences Importantes que l’on Retrouve en Forêt Claire (Miombo). Université de Liège—Gembloux Agro-Bio Tech—Unité Biodiversité de Paysage. 2013. Available online: https://orbi.uliege.be/bitstream/2268/160689/1/poster_journée%20agroforesterie.pdf (accessed on 18 September 2023).
- Binzangi, K.; Tshibangu, K.; Degreef, J.; Malaisse, F. Le deboisement en Afrique tropicale. Tech. Déf. Sud 1994, 36–37. Available online: https://orbi.uliege.be/bitstream/2268/220734/1/FM%20défi%20sud%20déboisement.pdf (accessed on 11 December 2023).
- Montagne, P.; Creahay, R.; Rasamindisa, A.; Razafimahatratra, S. Bonnes pratiques de carbonisation à Madagascar. Projet Caramcodec 2009, 1, 30. Available online: https://agritrop.cirad.fr/564152/1/document_564152.pdf (accessed on 2 January 2024).
- Luwaya, E.; Chisale, P.; Yamba, F.; Malin, M. A parametric analysis of conversion efficiency of earthen charcoal making kiln using a numerical method. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, FL, USA, 14–16 July 2014; pp. 271–280. [Google Scholar]
- Mekuria, W.; Sengtaheuanghoung, O.; Hoanh, C.T.; Noble, A. Economic contribution and the potential use of wood charcoal for soil restoration: A case study of village-based charcoal production in Central Laos. Int. J. Sustain. Dev. World Ecol. 2012, 19, 415–425. [Google Scholar] [CrossRef]
- Louppe, D. Projet Makala Module 6: Transfert et Renforcement des Compétences. Rapport de Mission Auprès du Projet Makala (Version Provisoire), Kinshasa et Kisangani (RDC). 2011. Available online: https://agritrop.cirad.fr/561363/1/document_561363.pdf (accessed on 4 May 2023).
- Frayer, A. Production de Charbon de Bois Dans le District d’Isiolo-Kenya. Estimation de L’activité et Evaluation des Conséquences sur la Ressource Forestière Existante. Rapport de Stage Ingénieur. Mémoire d’Ingénieur, AgroParisTech, Paris, France, 2007. Available online: https://agritrop.cirad.fr/541879/ (accessed on 4 May 2023).
- Girard, P. Formation à la Valorisation Energétique de la Biomasse Lignocellulosique, Pole Régional de Thermochimie. 1997; pp. 251–259. Available online: https://agritrop.cirad.fr/103705/ (accessed on 14 November 2023).
- Ganhoun, G. Influence de L’essence de Bois et de la Température de Carbonisation sur le Rendement Pondéral et la Qualité du Charbon de Bois. Ph.D. Thesis, Université d’Abomey-Calavi, Abomey-Calavi, Benin, 2020; p. 151. [Google Scholar]
- Schure, J.; Mvondo, S.A.; Awono, A.; Ingram, V.; Lescuyer, G.; Sonwa, D.; Somorin, O. Etat de L’art du Bois Energie en RDC: Analyse Institutionnelle et Socioéconomique de la Filière Bois Energie. 2010. Available online: https://agritrop.cirad.fr/566698/1/document_566698.pdf (accessed on 3 September 2023).
- Raoliarivelo, L.I.; Rabeniala, R.; Masezamana, H.M.; Andrianarisoa, J.H.; Randriamalala, R.J. Impact de la Fabrication de Charbon de Bois sur la Production et la Disponibilité Fourragère de Pâturage en Zone Subaride, cas de la Commune de Soalara-Sud, Toliara II, Rapport Final; Centre of Development and Environment (CDE): Bern, Switzerland, 2010; p. 56. Available online: https://boris.unibe.ch/69311/ (accessed on 4 May 2023).
- Shuku, N. Impact de L’utilisation de L’énergie-Bois Dans la Ville Province de Kinshasa en République Démocratique du Congo (RDC). Master’s Thesis, Université du Québec à Montréal, Montréal, QC, Canada, 2011; p. 168. Available online: https://archipel.uqam.ca/4598/ (accessed on 6 December 2023).
- Mfomo, J.Z.; Biwolé, A.B.; Fongzossie, E.F.; Ekassi, G.T.; Hubert, D.; Ducenne, H.; Tamba, J.G.; Mouangue, R. Carbonization techniques and wood species influence quality attributes of charcoals produced from industrial sawmill residues in Eastern Cameroon. Bois Forêts Trop. 2020, 345, 63–72. [Google Scholar] [CrossRef]
- Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; ElRasoul, A.A. State of the art in the production of charcoal: A review. Chem. Chem. Technol. 2021, 15, 61–73. [Google Scholar] [CrossRef]
- Tassie, K.; Misganaw, B.; Addisu, S.; Tesfaye, E. Socioeconomic and Environmental Impacts of Charcoal Production Activities of Rural Households in Mecha District, Ethiopia. Adv. Agric. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Agunloye, O.O.M.; Kolawole, A.O.; Adesakin, M.F.; Arowolaju, O.O. Economic and Environmental Implications of Charcoal Production in Kogi State, Nigeria. World Rural Observ. 2020, 12, 47–55. [Google Scholar] [CrossRef]
- Njenga, M.; Sears, R.R.; Mendum, R. Sustainable woodfuel systems: A theory of change for sub-Saharan Africa. Environ. Res. Commun. 2023, 5, 051003. [Google Scholar] [CrossRef]
Village | Length (m) | Width (m) | Height (m) | Diameter (cm) | Moisture Content (%) |
---|---|---|---|---|---|
Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | |
Luisha (n = 6) | 7.8 ± 1.9 | 3.8 ± 0.7 | 1.7 ± 0.1 | 74.9 ± 5.5 | 26.2 ± 10.8 |
Maksem (n = 5) | 4.9 ± 1.3 | 3.0 ± 0.6 | 1.8 ± 0.3 | 74.2 ± 6.8 | 18.5± 9.2 |
Mwawa (n = 4) | 8.8 ± 4.1 | 3.8 ± 0.5 | 1.9 ± 0.1 | 68.4 ± 7.6 | 40.1 ± 11.2 |
Sela (n = 5) | 7.4 ± 1.2 | 3.9 ± 0.6 | 1.7 ± 0.3 | 69.8 ± 8.4 | 23.2 ± 12.4 |
Mean ± St. Dev. | 7.2 ± 2.5 | 3.6 ± 0.7 | 1.8 ± 0.2 | 72.2 ± 7.0 | 26.3 ± 12.6 |
N° | Vernacular Name | Scientific Name (Family) | Villages | ||||
---|---|---|---|---|---|---|---|
Luisha | Maksem | Mwawa | Sela | Total n | |||
n (%) | n (%) | n (%) | n (%) | ||||
1 | Mutondo | Julbernardia paniculata (Benth.) Troupin (Fabaceae) | 6 (25.8) | 3 (14) | 4 (57.5) | 2 (10.8) | 15 |
2 | Kaputu | Brachystegia spiciformis Benth (Fabaceae) | 3 (29.2) | 2 (10) | - | 4 (25) | 9 |
3 | Musamba | Brachystegia microphylla Harms (Fabaceae) | - | 1(10) | 4 (30) | 4 (19) | 9 |
4 | Kakula | Pterocarpus tinctorius Welw (Fabaceae) | 4 (1.3) | 2 (5) | - | 2 (3.6) | 8 |
5 | Mutobo | Isoberlinia angolensis (Welw. ex Benth.) (Caesalpiniaceae) | 4 (5.4) | 2 (7) | - | - | 6 |
6 | Museshi | Marquesia macroura Gilg (Dipterocapaceae) | 4 (17.1) | 1 (8) | - | 1 (11) | 6 |
7 | Mubanga | Pterocarpus angolensis DC (Fabaceae) | 2 (5.8) | 3 (5.8) | - | 3 (16) | 8 |
8 | Mupundu * | Parinari curatellifolia Planch. ex Benth. (Chrysobalanaceae) | - | 2 (12) | 2 (6.3) | 1 (1) | 5 |
9 | Masuku * | Uapaca nitida f. sokolobe P.A. Duvign. (Euphorbiaceae) | - | 1 (2) | - | 2 (10) | 3 |
10 | Ndale | Bobgunnia madagascariensis (Desv.) (Fabaceae) | 1 (1.3) | 1 (2) | - | - | 2 |
11 | Kayimbi | Erythrophleum africanum Benth. (Fabaceae) | - | - | 1 (3.7) | 1 (2) | 2 |
12 | Fungo * | Anisophyllea boehmii Engl. (Fabaceae) | 1 (1.3) | - | - | - | 1 |
13 | Kasabwe | Milletia biquaertii Wight & Arn. (Fabaceae) | 1 (0.8) | - | - | - | 1 |
14 | Sandwé | Jullbernardia globiflora (Benth.) Troupin. (Fabaceae) | - | 2 (14) | - | - | 2 |
15 | Mulama | Combretum zeyheri (Combretaceae) | - | 1 (2) | - | - | 1 |
16 | Kipunga Ngombé | Acacia amythethophylla (Fabaceae) | - | 1 (8) | - | - | 1 |
17 | Munyangwé | Ochna schweinfurthiana F.Hoffm (Ochnaceae) | - | - | 1 (2.5) | - | 1 |
18 | Kimpampa | Monotes katangensiss De Wild. (Dipterocarpaceae) | - | - | - | 1 (0.6) | 1 |
19 | Mwenge | Diplorhynchus condylocarpon rg.) Pichon. (Apocynaceae) | - | - | - | 1 (1) | 1 |
p = 0.066 |
Village | Wood Qty (kg) | Kiln Volume (m3) | Charcoal Qty (kg) | Yield (%) |
---|---|---|---|---|
Mean ± St. Dev. | Mean ± St. Dev. | Mean ± St. Dev. | ||
Luisha (n = 6) | 36,250.8 ± 12,705.2 | 50.3 ± 17.6 | 4090.7 ± 1117.7 | 11.3 |
Maksem (n = 5) | 20,616.4 ± 10,694 | 28.6 ± 14.8 | 1276.4 ± 997.8 | 6.2 |
Mwawa (n = 4) | 46,514.3 ± 23,532.3 | 64.6 ± 3.7 | 4010.0 ± 1641.8 | 8.6 |
Sela (n = 5) | 33,905.4 ± 4955.8 | 47.1 ± 6.9 | 4465.0 ± 1505.6 | 13.2 |
Total (n = 20) | 33,808.5 ± 15,518.8 | 46.9 ± 21.5 | 3464.6 ± 1775.1 | 10.2 |
p-Value | 0.078 | 0.078 | 0.005 * |
Kl | Kw | Kh | Kv | Wmc | Wd | Ndw | Ndf | Ndh | Qty of Wood kg | Qty of Charcoal Harvested | |
---|---|---|---|---|---|---|---|---|---|---|---|
Kl | 1 | 0.368 | 0.109 | 0.913 ** | 0.267 | 0.010 | 0.561 * | 0.348 | 0.428 | 0.913 ** | 0.671 ** |
Kw | 0.368 | 1 | 0.050 | 0.597 ** | 0.511 * | −0.087 | 0.220 | 0.263 | 0.335 | 0.597 ** | 0.670 ** |
Kh | 0.109 | 0.050 | 1 | 0.334 | 0.049 | −0.114 | −0.135 | −0.261 | −0.135 | 0.334 | −0.152 |
Kv | 0.913 ** | 0.597 ** | 0.334 | 1 | 0.441 | −0.060 | 0.493 * | 0.300 | 0.366 | 1.000 ** | 0.652 ** |
Wmc | 0.267 | 0.511 * | 0.049 | 0.441 | 1 | −0.364 | 0.196 | 0.059 | 0.161 | 0.441 | 0.226 |
Wd | 0.010 | −0.087 | −0.114 | −0.060 | −0.364 | 1 | 0.215 | 0.209 | −0.091 | −0.060 | 0.231 |
Ndw | 0.561 * | 0.220 | −0.135 | 0.493 * | 0.196 | 0.215 | 1 | 0.136 | 0.022 | 0.493 * | 0.604 ** |
Ndf | 0.348 | 0.263 | −0.261 | 0.300 | 0.059 | 0.209 | 0.136 | 1 | 0.289 | 0.300 | 0.303 |
Ndh | 0.428 | 0.335 | −0.135 | 0.366 | 0.161 | −0.091 | 0.022 | 0.289 | 1 | 0.366 | 0.461 * |
Qty of wood kg | 0.913 ** | 0.597 ** | 0.334 | 1.000 ** | 0.441 | −0.060 | 0.493 * | 0.300 | 0.366 | 1 | 0.652 ** |
Qty of charcoal harvested | 0.671 ** | 0.670 ** | −0.152 | 0.652 ** | 0.226 | 0.231 | 0.604 ** | 0.303 | 0.461 * | 0.652 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukendi, N.K.; Muteya, H.K.; Nghonda, D.-d.N.; Berti, F.; Useni Sikuzani, Y.; Ndjibu, L.N.; Mbay, J.-P.K.; Fyama, J.N.M.; Lebailly, P.; Bogaert, J. Quantification and Determinants of Carbonization Yield in the Rural Zone of Lubumbashi, DR Congo: Implications for Sustainable Charcoal Production. Forests 2024, 15, 554. https://doi.org/10.3390/f15030554
Mukendi NK, Muteya HK, Nghonda D-dN, Berti F, Useni Sikuzani Y, Ndjibu LN, Mbay J-PK, Fyama JNM, Lebailly P, Bogaert J. Quantification and Determinants of Carbonization Yield in the Rural Zone of Lubumbashi, DR Congo: Implications for Sustainable Charcoal Production. Forests. 2024; 15(3):554. https://doi.org/10.3390/f15030554
Chicago/Turabian StyleMukendi, Nathan Kasanda, Héritier Khoji Muteya, Dieu-donné N’tambwe Nghonda, Fabio Berti, Yannick Useni Sikuzani, Laurent Ngoy Ndjibu, Jean-Paul Katond Mbay, Jules Nkulu Mwine Fyama, Philippe Lebailly, and Jan Bogaert. 2024. "Quantification and Determinants of Carbonization Yield in the Rural Zone of Lubumbashi, DR Congo: Implications for Sustainable Charcoal Production" Forests 15, no. 3: 554. https://doi.org/10.3390/f15030554
APA StyleMukendi, N. K., Muteya, H. K., Nghonda, D. -d. N., Berti, F., Useni Sikuzani, Y., Ndjibu, L. N., Mbay, J. -P. K., Fyama, J. N. M., Lebailly, P., & Bogaert, J. (2024). Quantification and Determinants of Carbonization Yield in the Rural Zone of Lubumbashi, DR Congo: Implications for Sustainable Charcoal Production. Forests, 15(3), 554. https://doi.org/10.3390/f15030554