Estimating Stormwater Infiltration and Canopy Interception for Street Tree Pits in Manhattan, New York
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manhattan as a Case Study
2.2. Tributary Area Delineation
2.3. Stormwater Infiltration
2.4. Canopy Interception
3. Results
3.1. Estimates of Stormwater Infiltration into Sidewalk Tree Pits
3.2. Comparing Infiltration to Canopy Interception
4. Discussion
4.1. Comparing Infiltration to Canopy Interception
4.2. This Study Compared to Other Estimates of Street Tree Stormwater Capture
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. 2018 Revision of World Urbanization Prospects. 2018. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 22 January 2023).
- Mcgrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. What is Green Infrastructure? 2022. Available online: https://www.epa.gov/green-infrastructure/what-green-infrastructure (accessed on 22 January 2023).
- McPherson, G.; Simpson, J.R.; Peper, P.J.; Maco, S.E.; Xiao, Q. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar]
- Selbig, W.R.; Loheide, S.P.; Shuster, W.; Scharenbroch, B.C.; Coville, R.C.; Kruegler, J.; Avery, W.; Haefner, R.; Nowak, D. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ. 2022, 806, 151296. [Google Scholar] [CrossRef] [PubMed]
- Nyelele, C.; Kroll, C.N.; Nowak, D.J. Present and future ecosystem services of trees in the Bronx, NY. Urban For. Urban Green 2019, 42, 10–20. [Google Scholar] [CrossRef]
- Soares, A.L.; Rego, F.C.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green. 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Bautista, D.; Peña-Guzmán, C. Simulating the hydrological impact of green roof use and an increase in green areas in an urban catchment with i-tree: A case study with the town of Fontibón in Bogotá, Colombia. Resources 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Bodine, A.R.; Hoehn Robert, E.I.; Ellis, A.; Hirabayashi, S.; Coville, R.; Auyeung, D.N.; Sonti, N.F.; Hallett, R.A.; Johnson, M.L.; et al. The Urban Forest of New York City; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2018; 117, p. 82. [CrossRef] [Green Version]
- Kirnbauer, M.C.; Baetz, B.W.; Kenney, W.A. Estimating the stormwater attenuation benefits derived from planting four monoculture species of deciduous trees on vacant and underutilized urban land parcels. Urban For. Urban Green 2013, 12, 401–407. [Google Scholar] [CrossRef]
- Song, P.; Guo, J.; Xu, E.; Mayer, A.L.; Liu, C.; Huang, J.; Tian, G.; Kim, G. Hydrological effects of urban green space on stormwater runoff reduction in Luohe, China. Sustainablity 2020, 12, 6599. [Google Scholar] [CrossRef]
- Hilde, T.; Paterson, R. Integrating ecosystem services analysis into scenario planning practice: Accounting for street tree benefits with i-Tree valuation in Central Texas. J Environ Manage. 2014, 146, 524–534. [Google Scholar] [CrossRef]
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of ecosystem services provided by street trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Berland, A.; Hopton, M.E. Comparing street tree assemblages and associated stormwater benefits among communities in metropolitan Cincinnati, Ohio, USA. Urban For. Urban Green 2014, 13, 734–741. [Google Scholar] [CrossRef]
- Seitz, J.; Escobedo, F. Urban Forests in Florida: Trees Control Stormwater Runoff and Improve Water Quality. Edis 2008, 2008, 1–4. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 2002, 6, 291–302. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Kuehler, E.; Hathaway, J.; Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 2017, 10, e1813. [Google Scholar] [CrossRef]
- Livesley, S.J.; Baudinette, B.; Glover, D. Rainfall interception and stem flow by eucalypt street trees—The impacts of canopy density and bark type. Urban For. Urban Green 2014, 13, 192–197. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Attarod, P.; Van Stan, J.T.; Pypker, T.G. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Sci. Total Environ. 2016, 568, 845–855. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Tamjidi, J.; Friesen, J.; Farahnaklangroudi, M. Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur. J. For. Res. 2018, 137, 121–130. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Cham, Switzerland, 2020; pp. 49–70. [Google Scholar]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Szota, C.; Coutts, A.M.; Thom, J.K.; Virahsawmy, H.K.; Fletcher, T.D.; Livesley, S.J. Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc. Urban Plan. 2019, 182, 144–155. [Google Scholar] [CrossRef]
- Lu, J.W.T.; Svendsen, E.S.; Campbell, L.K.; Greenfeld, J.; Braden, J.; King, K.L.; Falxa-Raymond, N. Biological, Social, and Urban Design Factors Affecting Young Street Tree Mortality in New York City. Cities Environ. 2010, 3, 1–15. [Google Scholar] [CrossRef]
- Mays, L.W. Water Resources Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Davis, A.P.; Traver, R.G.; Hunt, W.F.; Lee, R.; Brown, R.A.; Olszewski, J.M. Hydrologic Performance of Bioretention Stormwater Control Measures. J. Hydrol. Eng. 2012, 17, 604–614. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Sample-Lord, K.; Wadzuk, B.; Traver, R. Temporal and spatial variation of infiltration in urban green infrastructure. Hydrol. Process. 2020, 34, 1016–1034. [Google Scholar] [CrossRef]
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting hydrologic and water quality goals through targeted bioretention design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Turk, R.L.; Kraus, H.T.; Bilderback, T.E.; Hunt, W.F.; Fonteno, W.C. Rain garden filter bed substrates affect stormwater nutrient remediation. HortScience 2014, 49, 645–652. [Google Scholar] [CrossRef]
- Emerson, C.H.; Traver, R.G. Multiyear and seasonal variation of infiltration from stormwater best management practices. J. Irrig. Drain. Eng. 2008, 134, 598–605. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- NYC Green Infrastructure: On-site Design Manual. New York City. 2021. Available online: https://www1.nyc.gov/assets/dep/downloads/pdf/water/stormwater/green-infrastructure/nyc-green-infrastructure-onsite-design-manual-v2.pdf (accessed on 22 January 2023).
- Pincetl, S.; Gillespie, T.; Pataki, D.E.; Saatchi, S.; Saphores, J.D. Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal 2013, 78, 475–493. [Google Scholar] [CrossRef]
- City of New York. 2015 Street Tree Census—Tree Data. In Department of Parks and Recreation (DPR) [Internet]. 2022. Available online: https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh (accessed on 15 August 2022).
- Peel, M.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Peper, P.; McPherson, E.G.; Simpson, J.R.; Gardner, S.; Vargas, K.; Xiao, Q. New York City, New York: Municipal Forest Resource Analysis; U.S. Department of Agriculture: Davis, CA, USA, 2007.
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef]
- Roy-Poirier, A.; Champagne, P.; Filion, Y. Review of bioretention system research and design: Past, present, and future. J. Environ. Eng. 2010, 136, 878–889. [Google Scholar] [CrossRef]
- NYCDOT Street Design Manual. 2022. Available online: https://www.nycstreetdesign.info/ (accessed on 22 January 2023).
- NRCS Urban Hydrology for Small Watersheds TR-55. USDA Nat Resour Conserv Serv Conserv Engeneering Div Tech Release 55. 1986, 164. Technical Release 55. Available online: https://www.hydrocad.net/pdf/TR-55%20Manual.pdf (accessed on 22 January 2023).
- Ponce, V.M.; Hawkins, R.H. Runoff Curve Number: Has It Reached Maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Sanders, R.A. Urban vegetation impacts on the hydrology of Dayton, Ohio. Urban Ecol. 1986, 9, 361–376. [Google Scholar] [CrossRef]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological performance of extensive green roofs in New York City: Observations and multi-year modeling of three full-scale systems. Environ. Res. Lett. 2013, 8, 024036. [Google Scholar] [CrossRef]
- Berretta, C.; Poe¨, S.; Stovin, V. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics. J. Hydrol. 2014, 511, 374–386. [Google Scholar] [CrossRef]
- Hirabayashi, S.; i-Tree Streets/Design/Eco Rainfall Interception Model Comparisons. I-Tree Tools. 2013, pp. 1–8. Available online: https://www.itreetools.org/eco/resources/iTree_Streets_Design_Eco_Rainfall_Interception_Model_Comparisons.pdf (accessed on 22 January 2023).
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions; US Department of Agriculture Forest Service: Washington, DC, USA, 2013; p. 21. Available online: https://www.itreetools.org/eco/resources/iTree_Eco_Precipitation_Interception_Model_Descriptions.pdf (accessed on 22 January 2023).
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover change in U.S. cities. Urban For. Urban Green 2012, 11, 21–30. [Google Scholar] [CrossRef] [Green Version]
- McPherson, E.G.; van Doorn, N.; de Goede, J. Structure, function and value of street trees in California, USA. Urban For Urban Green 2016, 17, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Shetty, N.H.; Mailloux, B.J.; Mcgillis, W.R.; Culligan, P.J. Science of the Total Environment Observations of the seasonal buildup and washout of salts in urban bioswale soil. Sci. Total Environ. 2020, 722, 137834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shetty, N.H. Estimating Stormwater Infiltration and Canopy Interception for Street Tree Pits in Manhattan, New York. Forests 2023, 14, 216. https://doi.org/10.3390/f14020216
Shetty NH. Estimating Stormwater Infiltration and Canopy Interception for Street Tree Pits in Manhattan, New York. Forests. 2023; 14(2):216. https://doi.org/10.3390/f14020216
Chicago/Turabian StyleShetty, Nandan Hara. 2023. "Estimating Stormwater Infiltration and Canopy Interception for Street Tree Pits in Manhattan, New York" Forests 14, no. 2: 216. https://doi.org/10.3390/f14020216
APA StyleShetty, N. H. (2023). Estimating Stormwater Infiltration and Canopy Interception for Street Tree Pits in Manhattan, New York. Forests, 14(2), 216. https://doi.org/10.3390/f14020216