Soil-Available Nutrients Associated with Soil Chemical and Aggregate Properties following Vegetation Restoration in Western Sichuan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Soil Chemical and Physical Analyses
2.4. Statistical Analyses
3. Result
3.1. General Soil Properties
3.2. Aggregate Size Fractions and Stability
3.3. Relationships between Soil-Available Nutrients and Aggregate Properties
4. Discussion
4.1. The Chemical Properties of the Six Soil Types
4.2. Soil Aggregate Properties of the Six Soil Types
4.3. Relationship between General Soil Properties and Aggregate Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Biol. 2017, 23, 3808–3824. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, W.M.; Pastor, J.; Zinke, P.J.; Stangenberger, A.G. Global patterns of soil nitrogen storage. Nature 1985, 317, 613–616. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Pokharel, P.; Liu, L.; Qiao, J.; Wang, Y.; An, S.; Chang, S.X. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biol. Biochem. 2022, 174, 108814. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Gargallo Garriga, A.; Sardans, J.; Pérez Trujillo, M.; Oravec, M.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Peñuelas, J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015, 207, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Schinner, F.; Öhlinger, R.; Kandeler, E.; Margesin, R. Methods in Soil Biology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Peterson, D.L.; Rolfe, G.L. Temporal variation in nutrient status of a floodplain forest soil. Forest Ecol. Manag. 1985, 12, 73–82. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S.; Ghafoor, A.; Murtaza, G. Amelioration strategies for sodic soils: A review. Land Degrad. Dev. 2001, 12, 357–386. [Google Scholar] [CrossRef]
- Havlin, J.L. Soil: Fertility and Nutrient Management; Landscape and land capacity; CRC Press: Boca Raton, FL, USA, 2020; pp. 251–265. [Google Scholar]
- Ross, D.S.; Matschonat, G.; Skyllberg, U. Cation exchange in forest soils: The need for a new perspective. Eur. J. Soil Sci. 2008, 59, 1141–1159. [Google Scholar] [CrossRef]
- Bai, Y.; Xue, W.; Yan, Y.; Zuo, W.; Shan, Y.; Feng, K. The challenge of improving coastal mudflat soil: Formation and stability of organo-mineral complexes. Land Degrad. Dev. 2018, 29, 1074–1080. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Zheng, Z.; Chen, H.Y. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci. Total Environ. 2019, 654, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- van Nes, E.H.; Scheffer, M. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 2005, 86, 1797–1807. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, M.; Meng, Z.; Liu, S.; Sun, P.; Yang, T. Assessing the impact of forest change and climate variability on dry season runoff by an improved single watershed approach: A comparative study in two large watersheds, China. Forests 2018, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Gong, Y.; Wu, Q.; Li, Y.; Liu, Y.; Zhu, D. Content and Ecological Stoichiometry Characteristics of Organic Carbon, Nitrogen and Phosphorus of Typical Soils in Sub-alpine/Alpine Mountain of Western Sichuan. J. Nat. Resour. 2018, 33, 161–172. (In Chinese) [Google Scholar]
- Lin, Z.; Wu, T.; Xiao, Y.; Rao, E.; Shi, X.; Ouyang, Z. Protecting biodiversity to support ecosystem services: An analysis of trade-offs and synergies in southwestern China. J. Appl. Ecol. 2022, 59, 2440–2451. [Google Scholar] [CrossRef]
- Stokes, A.; Douglas, G.B.; aFourcaud, T.; Giadrossich, F.; Gillies, C.; Hubble, T.; Kim, J.H.; Loades, K.W.; Mao, Z.; McIvor, I.R. Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant Soil 2014, 377, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wang, D.; Farooq, T.H.; Luo, K.; Wang, W.; Qin, M.; Chen, S. Effects of restoration strategies on wetland: A case-study of Xinqiang River National Wetland Park. Land Degrad. Dev. 2022, 33, 1114–1127. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in C hina’s ‘Grain-for-Green’Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zeng, Y.; Wang, L.; Wang, S. Responses of soil nutrients to vegetation restoration in China. Reg. Environ. Chang. 2020, 20, 82. [Google Scholar] [CrossRef]
- Wei, H.; Deng, Y.; Lin, L.; Wang, J.; Huang, J. Improved soil composition promotes nutrient recovery during vegetation restoration in karst peak-cluster depressions. Catena 2023, 222, 106769. [Google Scholar] [CrossRef]
- McKenzie, H.A.; Wallace, H.S. The Kjeldahl determination of nitrogen: A critical study of digestion conditions-temperature, catalyst, and oxidizing agent. Aust. J. Chem. 1954, 7, 55–70. [Google Scholar] [CrossRef]
- Kouno, K.; Tuchiya, Y.; Ando, T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 1995, 27, 1353–1357. [Google Scholar] [CrossRef]
- Mc Lean, E.O.; Watson, M.E. Soil measurements of plant-available potassium. Potassium Agric. 1985, 277–308. [Google Scholar] [CrossRef]
- Crovo, O.; Aburto, F.; Da Costa Reidel, C.; Montecino, F.; Rodríguez, R. Effects of livestock grazing on soil health and recovery of a degraded Andean Araucaria Forest. Land Degrad. Dev. 2021, 32, 4907–4919. [Google Scholar] [CrossRef]
- Zarif, N.; Khan, A.; Wang, Q. Linking Soil Acidity to P Fractions and Exchangeable Base Cations under Increased N and P Fertilization of Mono and Mixed Plantations in Northeast China. Forests 2020, 11, 1274. [Google Scholar] [CrossRef]
- Blaser, P.; Walthert, L.; Zimmermann, S.; Graf Pannatier, E.; Luster, J. Classification schemes for the acidity, base saturation, and acidification status of forest soils in Switzerland. J. Plant Nutr. Soil Sci. 2008, 171, 163–170. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Yang, S.; Liu, F.; Song, X.; Lu, Y.; Li, D.; Zhao, Y.; Zhang, G. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging: A case study in the Heihe River Basin, northwest China. Ecol. Indic. 2019, 102, 252–264. [Google Scholar] [CrossRef]
- Chai, Y.; Zeng, X.; Shengzhe, E.; Che, Z.; Bai, L.; Su, S.; Wang, Y. The stability mechanism for organic carbon of aggregate fractions in the irrigated desert soil based on the long-term fertilizer experiment of China. Catena 2019, 173, 312–320. [Google Scholar] [CrossRef]
- Okolo, C.C.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Eze, P.N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agric. Ecosyst. Environ. 2020, 297, 106924. [Google Scholar] [CrossRef]
- Pennanen, T. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—A summary of the use of phospholipid fatty acids, Biology and 3H-thymidine incorporation methods in field studies. Geoderma 2001, 100, 91–126. [Google Scholar] [CrossRef]
- Ondrasek, G.; Begić, H.B.; Zovko, M.; Filipović, L.; Meriño-Gergichevich, C.; Savić, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar]
- Zhang, Y.; Xu, X.; Li, Z.; Liu, M.; Xu, C.; Zhang, R.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.C.; Shukla, S.P. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef]
- Boudjabi, S.; Chenchouni, H. Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena 2022, 210, 105910. [Google Scholar] [CrossRef]
- Gamalero, E.; Bona, E.; Todeschini, V.; Lingua, G. Saline and arid soils: Impact on bacteria, plants, and their interaction. Biology 2020, 9, 116. [Google Scholar] [CrossRef]
- Schofield, R.; Thomas, D.S.; Kirkby, M.J. Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degrad. Dev. 2001, 12, 163–181. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Eslami, S.F.; Keesstra, S. Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls. Catena 2018, 167, 385–398. [Google Scholar] [CrossRef]
- Pihlap, E.; Vuko, M.; Lucas, M.; Steffens, M.; Schloter, M.; Vetterlein, D.; Endenich, M.; Kögel-Knabner, I. Initial soil formation in an agriculturally reclaimed open-cast mining area-the role of management and loess parent material. Soil Tillage Res. 2019, 191, 224–237. [Google Scholar] [CrossRef]
- Liski, J.; Nissinen, A.; Erhard, M.; Taskinen, O. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob. Chang. Biol. 2003, 9, 575–584. [Google Scholar] [CrossRef]
- Brandt, C.J. The size distribution of throughfall drops under vegetation canopies. Catena 1989, 16, 507–524. [Google Scholar] [CrossRef]
- Hoorman, J.J.; Sá, J.; Reeder, R. The biology of soil compaction. Soil Tillage Res. 2011, 68, 49–57. [Google Scholar]
- Oades, J.M.; Gillman, G.P.; Uehara, G.; Hue, N.V.; Van Noordwijk, M.; Robertson, G.P.; Wada, K. Interactions of soil organic matter and variable-charge clays. Dyn. Soil Org. Matter Trop. Ecosyst. 1989, 3, 69–96. [Google Scholar]
- Meimaroglou, N.; Mouzakis, C. Cation Exchange Capacity (CEC), texture, consistency and organic matter in soil assessment for earth construction: The case of earth mortars. Constr. Build. Mater. 2019, 221, 27–39. [Google Scholar] [CrossRef]
- Alemayehu, B.; Teshome, H. Soil colloids, types and their properties: A review. Open J. Bioinform. Biostat. 2021, 5, 8–13. [Google Scholar]
- Zhou, J.; Saeidi, N.; Wick, L.Y.; Kopinke, F.; Georgi, A. Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters. Sci. Total Environ. 2021, 794, 148508. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.; Li, J.; Cheng, K.; Xue, Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Gao, Z.; Liao, K.; Zhu, Q.; Zhu, J. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
Code | Soil Type | Latitude (m) | Vegetation Composition |
---|---|---|---|
S1 | Subalpine meadow soil | 3432–4136 | Shrub meadow, such as Salix cupularis Rehd., Rhododendron simsii Planch.; Subalpine meadow, such as Rhododendron watsonii Hemsl. et Wils., Sibiraea angustata (Rehd.) Hand.-Mazz., Rhododendron amesiae Rehd. et Wils., Potentilla fruticose L., Lonicera rupicola Hook. f. et Thoms. |
S2 | Meadow soil | 3521–3543 | Meadow |
S3 | Dark brown soil | 3405–3737 | Picea asperata Mast., Abies fabri Craib, Cupressus chengiana Hu, Rhododendron simsii Planch. |
S4 | Brown soil | 2534–3370 | Picea asperata Mast., Cupressus chengiana Hu, Larix gmelinii Kuzen., Populus davidiana Dode, Tsuga chinensis (Franch.) Pritz., Betula albosinensis Burkill, Betula platyphylla Suk., Acer caesium Wall. ex Brandis |
S5 | Yellow-brown soil | 2330–1842 | Cupressus chengiana S. Y. Hu, Pinus tabuliformis Carriere, Robinia pseudoacacia L., Ailanthus altissima (Mill.) Swingle, Malus pumila Mill., Zanthoxylum bungeanum Maxim., Betula platyphylla Suk., Quercus glauca Thunb. |
S6 | Cinnamon soil | 1319–1694 | Returning farmland to forest, such as Platycladus orientalis (L.) Franco, Cupressus chengiana S. Y. Hu, Pinus tabuliformis Carriere, Ailanthus altissima (Mill.) Swingle |
Df | Sum Sq | Mean Sq | F Valve | p Value | ||
---|---|---|---|---|---|---|
AN | Soil type | 5 | 171,308 | 34,262 | 11.951 | *** |
Horizon | 2 | 321,571 | 160,785 | 56.084 | *** | |
Soil type×Horizon | 10 | 47,901 | 4790 | 1.671 | 0.0944 | |
AP | Soil type | 5 | 107,609 | 21,522 | 5.975 | *** |
Horizon | 2 | 6 | 3 | 0.001 | 0.999 | |
Soil type×Horizon | 10 | 24,656 | 2466 | 0.684 | 0.737 | |
AK | Soil type | 5 | 24,685 | 4937 | 1.724 | 0.134 |
Horizon | 2 | 62,015 | 31,008 | 10.826 | *** | |
Soil type×Horizon | 10 | 14,535 | 1454 | 0.507 | 0.882 |
Soil Type | Horizon | Non-Water-Stable Aggregates | Water-Stable Aggregates | ||||
---|---|---|---|---|---|---|---|
MWD | GMD | D | MWD | GMD | D | ||
S1 | A | 4.3 ± 0.95 a | 1.52 ± 0.26 a | 1.86 ± 0.37 a | 1.94 ± 0.56 a | 1.03 ± 0.24 a | 2.03 ± 0.4 a |
B | 4.31 ± 0.88 a | 1.54 ± 0.19 a | 1.83 ± 0.3 a | 1.84 ± 0.67 a | 0.96 ± 0.31 a | 2.1 ± 0.51 a | |
C | 5.01 ± 1.13 a | 1.69 ± 0.27 a | 1.56 ± 0.5 a | 1.43 ± 0.75 a | 0.79 ± 0.31 a | 2.38 ± 0.43 a | |
Mean | 4.51 ± 1.01 AB | 1.57 ± 0.25 AB | 1.76 ± 0.41 BC | 1.79 ± 0.65 AB | 0.94 ± 0.29 A | 2.14 ± 0.45 C | |
S2 | A | 3.43 ± 0.65 a | 1.26 ± 0.18 a | 2.22 ± 0.2 a | 1.23 ± 0.35 a | 0.74 ± 0.17 a | 2.49 ± 0.19 a |
B | 3.43 ± 1.94 a | 1.23 ± 0.47 a | 2.17 ± 0.55 a | 0.67 ± 0.52 a | 0.53 ± 0.17 a | 2.74 ± 0.21 a | |
C | 3.07 ± 1.99 a | 1.17 ± 0.5 a | 2.24 ± 0.6 a | 1.77 ± 1.05 a | 0.9 ± 0.44 a | 2.14 ± 0.67 a | |
Mean | 3.31 ± 1.42 C | 1.22 ± 0.38 C | 2.21 ± 0.44 A | 1.15 ± 0.77 C | 0.71 ± 0.30 C | 2.48 ± 0.43 A | |
S3 | A | 4.2 ± 0.66 a | 1.52 ± 0.18 a | 1.88 ± 0.26 a | 2.11 ± 0.39 a | 1.11 ± 0.16 a | 1.91 ± 0.3 a |
B | 4.31 ± 0.72 a | 1.57 ± 0.16 a | 1.81 ± 0.26 a | 1.91 ± 0.49 a | 1 ± 0.24 ab | 2.08 ± 0.36 a | |
C | 4.65 ± 0.75 a | 1.63 ± 0.18 a | 1.71 ± 0.3 a | 1.67 ± 0.63 a | 0.86 ± 0.24 b | 2.29 ± 0.34 a | |
Mean | 4.37 ± 0.72 AB | 1.57 ± 0.17 AB | 1.8 ± 0.27 BC | 1.92 ± 0.52 A | 0.99 ± 0.23 A | 2.08 ± 0.36 C | |
S4 | A | 3.96 ± 0.69 a | 1.44 ± 0.19 a | 1.99 ± 0.26 a | 2.11 ± 0.26 a | 1.09 ± 0.11 a | 1.96 ± 0.21 a |
B | 4.21 ± 0.77 a | 1.51 ± 0.21 a | 1.89 ± 0.32 a | 1.83 ± 0.32 a | 0.95 ± 0.15 a | 2.19 ± 0.22 a | |
C | 4.75 ± 1.1 a | 1.61 ± 0.33 a | 1.67 ± 0.52 a | 1.7 ± 0.55 a | 0.88 ± 0.22 a | 2.26 ± 0.32 a | |
Mean | 4.29 ± 0.86 B | 1.52 ± 0.24 B | 1.86 ± 0.38 B | 1.87 ± 0.42 A | 0.97 ± 0.18 A | 2.14 ± 0.27 C | |
S5 | A | 4.43 ± 0.86 a | 1.57 ± 0.26 a | 1.76 ± 0.49 a | 1.88 ± 0.9 a | 0.97 ± 0.39 a | 2.04 ± 0.64 a |
B | 5.04 ± 0.67 a | 1.71 ± 0.22 a | 1.53 ± 0.45 a | 1.49 ± 0.72 a | 0.82 ± 0.26 a | 2.34 ± 0.35 a | |
C | 5.33 ± 0.28 a | 1.79 ± 0.11 a | 1.43 ± 0.21 a | 1.73 ± 0.51 a | 0.87 ± 0.16 a | 2.27 ± 0.24 a | |
Mean | 4.9 ± 0.76 A | 1.68 ± 0.23 A | 1.59 ± 0.44 C | 1.72 ± 0.74 AB | 0.9 ± 0.29 AB | 2.19 ± 0.47 BC | |
S6 | A | 3.19 ± 0.73 a | 1.18 ± 0.22 a | 2.29 ± 0.23 a | 1.52 ± 0.51 a | 0.8 ± 0.2 a | 2.37 ± 0.28 a |
B | 3.79 ± 1.27 a | 1.31 ± 0.36 a | 2.06 ± 0.59 a | 1.82 ± 0.32 a | 0.89 ± 0.13 a | 2.25 ± 0.19 a | |
C | 4.57 ± 0.87 a | 1.55 ± 0.27 a | 1.81 ± 0.39 a | 1.61 ± 0.53 a | 0.8 ± 0.17 a | 2.36 ± 0.24 a | |
Mean | 3.66 ± 0.92 C | 1.29 ± 0.26 C | 2.11 ± 0.32 A | 1.54 ± 0.45 B | 0.83 ± 0.17 BC | 2.37 ± 0.24 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Che, M.; Hu, W.; Wu, Q.; Cheng, Y.; Hu, X.; Xiong, S.; Zheng, J.; Gong, Y. Soil-Available Nutrients Associated with Soil Chemical and Aggregate Properties following Vegetation Restoration in Western Sichuan, China. Forests 2023, 14, 259. https://doi.org/10.3390/f14020259
Cheng H, Che M, Hu W, Wu Q, Cheng Y, Hu X, Xiong S, Zheng J, Gong Y. Soil-Available Nutrients Associated with Soil Chemical and Aggregate Properties following Vegetation Restoration in Western Sichuan, China. Forests. 2023; 14(2):259. https://doi.org/10.3390/f14020259
Chicago/Turabian StyleCheng, Huan, Mingxuan Che, Wangyang Hu, Qiang Wu, Yilun Cheng, Xu Hu, Shichen Xiong, Jiangkun Zheng, and Yuanbo Gong. 2023. "Soil-Available Nutrients Associated with Soil Chemical and Aggregate Properties following Vegetation Restoration in Western Sichuan, China" Forests 14, no. 2: 259. https://doi.org/10.3390/f14020259
APA StyleCheng, H., Che, M., Hu, W., Wu, Q., Cheng, Y., Hu, X., Xiong, S., Zheng, J., & Gong, Y. (2023). Soil-Available Nutrients Associated with Soil Chemical and Aggregate Properties following Vegetation Restoration in Western Sichuan, China. Forests, 14(2), 259. https://doi.org/10.3390/f14020259