Differences of Moss Mites Communities at Different Vegetation Succession Stages in Subalpine Wetland (Jiulongchi, Fanjing Mountain), Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Selection and Settings
2.3. Isolation and Identification of Moss Mites
2.4. Data Collation and Analysis
3. Results and Analysis
3.1. Abundance and Dominance of Moss Mites
3.2. Moss Mites Community Diversity
3.3. Moss Mites Community Similarity
3.4. Ecological Taxa of Predatory Moss Mites
3.5. Ecological Taxa of Moss Mites (Acari: Oribatida)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Calculation Formula Used in the Article and Its Determination Threshold
- Abundance (A): expressed as the number of individual moss mites. We did not use density to express abundance because the number of surface mosses sampled (9) and the area sampled (15 × 15 cm) were consistent across vegetation succession stages.
- Species abundance (S): indicates the number of the lowest level taxonomic unit (genus) of moss mites
- Dominance index (D) [56]: mites abundance as a percentage of total community abundance. Judgment threshold: genera with D >10% are dominant taxa (genera), 1% < D ≤ 10% are common genera, 0.5% < D ≤ 1% are rare taxa, and D ≤ 0.5% are extremely rare taxa.
- Shannon-Wiener diversity index (H′) [91]. The formula is as follows.
- The Pielou evenness index (J) [92]. The formula is as follows.
- Sorensen similarity index [45]: qualitative analysis of community similarity using genus numbers, taking into account differences in species composition. The formula is as follows.
- Morisita-Horn similarity index (CMH) [93]: the number of genera and their individual numbers were used to quantify community similarity, taking into account the abundance of each species. The formula is as follows.
- Ecological taxa of predatory moss mites (Mesostigmata: Gamasina) [53,68] The maturity index (MI) of predatory moss mites is analysed using a threshold value of MI < 0.5 for r-selection, MI = 0.5 for K- or r-selection, and MI > 0.5 for K-selection. The formula is as follows.
- Ecological taxa of moss Oribatid Mites (Acari:Oribatid). MGP analysis is carried out on the percentage of moss mite genera and the percentage of moss mite individuals corresponding to each group, based on the classification of Oribatida taxa by Li et al. (1988) [47], and the taxon discrimination thresholds are shown in Table A2.
Family | K-Value | Family | r-Value |
---|---|---|---|
Pachylaelapidae | 1 | Ologamasidae | 1 |
Veigaiidae | 2 | Ascidae | 1 |
Rhodacaridae | 2 | Podocinidae | 1 |
Veigaiidae | 2 | Blattisociidae | 2 |
Parholaspididae | 2 | Parasitidae | 4 |
Uropodidae | 3 | ||
Ameroseiidae | 3 | ||
Zerconidae | 3 |
Community Types | Abbreviation | Value Ranges of Mites (Oribatida) Group |
---|---|---|
Macropylina type | M | M > 50% |
Gymnonota type | G | G > 50% |
Poronota type | P | P > 50% |
Overall type | O | 20% < M, G, P < 50% |
Macropylina-Gymnonota type | MG | M, G = 20–50%, P < 20% |
Gymnonota-Poronota type | GP | G, P = 20–50%, M < 20% |
Macropylina-Poronota type | MP | M, P = 20–50%, G < 20% |
Appendix B
Family | Species | PC | EY-C | SF | IL | p Value | Total | |||||
A | D | A | D | A | D | A | D | A | D | |||
Mesostigmata | ||||||||||||
Uropodidae | Uropoda | 3 | 0.36 | 6 | 0.27 | 18 | 0.61 | 8 | 0.26 | ns | 35 | 0.39 |
Trematuridae | Nenteria | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Parasitidae | Parasitus | 0 | 0 | 3 | 0.14 | 2 | 0.07 | 3 | 0.1 | ns | 8 | 0.09 |
Neogamasus | 0 | 0 | 11 | 0.5 | 1 | 0.03 | 9 | 0.3 | 0.012 | 21 | 0.23 | |
Zerconidae | Zercon | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Veigaiidae | Veigaia | 0 | 0 | 0 | 0 | 2 | 0.07 | 4 | 0.13 | ns | 6 | 0.07 |
Rhodacaridae | Gamasellus | 0 | 0 | 13 | 0.59 | 175 | 5.88 | 44 | 1.45 | 0.026 | 232 | 2.56 |
Ologamasidae | Gamasiphis | 0 | 0 | 0 | 0 | 1 | 0.03 | 3 | 0.1 | ns | 4 | 0.04 |
Macrochelidae | Macrocheles | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Parholaspididae | Gamasholaspis | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.07 | ns | 2 | 0.02 |
Pachylaelapidae | Pachylaelaps | 0 | 0 | 1 | 0.05 | 0 | 0 | 0 | 0 | ns | 1 | 0.01 |
Ascidae | Asca | 0 | 0 | 4 | 0.18 | 19 | 0.64 | 47 | 1.55 | 0.022 | 70 | 0.77 |
Ameroseiidae | Ameroseius | 0 | 0 | 2 | 0.09 | 4 | 0.13 | 0 | 0 | ns | 6 | 0.07 |
Podocinidae | Podocinum | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Blattisociidae | Cheiroseius | 3 | 0.36 | 3 | 0.14 | 0 | 0 | 1 | 0.03 | ns | 7 | 0.08 |
Trombidiformes | ||||||||||||
Bdellidae | Bdella | 0 | 0 | 3 | 0.14 | 0 | 0 | 0 | 0 | ns | 3 | 0.03 |
Penthaleidae | Penthaleus | 0 | 0 | 17 | 0.77 | 0 | 0 | 4 | 0.13 | ns | 21 | 0.23 |
Tanaupodidae | Eothrombium | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Microtrombidiidae | Microtrombidium | 0 | 0 | 1 | 0.05 | 1 | 0.03 | 1 | 0.03 | ns | 3 | 0.03 |
Johnstonianidae | Diplothrombium | 1 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | ns | 1 | 0.01 |
Sarcoptiformes | ||||||||||||
Mesoplophoridae | Archoplophora | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 |
Hypochthoniidae | Hypochthonius | 2 | 0.24 | 1 | 0.05 | 135 | 4.54 | 21 | 0.69 | 0.022 | 159 | 1.76 |
Eniochthoniidae | Eniochthonius | 0 | 0 | 0 | 0 | 37 | 1.24 | 7 | 0.23 | ns | 44 | 0.49 |
Liochthonius | 0 | 0 | 6 | 0.27 | 4 | 0.13 | 0 | 0 | ns | 10 | 0.11 | |
Phthiracaeidae | Atropacarus | 2 | 0.24 | 13 | 0.59 | 1 | 0.03 | 0 | 0 | 0.021 | 16 | 0.18 |
Steganacarus | 0 | 0 | 3 | 0.14 | 0 | 0 | 0 | 0 | ns | 3 | 0.03 | |
Oribotritiidae | Protoribotritia | 0 | 0 | 1 | 0.05 | 0 | 0 | 2 | 0.07 | ns | 3 | 0.03 |
Camisiidae | Camisia | 63 | 7.61 | 2 | 0.09 | 0 | 0 | 89 | 2.93 | 0.028 | 154 | 1.7 |
Platynothrus | 0 | 0 | 0 | 0 | 0 | 0 | 86 | 2.83 | ns | 86 | 0.95 | |
Nothridae | Nothrus | 0 | 0 | 0 | 0 | 22 | 0.74 | 0 | 0 | ns | 22 | 0.24 |
Nanhermanniidae | Nanhermannia | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0.2 | 0.004 | 6 | 0.07 |
Malaconothridae | Malaconothrus | 0 | 0 | 9 | 0.41 | 0 | 0 | 0 | 0 | ns | 9 | 0.1 |
Trimalaconothrus | 23 | 2.78 | 8 | 0.36 | 3 | 0.1 | 11 | 0.36 | ns | 45 | 0.5 | |
Hermanniellidae | Hermanniella | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0.26 | ns | 8 | 0.09 |
Issaniella | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.07 | ns | 2 | 0.02 | |
Anderemaeidae | Cristeremaeus | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.07 | ns | 2 | 0.02 |
Arceremaeidae | Tecteremaeus | 0 | 0 | 3 | 0.14 | 0 | 0 | 0 | 0 | ns | 3 | 0.03 |
Carabodidae | Hardybodes | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 1.25 | ns | 38 | 0.42 |
Suctobelbidae | Suctobelbella | 3 | 0.36 | 3 | 0.14 | 15 | 0.5 | 19 | 0.63 | ns | 40 | 0.44 |
Suctobelbila | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0.4 | 0.023 | 12 | 0.13 | |
Oppiidae | Amerioppia | 2 | 0.24 | 10 | 0.45 | 6 | 0.2 | 7 | 0.23 | ns | 25 | 0.28 |
Brachioppiella | 0 | 0 | 1 | 0.05 | 85 | 2.86 | 109 | 3.59 | ns | 195 | 2.15 | |
Multioppia | 0 | 0 | 4 | 0.18 | 0 | 0 | 0 | 0 | ns | 4 | 0.04 | |
Oxyoppia | 0 | 0 | 1 | 0.05 | 0 | 0 | 0 | 0 | ns | 1 | 0.01 | |
Ramusella | 9 | 1.09 | 13 | 0.59 | 45 | 1.51 | 42 | 1.38 | ns | 109 | 1.2 | |
Stachyoppia | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0.13 | ns | 4 | 0.04 | |
Striatoppia | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.16 | ns | 5 | 0.06 | |
Tectocepheidae | Tectocepheus | 309 | 37.32 | 311 | 14.02 | 165 | 5.55 | 285 | 9.39 | ns | 1070 | 11.81 |
Scutoverticidae | Scutovertex | 0 | 0 | 1 | 0.05 | 1 | 0.03 | 0 | 0 | ns | 2 | 0.02 |
Phenopelopidae | Eupelops | 12 | 1.45 | 579 | 26.09 | 203 | 6.82 | 61 | 2.01 | 0.001 | 855 | 9.44 |
Achipteriidae | Achipteria | 0 | 0 | 66 | 2.97 | 82 | 2.76 | 32 | 1.05 | ns | 180 | 1.99 |
Parachipteria | 9 | 1.09 | 340 | 15.32 | 1038 | 34.89 | 1323 | 43.58 | 0.001 | 2710 | 29.92 | |
Tegeocranellidae | Tegeocranellus | 0 | 0 | 15 | 0.68 | 0 | 0 | 43 | 1.42 | ns | 58 | 0.64 |
Oribatellidae | Oribatella | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0.16 | ns | 5 | 0.06 |
Parakalummidae | Neoribates | 74 | 8.94 | 2 | 0.09 | 6 | 0.2 | 0 | 0 | 0.01 | 82 | 0.91 |
Protokalumna | 0 | 0 | 4 | 0.18 | 5 | 0.17 | 7 | 0.23 | ns | 16 | 0.18 | |
Oribatulidae | Eporibatula | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.07 | ns | 2 | 0.02 |
Geminozetes | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | ns | 1 | 0.01 | |
Annerlia | 1 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | ns | 1 | 0.01 | |
Scheloribatidae | Scheloribates | 0 | 0 | 33 | 1.49 | 19 | 0.64 | 0 | 0 | ns | 52 | 0.57 |
Haplozetidae | Haplozetes | 16 | 1.93 | 127 | 5.72 | 40 | 1.34 | 366 | 12.06 | 0 | 549 | 6.06 |
Incabates | 5 | 0.6 | 6 | 0.27 | 6 | 0.2 | 17 | 0.56 | ns | 34 | 0.38 | |
Ceratozetidae | Ceratobates | 0 | 0 | 0 | 0 | 2 | 0.07 | 0 | 0 | ns | 2 | 0.02 |
Fuscozetes | 287 | 34.66 | 575 | 25.91 | 602 | 20.24 | 106 | 3.49 | 0.022 | 1570 | 17.33 | |
Melanozetes | 3 | 0.36 | 11 | 0.5 | 81 | 2.72 | 0 | 0 | ns | 95 | 1.05 | |
Mycobatidae | Mycobates | 0 | 0 | 0 | 0 | 2 | 0.07 | 3 | 0.1 | ns | 5 | 0.06 |
Humerobatidae | Humerobates | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.07 | ns | 2 | 0.02 |
Galumannidae | Trichogalumna | 0 | 0 | 7 | 0.32 | 147 | 4.94 | 181 | 5.96 | 0 | 335 | 3.7 |
Acaridae | Verschthonius | 1 | 0.12 | 0 | 0 | 0 | 0 | 0 | 0 | ns | 1 | 0.01 |
Total abundance | 828 | 2219 | 2975 | 3036 | 9058 | |||||||
Total species abundance | 20 | 40 | 34 | 50 | 69 | |||||||
Total number of family | 11 | 29 | 25 | 39 | 49 |
Appendix C. Photos s of the Dominant Genus of Moss Mites
Appendix D
Genus | PCA1 | PCA2 |
Gamasellus | 0.667 | −0.265 |
Hypochthonius | 0.614 | −0.377 |
Camisia | −0.253 | −0.402 |
Brachioppiella | 0.22 | 0.388 |
Ramusella | 0.305 | −0.372 |
Tectocepheus | 0.175 | −0.234 |
Eupelops | 0.711 | 0.509 |
Achipteria | 0.346 | 0.642 |
Parachipteria | 0.917 | 0.055 |
Haplozetes | 0.299 | −0.611 |
Fuscozetes | −0.141 | 0.854 |
Melanozetes | 0.246 | 0.76 |
Trichogalumna | 0.803 | −0.253 |
References
- Wang, K.; Wang, C.; Feng, X.M.; Wu, X.; Fu, B.J. Research progress on the relationship between biodiversity and ecosystem multifunctionality. Acta Ecol. Sin. 2022, 42, 11–23. (In Chinese) [Google Scholar]
- Wang, H.; Zhang, X.L.; Shan, H.; Lv, C.C.; Ren, W.J.; Wen, Z.H.; Tian, Y.Q.; Weige, B.; Ni, L.Y.; Cao, T. Biodiversity buffers the impact of eutrophication on ecosystem functioning of submerged macrophytes on the Yunnan-Guizhou Plateau, Southwest China. Environ. Pollut. 2022, 314, 120210. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.H.; Stow, D.; An, L.; Chen, H.L.; Lewison, R.; Shi, L. Monitoring land-cover and land-use dynamics in Fanjingshan National Nature Reserve. Appl. Geogr. 2019, 111, 102077. [Google Scholar] [CrossRef]
- Jacot, A.P. Biological Notes on the Moss-Mites. Am. Nat. 1930, 64, 285–288. [Google Scholar] [CrossRef]
- Niedbała, W. Moss mites (Acari, Oribatida) from the Slonsk nature reserve. Biol. Bulletln PoznaŃ 2000, 37, 299–302. [Google Scholar]
- Kagainis, U.; Spungis, V. Moss mite (Acari, Oribatida) communities in the Apšuciems calcareous fen, Latvia. Acta Biol. Univ. Daugavp. 2013, 13, 39–53. [Google Scholar]
- Zhou, Z.; Chen, H.; Lin, D.D.; Wang, P.J. Mite community of epihytic bryophytes in evergreen and deciduous broad-leaved mixed forest of Fanjingshan. J. Beijing Norm. Univ. (Nat. Sci.) 2017, 53, 713–721. (In Chinese) [Google Scholar]
- Liu, W.J.; Yin, X.M.; Gong, T.; Liu, Y.; Chen, H. Community Structure of Epilithic Moss Mites and Their Response to Environmental Factors in Different Grades of Rocky Desertification Habitats. Sustainability 2022, 14, 14860. [Google Scholar] [CrossRef]
- Manu, M.; Bancila, R.I.; Onete, M. Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turk. J. Zool. 2018, 42, 673–683. [Google Scholar] [CrossRef]
- Patiño, J.; Vanderpoorten, A. Bryophyte biogeography. Crit. Rev. Plant Sci. 2018, 37, 175–209. [Google Scholar] [CrossRef]
- Gundale, M.J.; Deluca, T.H.; Nordin, A. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob. Change Biol. 2011, 17, 2743–2753. [Google Scholar] [CrossRef]
- Turetsky, M.R. The role of bryophytes in carbon and nitrogen cycling. Bryologist 2003, 106, 395–409. [Google Scholar] [CrossRef]
- Kuriki, G. A review of ecological studies on oribatid mites in Sphagnum mires. Jpn. J. Ecol. 2000, 50, 141–153. [Google Scholar]
- Klimek, A.; Rolbiecki, S. Moss mites (Acari: Oribatida) in soil revitalizing: A chance for practical application in silviculture. Biol. Lett. 2014, 51, 71–82. [Google Scholar] [CrossRef]
- Jacot, A.P. Moss-Mites as Spore-Bearers. Mycologia 1930, 22, 94–96. [Google Scholar] [CrossRef]
- Pereira, H.M.; Leadley, P.W.; Proenca, V.; Alkemade, R.; Scharlemann, J.P.W.; Fernandez-Manjarres, J.F.; Araujo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W.L. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Siqueira, M.F.D.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Chen, S.; Milne, R.I.; Zhou, R.; Meng, K.; Yin, Q.; Guo, W.; Ma, Y.; Mao, K.; Xu, K.; Kim, Y.D.; et al. When tropical and subtropical congeners met: Multiple ancient hybridization events within Eriobotrya were detected in the Yunnan-Guizhou Plateau, a tropical-subtropical transition area in China. Mol. Ecol. 2021, 31, 1543–1561. [Google Scholar] [CrossRef]
- Cameron, A.J.; Nickless, G. Use of mosses as collectors of airborne heavy metals near a smelting complex. Water Air Soil Pollut. 1977, 7, 117–125. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, C.; Cheng, G.; Yu, X.; Cao, T. Response of bryophytes to global change and its bioindicatortation. Chin. J. Appl. Ecol. 2002, 13, 895–900. [Google Scholar]
- Borcard, D.; Matthey, W. Effect of a controlled trampling of Sphagnum mosses on their oribatid mite assemblages (Acari, Oribatei). Pedobiologia 1995, 39, 219–230. [Google Scholar]
- Liu, P.; Tang, K.X.; Chen, H.; Liang, J.; Cai, X.L. Species Diversity on Moss Soil Microhabitat in Heilongjiang Province. Sci. Technol. Rev. 2012, 30, 69–72. (In Chinese) [Google Scholar]
- Daniel, B. Typology of the Oribatid mite species assemblages of the peat-bog Le Cachot (Swiss Jura mountains): Indicator species or characteristic species groups? Bull. Soc. Neuchatel. Sci. Nat. 1996, 119, 63–73. [Google Scholar]
- Wang, Q.T.; Zhao, C.; Zheng, Y.; Ashiq, M.W.; Xu, M. Moss coverage improves the microclimates of subalpine forests: Implications of Qinghai spruce recruitment in Qilian Mountains, northwest China. Pak. J. Bot. 2019, 51, 1719–1735. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, H.M.; Gong, L.F.; Xing, X.; Huang, X.Y.; Qin, Y.M. Symbiotic Bacterial Community of Sphagnum palustre in Dajiuhu Peatland, Hubei, P.R. China. Quat. Sci. 2013, 33, 79–87. (In Chinese) [Google Scholar]
- Tang, X.P.; Huang, G.L. Study on Classification System for Wetland Types in China. For. Res. 2003, 16, 531–539. (In Chinese) [Google Scholar]
- Editorial Board of the Scientific Survey of the Fanjingshan Mountain Preserve Guizhou Province, China. Scientific Survey of The Fanjingshan Mountain Preserve Guizhou Province, China; China Environmental Science Press: Beijing, China, 1986; pp. 120–121. (In Chinese) [Google Scholar]
- Ren, A.; Hu, D.Y.; Qi, P.X.; Zhang, S.C.; Gao, H.M.; Mickan, B.S.; Xiong, Y.C.; Yuan, L.Y. Buffering effects of soil seed bank on annual plant community composition after wetland drying. Land Degrad. Dev. 2022, 1–11. [Google Scholar] [CrossRef]
- Ma, M.; Baskin, C.C.; Yu, K.; Ma, Z.; Du, G.Z. Wetland drying indirectly influences plant community and seed bank diversity through soil pH. Ecol. Indic. 2017, 80, 186–195. [Google Scholar] [CrossRef]
- Pan, L.; Jiao, D.Z.; Wang, W.F.; Guo, J.X. Soil Fauna Distribution and Diversity in Moss Communities in Zhalong National Nature Reserve Wetland. Soils 2010, 42, 536–540. [Google Scholar]
- Page, S.E.; Baird, A.J. Peatlands and Global Change: Response and Resilience. Annu. Rev. Environ. Resour. 2016, 41, 35–57. (In Chinese) [Google Scholar] [CrossRef]
- Seniczak, S.; Seniczak, A.; Gwiazdowicz, D.J.; Coulson, S.J. Community Structure of Oribatid and Gamasid Mites (Acari) in Moss-Grass Tundra in Svalbard (Spitsbergen, Norway). Arct. Antarct. Alp. Res. 2014, 46, 591–599. [Google Scholar] [CrossRef]
- Chen, P.Y.; Zhou, Q.Y.; Lin, S.J.; Qiao, Y.L.; Sun, Y.M. The changes of vegetation and climate of Jiulongchi Section of Fanjingshan Mountain in Guizhou since 10,000 years ago. Geol. Guizhou 1992, 9, 167–175. (In Chinese) [Google Scholar]
- Gao, Y.; Xiong, K.N.; Quan, M.Y.; Song, B.; Peng, H.J.; Peng, H.R.; Shen, W.D.; Bao, K.S. Holocene climate dynamics derived from pollen record of Jiulongchi wetland in Fanjing Mountain, southwest China. Quat. Int. 2019, 513, 1–7. [Google Scholar] [CrossRef]
- Liu, G.F.; Yang, M.F. Preliminary research on community structure and diversity of soil Oribatid mites in Fanjing Mountain Nature Reserve. J. Mt. Agric. Biol. 2003, 22, 27–33. (In Chinese) [Google Scholar]
- Liu, G.F.; Yang, M.F. Research on community structure and diversity of soil oribatid mites in Fanjing mountain. J. Anhui Agric. Sci. 2011, 39, 142–144, 197. (In Chinese) [Google Scholar]
- Liu, G.F.; Yang, M.F. Preliminary Research on the Soil Oribatid Fauna of Fanjing Mountain in the Genus Level. Life Sci. Res. 2012, 16, 149–152. (In Chinese) [Google Scholar]
- Liu, G.F.; Yang, M.F. Seasonal Dynamics of Soil Oribatid Mite Community in Fanjing Mountain National Nature Reserve, Guizhou Province. Chin. J. Zool. 2013, 48, 58–64. (In Chinese) [Google Scholar]
- Lin, D.D.; Chen, H.; Chen, H.; Liu, P.P.; Liu, Q.S. Soil mite community structure in the evergreen, broad-leaved forest of Fanjing mountain, China. Chin. J. Appl. Environ. Biol. 2018, 24, 1185–1194. (In Chinese) [Google Scholar]
- Wang, P.J.; Chen, H.; Zhou, Z.; Lin, D.D.; Wu, R.X.; Zhu, J.Y. Soil Mite Community Structure in Mixed Evergreen and Deciduous Broad-leaved Forest of Fanjingshan. Soils 2018, 50, 687–695. (In Chinese) [Google Scholar]
- Zhong, Y.P.; Shu, G.Y.; Yan, L.H. Analysis of the impact of the Fanjian Mountains on local climate. J. Guizhou Meteorol. 2011, 35, 25–28. (In Chinese) [Google Scholar]
- Xie, R.B.; Mao, J.; Bai, Q.Q. Preliminary Analysis on the Climatic Characteristics and Tourism Climate of Fanjingshan. J. Guizhou Meteorol. 2015, 39, 34–36. (In Chinese) [Google Scholar]
- Chen, P. Collection and investigation methods of soil animals. Chin. J. Ecol. 1983, 03, 46–51. (In Chinese) [Google Scholar]
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 1–794. [Google Scholar]
- Ying, W.Y. Pictorical Keys to Soil Animals of China; Science Press: Beijing, China, 1998; pp. 163–242, 527–562. (In Chinese) [Google Scholar]
- Yin, S.G.; Bei, N.X.; Chen, W.P. Soil Gamasid Mites in Northeast China; China Agriculture Press: Beijing, China, 2013; pp. 8–340. (In Chinese) [Google Scholar]
- Li, L.S.; Li, Y.R. Acarology; Chongqing Press: Chongqing, China, 1989; pp. 264–419. (In Chinese) [Google Scholar]
- Kamczyc, J.; Urbanowski, C.; Pers-Kamczyc, E. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Exp. Appl. Acarol. 2017, 72, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Magurran, A.E. Measuring biological diversity. Curr. Biol. 2021, 31, R1174–R1177. [Google Scholar] [CrossRef] [PubMed]
- Doblas-Miranda, E.; Sánchez-Piñero, F.; González-Megías, A. Soil macroinvertebrate fauna of a Mediterranean arid system: Composition and temporal changes in the assemblage. Soil Biol. Biochem. 2007, 39, 1916–1925. [Google Scholar] [CrossRef]
- Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil Ecol. 1998, 9, 447–452. [Google Scholar] [CrossRef]
- Aoki, J. Analysis of Oribatid Communities by relative abundance in the species and individual numbers of the three major groups (MGP-analysis). Bull. Inst. Environ. Sci. Technol. Yokohama Nat. Univ. 1983, 10, 171–176. [Google Scholar]
- Xie, G.L.; Fu, X.R.; Liu, J.L.; Wang, C.R.; Zheng, J.J. The community distribution of soil oribatida in Heze Peony Garden. Acta Ecol.Sin. 2004, 24, 693–699. (In Chinese) [Google Scholar]
- Chen, H.; Jin, D.C.; Wen, Z.H. Differences in soil mite communities in Karst Areas with different degrees of rocky desertification. Chin. J. Appl. Entomol. 2018, 55, 711–724. (In Chinese) [Google Scholar]
- Chen, H. Study on community structure of soil mites in the rocky desertification areas without and with ecological management. Ph.D. Thesis, Institute of Entomology, Guizhou University, Guiyang, China, 2018. (In Chinese). [Google Scholar]
- Lin, Y.L.; Sun, X.; Liu, D.; Dai, G.H.; Liu, J.P.; Wu, H.T. Habitat Variations of Typical Soil Arthropods Community Structure in Hani Peatland. Chin. J. Ecol. 2023, 1–14. (In Chinese) [Google Scholar]
- Zhang, H. Response Characteristics of Soil Microarthropod Community Structure in Marsh of Northeast China to Warming. Master’s Thesis, Northeast Institute of Geography and Agroecology Chinese Academy of Science, Changchun, China, 2020. (In Chinese). [Google Scholar]
- Dou, Y.J. Effects of Warming on Macro- and Meso- Soil Fauna Community and Greenhouse Gas Emissions in the Peatland, Great Hing’ an Mountains. Ph.D. Thesis, Northeast Institute of Geography and Agroecology Chinese Academy of Science, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Shao, Z.Z.; Wu, P.F. Responses of epigeic microarthropods to alpine wetland degradation. Acta Ecol. Sin. 2019, 39, 6990–7001. (In Chinese) [Google Scholar]
- Melekhina, E.N.; Kanev, V.A.; Deneva, S.V. Karst Ecosystems of Middle Timan, Russia: Soils, Plant Communities, and Soil Oribatid Mites. Diversity 2022, 14, 718. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; Kowalski, J.; Graczyk, R.; Mistrzak, M. Mites (Acari) at the edges of bog pools in Orawa–Nowy-Targ Basin (S Poland), with particular reference to the Oribatida. Biol. Lett. 2014, 51, 93–106. [Google Scholar] [CrossRef]
- Norton, R.A.; Behan-Pelletier, V.M. Eniochthonius mahunkai sp. n.(Acari: Oribatida: Eniochthoniidae), from North American peatlands, with a redescription of Eniochthonius and a key to North American species. Acta Zool. Acad. Sci. Hung. 2007, 53, 295–333. [Google Scholar]
- Murvanidze, M.; Kvavadze, E. An Inventory of Oribatid Mites, the Main Decomposers in Bogs of Colchic Lowland (Caucasus, Georgia). In Trends in Acarology; Springer: Dordrecht, The Netherlands, 2010; pp. 175–178. [Google Scholar]
- Seniczak, A.; Seniczak, S.; Iturrondobeitia, J.C.; Solhøy, T.; Flatberg, K.I. Diverse Sphagnum mosses support rich moss mite communities (Acari, Oribatida) in mires of western Norway. Wetlands 2020, 40, 1339–1351. [Google Scholar] [CrossRef]
- Gormsen, D.; Hedlund, K.; Huifu, W. Diversity of soil mite communities when managing plant communities on set-aside arable land. Appl. Soil Ecol. 2006, 31, 147–158. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhang, B.; Bu, Z.Y.; Chen, P. The characteristics of community structure of soil mites from different habitats in Changchun area. Acta Ecol. Sin. 2006, 1, 16–25. (In Chinese) [Google Scholar] [CrossRef]
- Lin, D.D. Study on the Structures and Values of Soil Mites in Fanjingshan World Natural Heritage Nomination. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2018. (In Chinese). [Google Scholar]
- Seniczak, A.; Seniczak, S.; Graczyk, R.; Kaczmarek, S.; Jordal, B.H.; Kowalski, J.; Djursvoll, P.; Roth, S.; Bolger, T. A Forest Pool as a Habitat Island for Mites in a Limestone Forest in Southern Norway. Diversity 2021, 13, 578. [Google Scholar] [CrossRef]
- Seniczak, S.; Graczyk, R.; Seniczak, A.; Faleńczyk-Koziróg, K.; Kaczmarek, S.; Marquardt, K. Microhabitat preferences of Oribatida and Mesostigmata (Acari) inhabiting lowland beech forest in Poland and the trophic interactions between these mites. Eur. J. Soil Biol. 2018, 87, 25–32. [Google Scholar] [CrossRef]
- Wu, D.H.; Yin, W.Y.; Yang, Z.M. Difference in soil mite community characteristics among different vegetation restoration practices in the moderatly degraded pasture of Songnen grassland. Acta Zool. Sin. 2007, 4, 607–615. (In Chinese) [Google Scholar]
- Arroyo, J.; Kenny, J.; Bolger, T. Variation between mite communities in Irish forest types–importance of bark and moss cover in canopy. Pedobiologia 2013, 56, 241–250. [Google Scholar] [CrossRef]
- Ding, C.C.; Dai, Z.K.; Xue, X.F.; Li, H.X.; Liu, M.Q.; Chen, X.Y.; Zhou, J.; Zhang, B.; Hu, F. Effects of vegetations restoration on soil mite community in degraded red soil, Subtropical China. Acta Ecol. Sin. 2008, 28, 4771–4781. (In Chinese) [Google Scholar]
- Long, W.; Gao, Y.M.; Wu, P.F. Effects of alpine meadow degradation on epigeic arthropod communities in Zoigê. Chin. J. Ecol. 2018, 37, 128–138. (In Chinese) [Google Scholar]
- Staley, J.T.; Hodgson, C.J.; Mortimer, S.R.; Morecroft, M.D.; Masters, G.; Brown, V.K.; Taylor, M.E. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol. 2007, 43, 189–198. [Google Scholar] [CrossRef]
- Seniczak, S.; Kaczmarek, S.; Seniczak, A. Oribatid mites (Acari, Oribatida) of bushy patches in steppe vegetation of cape Tarkhankut in Crimea (Ukraine). Biol. Lett. 2011, 48, 177–183. [Google Scholar] [CrossRef]
- Borcard, D.; Ballmoos, V.C. Oribatid mites (Acari, Oribatida) of a primary peat bog-pasture transition in the Swiss Jura mountains. Ecoscience 1997, 4, 470–479. [Google Scholar] [CrossRef]
- Minor, M.A.; Ermilov, S.G.; Philippov, D.A. Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system. Exp. Appl. Acarol. 2019, 77, 43–58. [Google Scholar] [CrossRef]
- Ning, J.; Liu, S.; Chang, S.; Chen, X.J.; Charles, P.W.; Hou, F.J. Dominant species as biological indicators to predict the changes of trace element in different types of rangeland. Ecol. Indic. 2022, 137, 108735. [Google Scholar] [CrossRef]
- Manu, M. Diversity of soil mites (Acari: Mesostigmata: Gamasina) in various deciduous forest ecosystems of Muntenia region (southern Romania). Biol. Lett. 2013, 50, 3–16. [Google Scholar] [CrossRef]
- Shen, W.D.; Xiong, K.N.; Gao, Y.; Quan, M.Y.; Peng, H.J.; Yang, T.; He, L.F.; Bao, K.S. Distribution of Potential Harmful Trace Elements and Potential Ecological Risk in the Jiulongchi Wetland of Fanjing Mountain, Southwest China. Int. J. Environ. Res. Public Health 2020, 17, 1731. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.D.; Li, M.D.; Wen, Z.G. An investigation on the distribution habitat of oribatid mites and their altitude in Huangshan Mountain. J. Nanjing Railw. Med. Coll. 1992, 11, 17–23. (In Chinese) [Google Scholar]
- Donaldson, G.M. Oribatida (Acari) associated with three species of Sphagnum at Spruce Hole Bog, New Hampshire, U.S.A. Can. J. Zool. 1996, 74, 1706–1712. [Google Scholar] [CrossRef]
- Lehmitz, R.; Maraun, M. Small-scale spatial heterogeneity of stable isotopes signatures (δ 15 N, δ 13 C) in Sphagnum sp. transfers to all trophic levels in oribatid mites. Soil Biol. Biochem. 2016, 100, 242–251. [Google Scholar] [CrossRef]
- Norton, R.A. Suborder oribatida. A Manual of Acarology; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 430–564. [Google Scholar]
- Luxton, M. Studies on the oribatid mites of a Danish beech wood soil. 1, Nutritional biology. Pedobiologia 1972, 12, 434–463. [Google Scholar]
- Wallork, J.A. Notes on the feeding-behaviour of some forest soil Acarina. Oikos 1958, 9, 260–271. [Google Scholar] [CrossRef]
- Mumladze, L.; Murvanidze, M.; Maraun, M.; Salakaia, M. Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp. Appl. Acarol. 2015, 66, 41–51. [Google Scholar] [CrossRef]
- Fischer, B.M.; Schatz, H. Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. Zootaxa 2013, 3626, 429–454. [Google Scholar] [CrossRef]
- Peet, R.K. The Measurement of Species Diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Yeates, G.W. Abundance, diversity, and resilience of nematode assemblages in forest soils. Can. J. For. Res. 2007, 37, 216–225. [Google Scholar] [CrossRef]
- Wu, P.F.; Liu, S.R.; Liu, X.L. Composition and spatio-temporal changes of soil macroinvertebrates in the biodiversity hotspot of northern Hengduanshan Mountains, China. Plant Soil 2012, 357, 321–338. [Google Scholar] [CrossRef]
Habitats | Polytrichum commune Hedw. (PC) | Eleocharis yokoscensis (Franch. et Sav.) Tang et Wang-Cypers sp. (EY-C) | Senecio faberii Hemsl. (SF) | Indocalamus longiauritus Hand.-Mazz. (IL) |
---|---|---|---|---|
Moss Species | Polytrichum commune Hedw.; Entodon concinnus (De Not.) Paris; Hypnum plumaeforme Wilson; Brachythecium plumosum (hedw.) b. s. g; Brachythecium reflexum (stark.) b. s. g; Rhytidiadelphus squarrosus J. M. WELLS and D. H. | Corydalis taliensis Franch; Saposhnikovia divaricata (Trucz.) Schischk; Entodon concinnus (De Not.) Paris; Hypnum plumaeforme Wilson; Rhytidiadelphus squarrosus J. M. WELLS and D. H. | Saposhnikovia divaricata (Trucz.) Schischk; Hypnum plumaeforme Wilson; Brachythecium plumosum (hedw.) b. s. g; Brachythecium reflexum (stark.) b. s. g; Rhytidiadelphus squarrosus J. M. WELLS and D. H. | Hypnum plumaeforme Wilson; Brachythecium plumosum (hedw.) b. s. g; Brachythecium reflexum (stark.) b. s. g; Rhytidiadelphus squarrosus J. M. WELLS and D. H. |
Habitats | PC | EY-C | SF | IL |
---|---|---|---|---|
PC | 1 | 0.57 | 0.56 | 0.4 |
EY-C | 0.37 | 1 | 0.76 | 0.58 |
SF | 0.44 | 0.74 | 1 | 0.6 |
IL | 0.24 | 0.5 | 0.86 | 1 |
Parameters | PC | EY-C | SF | IL |
---|---|---|---|---|
Family | 2 | 7 | 7 | 12 |
Species richness | 2 | 8 | 8 | 12 |
Abundance | 6 | 43 | 222 | 125 |
MI | 0.6 | 0.45 | 0.5 | 0.48 |
Type | K | r | K/r | r |
Genera Percentage (%) | Type | Abundance Percentage (%) | Type | |||||
---|---|---|---|---|---|---|---|---|
Macropylina | Gymnonota | Poronota | Macropylina | Gymnonota | Poronota | |||
Group | Group | Group | Group | Group | Group | |||
PC | 25 | 25 | 50 | P | 16.67 | 60.8 | 22.54 | G |
EY-C | 23.81 | 23.81 | 52.38 | P | 1.37 | 21.71 | 76.91 | P |
SF | 21.05 | 15.79 | 63.16 | P | 9.6 | 10.96 | 79.43 | P |
IL | 35 | 25 | 40 | O | 8.43 | 14.21 | 77.36 | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhou, Y.; Fei, Y.; Wei, Q. Differences of Moss Mites Communities at Different Vegetation Succession Stages in Subalpine Wetland (Jiulongchi, Fanjing Mountain), Southwest China. Forests 2023, 14, 332. https://doi.org/10.3390/f14020332
Chen H, Zhou Y, Fei Y, Wei Q. Differences of Moss Mites Communities at Different Vegetation Succession Stages in Subalpine Wetland (Jiulongchi, Fanjing Mountain), Southwest China. Forests. 2023; 14(2):332. https://doi.org/10.3390/f14020332
Chicago/Turabian StyleChen, Hu, Yuanyuan Zhou, Yifan Fei, and Qiang Wei. 2023. "Differences of Moss Mites Communities at Different Vegetation Succession Stages in Subalpine Wetland (Jiulongchi, Fanjing Mountain), Southwest China" Forests 14, no. 2: 332. https://doi.org/10.3390/f14020332
APA StyleChen, H., Zhou, Y., Fei, Y., & Wei, Q. (2023). Differences of Moss Mites Communities at Different Vegetation Succession Stages in Subalpine Wetland (Jiulongchi, Fanjing Mountain), Southwest China. Forests, 14(2), 332. https://doi.org/10.3390/f14020332