Disturbance of Wind Damage and Insect Outbreaks in the Old-Growth Forest of Changbai Mountain, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Processing and Analysis
3. Results
3.1. Distribution of Forest Disturbance Areas
3.2. Wind Damage
3.3. Insect Outbreaks
4. Discussion
4.1. The Phenology of the Region Changed after Forest Disturbance
4.2. More Attention Should Be Paid to the Increase in Indirect Forest Disturbance Events Related to Climate Change
4.3. Enlightenment from Forest Disturbance events in Natural Forest Protection
4.4. Some Limitations and Some Advice for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP; FAO. The State of the World’s Forests 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Diniz, C.G.; de Almeida Souza, A.A.; Santos, D.C.; Dias, M.C.; da Luz, N.C.; Vidal de Moraes, D.R.; Maia, J.S.A.; Gomes, A.R.; Narvaes, I.d.S.; Valeriano, D.M.; et al. DETER-B: The New Amazon Near Real-Time Deforestation Detection System. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3619–3628. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Raghavendra, A. Observed changes in fire patterns and possible drivers over Central Africa. Environ. Res. Lett. 2020, 15, 0940b8. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- Abell, J.T.; Winckler, G.; Anderson, R.F.; Herbert, T.D. Poleward and weakened westerlies during Pliocene warmth. Nature 2021, 589, 70. [Google Scholar] [CrossRef] [PubMed]
- Silins, I.; Karklina, A.; Miezite, O.; Jansons, A. Trends in Outbreaks of Defoliating Insects Highlight Growing Threats for Central European Forests, and Implications for Eastern Baltic Region. Forests 2021, 12, 799. [Google Scholar] [CrossRef]
- Sidder, A.M.; Kumar, S.; Laituri, M.; Sibold, J.S. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere 2016, 7, 22. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Soldatov, V.V. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains. J. Mt. Sci. 2020, 17, 1891–1900. [Google Scholar] [CrossRef]
- Ren, P.; Neron, V.; Rossi, S.; Liang, E.; Bouchard, M.; Deslauriers, A. Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. Glob. Chang. Biol. 2020, 26, 2072–2080. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, X.L.; Helmer, E.H.; Tan, X.Y.; Tian, J.Q.; Chen, X.H. The damage of urban vegetation from super typhoon is associated with landscape factors: Evidence from Sentinel-2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102536. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.S.; Cai, L.X.; Jiao, H.B.; Hua, J.W.; Luo, X.F.; Wei, X.L. Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery. Sustainability 2021, 13, 4893. [Google Scholar] [CrossRef]
- Mishra, M.; Kar, D.; Santos, C.A.G.; da Silva, R.M.; Das, P.P. Assessment of impacts to the sequence of the tropical cyclone Nisarga and monsoon events in shoreline changes and vegetation damage in the coastal zone of Maharashtra, India. Mar. Pollut. Bull. 2022, 174, 113262. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Qu, J.J.; Hao, X.J.; Liu, Y.Q.; Stanturf, J.A. Post-hurricane forest damage assessment using satellite remote sensing. Agric. For. Meteorol. 2010, 150, 122–132. [Google Scholar] [CrossRef]
- Gong, Y.; Staudhammer, C.L.; Kenney, G.; Wiesner, S.; Zhang, Y.L.; Starr, G. Vegetation structure drives forest phenological recovery after hurricane. Sci. Total Environ. 2021, 774. [Google Scholar] [CrossRef]
- Wang, F.G.; Xu, Y.J. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environ. Monit. Assess. 2010, 162, 311–326. [Google Scholar] [CrossRef]
- Barr, J.G.; Engel, V.; Smith, T.J.; Fuentes, J.D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteorol. 2012, 153, 54–66. [Google Scholar] [CrossRef]
- Bellanthudawa, B.K.A.; Chang, N.B. Hurricane Irma impact on biophysical and biochemical features of canopy vegetation in the Santa Fe River Basin, Florida. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102427. [Google Scholar] [CrossRef]
- Gutierrez, A.G.; Armesto, J.J.; Aravena, J.-C.; Carmona, M.; Carrasco, N.V.; Christie, D.A.; Pena, M.-P.; Perez, C.; Huth, A. Structural and environmental characterization of old-growth temperate rainforests of northern Chiloe Island, Chile: Regional and global relevance. For. Ecol. Manag. 2009, 258, 376–388. [Google Scholar] [CrossRef]
- Hendrickson, O. Old-growth forests: Data gaps and challenges. For. Chron. 2003, 79, 645–651. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Sabater, J. ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 1 October 2022).
- Yu, D.; Zheng, Y.; Zhang, L.-j.; Sun, C.; Li, J.; Zhao, C.; Liu, L. Investigation and Factors Analysis of Dendrolimus superans Outbreaks in Changbai Mountain National Nature Reserve. For. Res. 2022, 35, 103–111. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, J.; Sun, C.; Jin, Y.; Shui, X.; Tao, Y.; Zhang, H.; Zhang, Y.; Liu, L. Analysis of meteorological factors for outbreak of Larch caterpillar in Changbai Mountains under the background of climate change. J. Northeast Norm. Univ. (Nat. Sci. Ed.) 2022, 54, 141–149. [Google Scholar] [CrossRef]
- Zeng, J.; Feng, G.; Su, J.; He, Z. Researches on the occurrences of major forest insect pests of pine caterpillar Dendrolimus spp. in China. Chin. Bull. Entomol. 2010, 47, 451–459. [Google Scholar]
- Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Dendrolimus superans. EFSA J. Eur. Food Saf. Auth. 2022, 20, e07525. [Google Scholar] [CrossRef]
- Bao, Y.; Han, A.; Zhang, J.; Liu, X.; Tong, Z.; Bao, Y. Contribution of the synergistic interaction between topography and climate variables to pine caterpillar (Dendrolimus spp.) outbreaks in Shandong Province, China. Agric. For. Meteorol. 2022, 322, 109023. [Google Scholar] [CrossRef]
- Fang, L.; Yu, Y.; Fang, G.; Zhang, X.; Yu, Z.; Zhang, X.; Crocker, E.; Yang, J. Effects of meteorological factors on the defoliation dynamics of the larch caterpillar (Dendrolimus superans Butler) in the Great Xing’an boreal forests. J. For. Res. 2021, 32, 2683–2697. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest. Forests 2017, 8, 76. [Google Scholar] [CrossRef]
- Huang, L.; Ning, Z.Y.; Zhang, X.L. Impacts of caterpillar disturbance on forest net primary production estimation in China. Ecol. Indic. 2010, 10, 1144–1151. [Google Scholar] [CrossRef]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
Biophysical Features | Products | Periods of Use | Spatial Resolution (m) | Temporal Resolution (Days) |
---|---|---|---|---|
PTC, PNV, and NV | MOD44B | 2000–2020 | 250 | 365 |
NDVI | MOD13Q1 | 2015–2021 | 250 | 16 |
LAI | MCD15A3H | 2015–2021 | 500 | 4 |
FPAR | MCD15A3H | 2015–2021 | 500 | 4 |
GPP | MOD17A2H | 2015–2021 | 500 | 8 |
ET | MOD16A2 | 2015–2021 | 500 | 8 |
LST | MOD11A2 | 2015–2021 | 1000 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, A.; Liu, Y.; Shen, L.; Cai, R.; Wu, J. Disturbance of Wind Damage and Insect Outbreaks in the Old-Growth Forest of Changbai Mountain, Northeast China. Forests 2023, 14, 368. https://doi.org/10.3390/f14020368
Zhang Y, Wang A, Liu Y, Shen L, Cai R, Wu J. Disturbance of Wind Damage and Insect Outbreaks in the Old-Growth Forest of Changbai Mountain, Northeast China. Forests. 2023; 14(2):368. https://doi.org/10.3390/f14020368
Chicago/Turabian StyleZhang, Yuan, Anzhi Wang, Yage Liu, Lidu Shen, Rongrong Cai, and Jiabing Wu. 2023. "Disturbance of Wind Damage and Insect Outbreaks in the Old-Growth Forest of Changbai Mountain, Northeast China" Forests 14, no. 2: 368. https://doi.org/10.3390/f14020368
APA StyleZhang, Y., Wang, A., Liu, Y., Shen, L., Cai, R., & Wu, J. (2023). Disturbance of Wind Damage and Insect Outbreaks in the Old-Growth Forest of Changbai Mountain, Northeast China. Forests, 14(2), 368. https://doi.org/10.3390/f14020368