Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis
2.2. Data Visualization
3. Results
3.1. Annual Publication Trends and Productive Journals
3.2. International Cooperation, Collaborative Network and Funding Bodies
3.3. Important Research Disciplines
3.4. Research Cluster Analysis
3.5. Highly Cited Publications Based on Co-Citation Analysis
3.6. Keywords Co-Occurrence Analysis
3.7. Dual Map Overlay
4. General Discussion
4.1. The Impact of Climate Change on Mangroves
4.2. Adaptation Strategies and Resilience of Mangroves in Connection to Climate Change
4.3. Policies and Regulations for Mangrove Conservation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cannicci, S.; Lee, S.Y.; Bravo, H.; Cantera-Kintz, J.R.; Dahdouh-Guebas, F.; Fratini, S.; Fusi, M.; Jimenez, P.J.; Nordhaus, I.; Porri, F. A functional analysis reveals extremely low redundancy in global mangrove invertebrate fauna. Proc. Natl. Acad. Sci. USA 2021, 118, e2016913118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, H.; Wang, F. Analysis of the Evolution of Mangrove Landscape Patterns and Their Drivers in Hainan Island from 2000 to 2020. Sustainability 2022, 15, 759. [Google Scholar] [CrossRef]
- Brooks, J.; Rivera, A.; Chen Austin, M.; Tejedor-Flores, N. A Machine Learning-Based Approach to Estimate Energy Flows of the Mangrove Forest: The Case of Panama Bay. Sustainability 2023, 15, 664. [Google Scholar] [CrossRef]
- Chowdhury, A.; Naz, A.; Dasgupta, R.; Maiti, S.K. Blue Carbon: Comparison of Chronosequences from Avicennia marina Plantation and Proteresia coarctata Dominated Mudflat, at the World’s Largest Mangrove Wetland. Sustainability 2022, 15, 368. [Google Scholar] [CrossRef]
- Lai, J.; Cheah, W.; Palaniveloo, K.; Suwa, R.; Sharma, S. A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward? Forests 2022, 13, 2160. [Google Scholar] [CrossRef]
- Aja, D.; Miyittah, M.K.; Angnuureng, D.B. Quantifying Mangrove Extent Using a Combination of Optical and Radar Images in a Wetland Complex, Western Region, Ghana. Sustainability 2022, 14, 16687. [Google Scholar] [CrossRef]
- Cardenas, S.M.; Cohen, M.C.; Ruiz, D.P.; Souza, A.V.; Gomez-Neita, J.S.; Pessenda, L.C.; Culligan, N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sens. 2022, 14, 6197. [Google Scholar] [CrossRef]
- Cruz Portorreal, Y.; Reyes Dominguez, O.J.; Milanes, C.B.; Mestanza-Ramón, C.; Cuker, B.; Pérez Montero, O. Environmental Policy and Regulatory Framework for Managing Mangroves as a Carbon Sink in Cuba. Water 2022, 14, 3903. [Google Scholar] [CrossRef]
- Ellison, A.M.; Farnsworth, E.J.; Merkt, R.E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob. Ecol. Biogeogr. 1999, 8, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, E. Issues of spatial, taxonomic and temporal scale in delineating links between mangrove diversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 1998, 7, 15–25. [Google Scholar] [CrossRef]
- Hemingson, C.R.; Bellwood, D.R. Biogeographic patterns in major marine realms: Function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 2018, 41, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Wolanski, E.; Mazda, Y.; Ridd, P. Mangrove hydrodynamics. Trop. Mangrove Ecosyst. 1992, 41, 43–62. [Google Scholar] [CrossRef]
- Tomiczek, T.; Wargula, A.; Lomónaco, P.; Goodwin, S.; Cox, D.; Kennedy, A.; Lynett, P. Physical model investigation of mid-scale mangrove effects on flow hydrodynamics and pressures and loads in the built environment. Coast. Eng. 2020, 162, 103791. [Google Scholar] [CrossRef]
- Field, C.D. Rehabilitation of mangrove ecosystems: An overview. Mar. Pollut. Bull. 1999, 37, 383–392. [Google Scholar] [CrossRef]
- Sandilyan, S.; Kathiresan, K. Mangrove conservation: A global perspective. Biodivers. Conserv. 2012, 21, 3523–3542. [Google Scholar] [CrossRef]
- Green, E.; Clark, C.; Mumby, P.; Edwards, A.; Ellis, A. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Akbar Hossain, K.; Masiero, M.; Pirotti, F. Land cover change across 45 years in the world’s largest mangrove forest (Sundarbans): The contribution of remote sensing in forest monitoring. Eur. J. Remote Sens. 2022, 55, 1–17. [Google Scholar] [CrossRef]
- Samsudin, M.; Khalit, S.; Azid, A.; Yunus, K.; Zaudi, M.; Badaluddin, N.; Saudi, A. Spatial analysis of heavy metals in mangrove estuary at east coast Peninsular Malaysia: A preliminary study. J. Fundam. Appl. Sci. 2017, 9, 680–697. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Samsudin, M.S.; Azid, A.; Khalit, S.I.; Sani, M.S.A.; Lananan, F. Comparison of prediction model using spatial discriminant analysis for marine water quality index in mangrove estuarine zones. Mar. Pollut. Bull. 2019, 141, 472–481. [Google Scholar] [CrossRef]
- Khalit, S.I.; Samsudin, M.S.; Azid, A.; Yunus, K.; Zaudi, M.A.; Sharifuddin, S.S.; Husin, T.M. A preliminary study of marine water quality status using principal component analysis at three selected mangrove estuaries in East Coast Peninsular Malaysia. Malays. J. Fundam. Appl. Sci. 2017, 13, 764–768. [Google Scholar] [CrossRef] [Green Version]
- Laegdsgaard, P.; Johnson, C. Why do juvenile fish utilise mangrove habitats? J. Exp. Mar. Biol. Ecol. 2001, 257, 229–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheaves, M. Nature and consequences of biological connectivity in mangrove systems. Mar. Ecol. Prog. Ser. 2005, 302, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Joel, E.L.; Bhimba, V. Isolation and characterization of secondary metabolites from the mangrove plant Rhizophora mucronata. Asian Pac. J. Trop. Med. 2010, 3, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Bhimba, B.V.; Meenupriya, J.; Joel, E.L.; Naveena, D.E.; Kumar, S.; Thangaraj, M. Antibacterial activity and characterization of secondary metabolites isolated from mangrove plant Avicennia officinalis. Asian Pac. J. Trop. Med. 2010, 3, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Thampanya, U.; Vermaat, J.; Sinsakul, S.; Panapitukkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci. 2006, 68, 75–85. [Google Scholar] [CrossRef]
- Santhakumar, V.; Haque, A.E.; Bhattacharya, R. An economic analysis of mangroves in South Asia. In Economic Development in South Asia; Tata McGraw Hill: New Delhi, India, 2005; pp. 368–437. [Google Scholar]
- Boto, K.G.; Wellington, J.T. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 1984, 7, 61–69. [Google Scholar] [CrossRef]
- Sippo, J.Z.; Lovelock, C.E.; Santos, I.R.; Sanders, C.J.; Maher, D.T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 2018, 215, 241–249. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.; Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Muñoz, M.; Vega-Muñoz, A.; Carlos-Vivas, J.; Denche-Zamorano, Á.; Adsuar, J.C.; Raimundo, A.; Salazar-Sepúlveda, G.; Contreras-Barraza, N.; Muñoz-Urtubia, N. The Bibliometric Analysis of Studies on Physical Literacy for a Healthy Life. Int. J. Environ. Res. Public Health 2022, 19, 15211. [Google Scholar] [CrossRef]
- Ahadi, A.; Singh, A.; Bower, M.; Garrett, M. Text mining in education—A bibliometrics-based systematic review. Educ. Sci. 2022, 12, 210. [Google Scholar] [CrossRef]
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.; Potter, R.; Rogers, G. Interpreting Bibliometric Data. Front. Res. Metr. Anal. 2020, 5, 628703. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring topics in bibliometric research through citation networks and semantic analysis. Front. Res. Metr. Anal. 2021, 6, 742311. [Google Scholar] [CrossRef]
- Chen, C. How to Use CiteSpace (6.1.R2); Lean Publishing: Victoria, BC, Canada, 2022; p. 137. [Google Scholar]
- Ho, Y.-S.; Mukul, S.A. Publication performance and trends in mangrove forests: A bibliometric analysis. Sustainability 2021, 13, 12532. [Google Scholar] [CrossRef]
- Mohd Razali, S.; Radzi, M.A.; Marin, A.; Samdin, Z. A bibliometric analysis of tropical mangrove forest land use change from 2010 to 2020. Environ. Dev. Sustain. 2021, 24, 11530–11547. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, G.; Dominic, J. Bibliometric analysis of mangrove literature 2001–2012. Seaweed Resour. Util. 2013, 35, 226–237. [Google Scholar]
- Jiang, L.; Yang, T.; Yu, J. Global trends and prospects of blue carbon sinks: A bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 29, 65924–65939. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Varathan, P.; Suchithra, T. Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease. Scientometrics 2020, 122, 1539–1561. [Google Scholar] [CrossRef]
- Azra, M.N.; Noor, M.I.M.; Eales, J.; Sung, Y.Y.; Ghaffar, M.A. What evidence exists for the impact of climate change on the physiology and behaviour of important aquaculture marine crustacean species in Asia? A systematic map protocol. Environ. Evid. 2022, 11, 9. [Google Scholar] [CrossRef]
- Retallack, G.J. Reconstructing Triassic vegetation of eastern Australasia: A new approach for the biostratigraphy of Gondwanaland. Alcheringa 1977, 1, 247–278. [Google Scholar] [CrossRef]
- Katz, J.S.; Martin, B.R. What is research collaboration? Research Policy 1997, 26, 1–18. [Google Scholar] [CrossRef]
- Spalding, M. World Atlas of Mangroves; Routledge: London, UK, 2010. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Chen, C.; Morris, S. Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In Proceedings of the IEEE symposium on information visualization 2003 (IEEE Cat. No. 03TH8714), Seattle, WA, USA, 19–21 October 2003; pp. 67–74. [Google Scholar]
- Zhong, Z.; Zheng, L.; Luo, Z.; Li, S.; Yang, Y. Invariance matters: Exemplar memory for domain adaptive person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 598–607. [Google Scholar]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Yang, H.; Shao, X.; Wu, M. A review on ecosystem health research: A visualization based on CiteSpace. Sustainability 2019, 11, 4908. [Google Scholar] [CrossRef] [Green Version]
- Osland, M.J.; Feher, L.C.; López-Portillo, J.; Day, R.H.; Suman, D.O.; Menéndez, J.M.G.; Rivera-Monroy, V.H. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 2018, 214, 120–140. [Google Scholar] [CrossRef]
- Osland, M.J.; Griffith, K.T.; Larriviere, J.C.; Feher, L.C.; Cahoon, D.R.; Enwright, N.M.; Oster, D.A.; Tirpak, J.M.; Woodrey, M.S.; Collini, R.C. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE 2017, 12, e0183431. [Google Scholar] [CrossRef] [Green Version]
- Kumara, M.; Jayatissa, L.P.; Krauss, K.W.; Phillips, D.; Huxham, M. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 2010, 164, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Narayan, Y.R.; Pandolfi, J.M. Benthic foraminiferal assemblages from Moreton Bay, South-East Queensland, Australia: Applications in monitoring water and substrate quality in subtropical estuarine environments. Mar. Pollut. Bull. 2010, 60, 2062–2078. [Google Scholar] [CrossRef] [PubMed]
- Roelfsema, C.; Phinn, S.; Udy, N.; Maxwell, P. An integrated field and remote sensing approach for mapping seagrass cover, Moreton Bay, Australia. J. Spat. Sci. 2009, 54, 45–62. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef] [Green Version]
- Doughty, C.L.; Langley, J.A.; Walker, W.S.; Feller, I.C.; Schaub, R.; Chapman, S.K. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 2016, 39, 385–396. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X. Research on the literature of green building based on the Web of Science: A scientometric analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, P. The Botany of Mangroves; Cambridge University Press: London, UK, 2016. [Google Scholar]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Kellner, J.R.; Forde, A.J.; Gruner, D.S.; Parker, J.D.; Rodriguez, W.; Feller, I.C. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 2014, 111, 723–727. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Wilson, N.C.; Rogers, K.; Rajkaran, A.; Krauss, K.W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Chang. Biol. 2014, 20, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [Green Version]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef]
- McKee, K.L.; Cahoon, D.R.; Feller, I.C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 2007, 16, 545–556. [Google Scholar] [CrossRef]
- Gratwicke, B.; Speight, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 2005, 66, 650–667. [Google Scholar] [CrossRef]
- Amiro, B.D.; Barr, A.G.; Barr, J.; Black, T.A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K.; Davis, K.; Desai, A. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. Biogeosci. 2010, 115, G00K02. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, C.E.; Perez, B.C. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 2003, 91, 1093–1105. [Google Scholar] [CrossRef]
- Duarte, C.M.; Cebrián, J. The fate of marine autotrophic production. Limnol. Oceanogr. 1996, 41, 1758–1766. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hoozemans, F.M.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Stirling, C.; Esat, T.; Lambeck, K.; McCulloch, M. Timing and duration of the Last Interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 1998, 160, 745–762. [Google Scholar] [CrossRef]
- Furukawa, K.; Wolanski, E.; Mueller, H. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 1997, 44, 301–310. [Google Scholar] [CrossRef]
- Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 105, 267–309. [Google Scholar] [CrossRef]
- Kautsky, N.; Rönnbäck, P.; Tedengren, M.; Troell, M. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 2000, 191, 145–161. [Google Scholar] [CrossRef]
- Smith, T.J.; Robblee, M.B.; Wanless, H.R.; Doyle, T.W. Mangroves, hurricanes, and lightning strikes. BioScience 1994, 44, 256–262. [Google Scholar] [CrossRef]
- McKee, K.L. Soil physicochemical patterns and mangrove species distribution–reciprocal effects? J. Ecol. 1993, 81, 477–487. [Google Scholar] [CrossRef]
- Ellison, J.C.; Stoddart, D.R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J. Coast. Res. 1991, 7, 151–165. [Google Scholar]
- Hemminga, M.; Slim, F.; Kazungu, J.; Ganssen, G.; Nieuwenhuize, J.; Kruyt, N. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 1994, 106, 291–301. [Google Scholar] [CrossRef]
- Qin, F.; Zhu, Y.; Ao, T.; Chen, T. The development trend and research frontiers of distributed hydrological models—Visual bibliometric analysis based on citespace. Water 2021, 13, 174. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, X.; Zhang, L.; Huang, G. Visualization of Chinese CBM research: A scientometrics review. Sustainability 2017, 9, 980. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, Y. Research hotspots and trends in heritage building information modeling: A review based on CiteSpace analysis. Humanit. Soc. Sci. Commun. 2022, 9, 394. [Google Scholar] [CrossRef]
- Lee, P.-C.; Su, H.-N. Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation 2010, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Ping, Q.; He, J.; Chen, C. How many ways to use CiteSpace? A study of user interactive events over 14 months. J. Assoc. Inf. Sci. Technol. 2017, 68, 1234–1256. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Yin, L. Trends in hepatocellular carcinoma research from 2008 to 2017: A bibliometric analysis. PeerJ 2018, 6, e5477. [Google Scholar] [CrossRef]
- FAO. High-Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy; FAO: Rome, Italy, 2008; 48p. [Google Scholar]
- Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [Green Version]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Gu, J.-D. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [Google Scholar] [CrossRef]
- Vignola, R.; Locatelli, B.; Martinez, C.; Imbach, P. Ecosystem-based adaptation to climate change: What role for policy-makers, society and scientists? Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, A.R.; Baig, S.; Verdone, M. Ecosystems Based Adaptation: Knowledge Gaps in Making an Economic Case for Investing in Nature Based Solutions for Climate Change; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2015; Volume 48. [Google Scholar]
- De Lacerda, L.D.; Borges, R.; Ferreira, A.C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1347–1364. [Google Scholar] [CrossRef]
- Wagner, G.M.; Sallema-Mtui, R. The Rufiji Estuary: Climate change, anthropogenic pressures, vulnerability assessment and adaptive management strategies. In Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean; Springer: Cham, Germany, 2016; pp. 183–207. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Vergés, A.; Steinberg, P.D.; Hay, M.E.; Poore, A.G.; Campbell, A.H.; Ballesteros, E.; Heck, K.L., Jr.; Booth, D.J.; Coleman, M.A.; Feary, D.A. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140846. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Long, J. Is the geographic range of mangrove forests in the conterminous United States really expanding? Sensors 2016, 16, 2010. [Google Scholar] [CrossRef] [Green Version]
- Godoy, M.D.; de Lacerda, L.D. Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. An. Acad. Bras. Ciênc. 2015, 87, 651–667. [Google Scholar] [CrossRef] [Green Version]
- Raw, J.L.; Van der Stocken, T.; Carroll, D.; Harris, L.R.; Rajkaran, A.; Van Niekerk, L.; Adams, J.B. Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change. J. Ecol. 2023, 111, 139–155. [Google Scholar] [CrossRef]
- Osland, M.J.; Hartmann, A.M.; Day, R.H.; Ross, M.S.; Hall, C.T.; Feher, L.C.; Vervaeke, W.C. Microclimate influences mangrove freeze damage: Implications for range expansion in response to changing macroclimate. Estuaries Coasts 2019, 42, 1084–1096. [Google Scholar] [CrossRef]
- Record, S.; Charney, N.; Zakaria, R.; Ellison, A.M. Projecting global mangrove species and community distributions under climate change. Ecosphere 2013, 4, 1–23. [Google Scholar] [CrossRef]
- Sarker, S.K.; Matthiopoulos, J.; Mitchell, S.N.; Ahmed, Z.U.; Al Mamun, M.B.; Reeve, R. 1980s–2010s: The world’s largest mangrove ecosystem is becoming homogeneous. Biol. Conserv. 2019, 236, 79–91. [Google Scholar] [CrossRef]
- Loucks, C.; Barber-Meyer, S.; Hossain, M.A.A.; Barlow, A.; Chowdhury, R.M. Sea level rise and tigers: Predicted impacts to Bangladesh’s Sundarbans mangroves: A letter. Clim. Chang. 2010, 98, 291–298. [Google Scholar] [CrossRef]
- Li, S.; Meng, X.; Ge, Z.; Zhang, L. Vulnerability assessment of the coastal mangrove ecosystems in Guangxi, China, to sea-level rise. Reg. Environ. Chang. 2015, 15, 265–275. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Jungblut, V.; Van Lavieren, H.; Wilson, L.; Areki, F.; Brighouse, G.; Bungitak, J.; Dus, E.; Henry, M. Adapting to Pacific Island mangrove responses to sea level rise and climate change. Clim. Res. 2006, 32, 161–176. [Google Scholar] [CrossRef]
- Barua, P.; Chowdhury, S.; Sarker, S. Climate change and its risk reduction by mangrove ecosystem of Bangladesh. Bangladesh Res. Publ. J. 2010, 4, 208–255. [Google Scholar]
- Sarkar, M.; Kabir, S.; Begum, R.A.; Pereira, J.J.; Jaafar, A.H.; Saari, M.Y. Impacts of and adaptations to sea level rise in Malaysia. Asian J. Water Environ. Pollut. 2014, 11, 29–36. [Google Scholar]
- Donner, S.D.; Webber, S. Obstacles to climate change adaptation decisions: A case study of sea-level rise and coastal protection measures in Kiribati. Sustain. Sci. 2014, 9, 331–345. [Google Scholar] [CrossRef]
- Eslami-Andargoli, L.; Dale, P.; Sipe, N.; Chaseling, J. Mangrove expansion and rainfall patterns in Moreton Bay, southeast Queensland, Australia. Estuar. Coast. Shelf Sci. 2009, 85, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Bui, D.T. Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuar. Coast. Shelf Sci. 2020, 237, 106644. [Google Scholar] [CrossRef]
- Etemadi, H.; Smoak, J.M.; Abbasi, E. Spatiotemporal pattern of degradation in arid mangrove forests of the Northern Persian Gulf. Oceanologia 2021, 63, 99–114. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Mahmoudi, B.; Zenner, E.K. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Persian Gulf and Oman Sea. Estuar. Coast. Shelf Sci. 2017, 199, 141–151. [Google Scholar] [CrossRef]
- Alireza, S.M.; Mansour, J.B. Satellite based assessment of the area and changes in the Mangrove ecosystem of the QESHM island, Iran. J. Environ. Res. Dev. 2012, 7, 1052–1060. [Google Scholar]
- Bernardino, A.F.; Netto, S.A.; Pagliosa, P.R.; Barros, F.; Christofoletti, R.A.; Rosa Filho, J.S.; Colling, A.; Lana, P.C. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar. Coast. Shelf Sci. 2015, 166, 74–82. [Google Scholar] [CrossRef]
- Servino, R.N.; de Oliveira Gomes, L.E.; Bernardino, A.F. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Sci. Total Environ. 2018, 628, 233–240. [Google Scholar] [CrossRef]
- Gnanamoorthy, P.; Selvam, V.; Burman, P.K.D.; Chakraborty, S.; Karipot, A.; Nagarajan, R.; Ramasubramanian, R.; Song, Q.; Zhang, Y.; Grace, J. Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuar. Coast. Shelf Sci. 2020, 243, 106828. [Google Scholar] [CrossRef]
- Barr, J.G.; Engel, V.; Fuentes, J.D.; Zieman, J.C.; O’Halloran, T.L.; Smith III, T.J.; Anderson, G.H. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lai, D.Y. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agric. For. Meteorol. 2019, 278, 107644. [Google Scholar] [CrossRef]
- Munji, C.A.; Bele, M.Y.; Idinoba, M.E.; Sonwa, D.J. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves. Estuar. Coast. Shelf Sci. 2014, 140, 67–75. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-lying Areas. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014; pp. 361–409. [Google Scholar]
- Hilaluddin, F.; Yusoff, F.; Natrah, F.; Lim, P. Disturbance of mangrove forests causes alterations in estuarine phytoplankton community structure in Malaysian Matang mangrove forests. Mar. Environ. Res. 2020, 158, 104935. [Google Scholar] [CrossRef]
- Alongi, D.M. Impact of global change on nutrient dynamics in mangrove forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Reef, R.; Slot, M.; Motro, U.; Motro, M.; Motro, Y.; Adame, M.F.; Garcia, M.; Aranda, J.; Lovelock, C.E.; Winter, K. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Photosynth. Res. 2016, 129, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
- Rodda, S.R.; Thumaty, K.C.; Fararoda, R.; Jha, C.S.; Dadhwal, V.K. Unique characteristics of ecosystem CO2 exchange in Sundarban mangrove forest and their relationship with environmental factors. Estuar. Coast. Shelf Sci. 2022, 267, 107764. [Google Scholar] [CrossRef]
- Van Vinh, T.; Allenbach, M.; Joanne, A.; Marchand, C. Seasonal variability of CO2 fluxes at different interfaces and vertical CO2 concentration profiles within a Rhizophora mangrove forest (Can Gio, Viet Nam). Atmos. Environ. 2019, 201, 301–309. [Google Scholar] [CrossRef]
- Jacotot, A.; Marchand, C.; Allenbach, M. Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia). Sci. Total Environ. 2018, 631, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Reef, R.; Lovelock, C.E. Historical analysis of mangrove leaf traits throughout the 19th and 20th centuries reveals differential responses to increases in atmospheric CO2. Glob. Ecol. Biogeogr. 2014, 23, 1209–1214. [Google Scholar] [CrossRef]
- Driever, S.M.; Baker, N.R. The water–water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant Cell Environ. 2011, 34, 837–846. [Google Scholar] [CrossRef]
- Ellison, J. Climate Change and Sea Level Rise Impacts on Mangrove Ecosystems; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 1994; p. 108. [Google Scholar]
- Lovelock, C.E.; Ellison, J. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In Climate Change and the Great Barrier Reef: A Vulnerability Assessment; Johnson, J.E., Marshall, P.A., Eds.; The Great Barrier Reef Marine Park Authority: Townsville, Australia, 2007; pp. 237–269. [Google Scholar]
- Zhang, Q.; Wu, X.; Xue, S.; Liang, K.; Cong, W. Study of hydrodynamic characteristics in tubular photobioreactors. Bioprocess Biosyst. Eng. 2012, 36, 143–150. [Google Scholar] [CrossRef]
- Aung, T.T.; Mochida, Y.; Than, M.M. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manag. 2013, 293, 103–113. [Google Scholar] [CrossRef]
- Padhy, S.; Dash, P.; Bhattacharyya, P. Challenges, opportunities, and climate change adaptation strategies of mangrove-agriculture ecosystem in the Sundarbans, India: A review. Wetl. Ecol. Manag. 2022, 30, 191–206. [Google Scholar] [CrossRef]
- Baldwin, A.; Egnotovich, M.; Ford, M.; Platt, W. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 2001, 157, 151–164. [Google Scholar] [CrossRef]
- Galeano, A.; Urrego, L.E.; Botero, V.; Bernal, G. Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl. Ecol. Manag. 2017, 25, 743–760. [Google Scholar] [CrossRef]
- Ward, R.; Burnside, N.; Joyce, C.; Sepp, K.; Teasdale, P. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 2016, 774, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D.; Friess, D.A.; Day, R.H.; Mackenzie, R.A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2016, 2, e01211. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-lying Islands, Coasts and Communities Supplementary Material. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 321–445. [Google Scholar]
- Ellison, J. Geomorphology and sedimentology of mangroves. In Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier B.V.: Oxford, UK, 2009. [Google Scholar]
- Jones, S. From Source to Sink: How Linking Upstream Fluvial Processes to Mangrove Sedimentation Can Improve Mangrove Management Strategies. Oceanogr. Fish. 2020, 12, 555835. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.M.; Fuentes, J.C.P.; Gomes, C.J.P.; Del Rio, S.; Canas, R.Q.; Cano, E. Analysis of the conservation of Central American mangroves using the phytosociological method. In Mangrove Ecosystem Ecology and Function; Intech Publisher: London, UK, 2018; pp. 189–206. [Google Scholar]
- Anthony, E.J. Wave influence in the construction, shaping and destruction of river deltas: A review. Mar. Geol. 2015, 361, 53–78. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Rogers, K.; McKee, K.L.; Lovelock, C.E.; Mendelssohn, I.; Saintilan, N. Mangrove sedimentation and response to relative sea-level rise. Annu. Rev. Mar. Sci. 2016, 8, 243–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, R.A.; Foulk, P.B.; Klump, J.V.; Weckerly, K.; Purbospito, J.; Murdiyarso, D.; Donato, D.C.; Nam, V.N. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: A tale of two mangroves. Wetl. Ecol. Manag. 2016, 24, 245–261. [Google Scholar] [CrossRef]
- Wijayasinghe, M.M.; Jayasuriya, K.G.; Gunatilleke, C.; Gunatilleke, I.; Walck, J.L. Effect of salinity on seed germination of five mangroves from Sri Lanka: Use of hydrotime modelling for mangrove germination. Seed Sci. Res. 2019, 29, 55–63. [Google Scholar] [CrossRef]
- Duke, N.C.; Lo, E.; Sun, M. Global distribution and genetic discontinuities of mangroves–emerging patterns in the evolution of Rhizophora. Trees 2002, 16, 65–79. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Teixeira, S.; Massa, S.I.; Billot, C.; Saenger, P.; Coupland, G.; Duarte, C.M.; Serrao, E. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 2006, 15, 3515–3525. [Google Scholar] [CrossRef]
- Jones, H.P.; Hole, D.G.; Zavaleta, E.S. Harnessing nature to help people adapt to climate change. Nat. Clim. Chang. 2012, 2, 504–509. [Google Scholar] [CrossRef]
- Zimmer, M.; Ajonina, G.N.; Amir, A.A.; Crgagg, S.M.; Crooks, S.; Dahdouh-Guebas, F.; Duke, N.C.; Fratini, S.; Friess, D.A.; Helfer, V. When nature needs a helping hand: Different levels of human intervention for mangrove (re-) establishment. Front. For. Glob. Chang. 2022, 5, 784322. [Google Scholar] [CrossRef]
- Rattan, R.; Sharma, B.; Kumar, R.; Saigal, V.; Shukla, S. Ramsar Convention: History, Structure, Operations, and Relevance; Sharma, S., Singh, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; p. 320. [Google Scholar]
- Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Chang. 2007, 17, 486–500. [Google Scholar] [CrossRef]
- Razali, S.M.; Nuruddin, A.A.; Kamarudin, N. Mapping mangrove density for conservation of the RAMSAR site in Peninsular Malaysia. Int. J. Conserv. Sci. 2020, 11, 153–164. [Google Scholar]
- Selvam, V.; Ravichandaran, K.; Karunakaran, V.; Mani, K.; Beula, E.J.; Gnanappazham, L. Pichavaram Mangrove Wetlands: Situation Analysis; International Union for Conservation of Nature and Natural Resources: Chennai, India, 2010; p. 39. [Google Scholar]
- Partridge, G.; Finlayson, C. Climate change adaptation planning for an internationally important wetland, the Muir–Byenup System Ramsar Site in south-west Australia. Mar. Freshw. Res. 2022, 73, 1263–1277. [Google Scholar] [CrossRef]
- Gross, J.; Flores, E.E.; Schwendenmann, L. Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, Gulf of Monitjo Ramsar site, Pacific Coast, Panama. Wetlands 2014, 34, 55–65. [Google Scholar] [CrossRef]
- Busch, P.-O. The climate secretariat: Making a living in a straitjacket. In Managers of Global Change: The Influence of International Environmental Bureaucracies; Biermann, F., Siebenhüner, B., Eds.; The MIT Press: Cambridge, MA, USA, 2009; pp. 245–264. [Google Scholar]
- Hickmann, T.; Widerberg, O.; Lederer, M.; Pattberg, P. The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. Int. Rev. Adm. Sci. 2021, 87, 21–38. [Google Scholar] [CrossRef]
- Friess, D.A.; Yando, E.S.; Abuchahla, G.M.; Adams, J.B.; Cannicci, S.; Canty, S.W.; Cavanaugh, K.C.; Connolly, R.M.; Cormier, N.; Dahdouh-Guebas, F. Mangroves give cause for conservation optimism, for now. Curr. Biol. 2020, 30, R153–R154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Banjade, M.; Liswanti, N.; Herawati, T.; Mwangi, E. Governing Mangroves: Unique Challenges for Managing Indonesia’s Coastal Forests; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2017; p. 57. [Google Scholar]
- Sidik, F.; Lawrence, A.; Wagey, T.; Zamzani, F.; Lovelock, C.E. Blue carbon: A new paradigm of mangrove conservation and management in Indonesia. Mar. Policy 2023, 147, 105388. [Google Scholar] [CrossRef]
- Rogers, K.; Boon, P.I.; Branigan, S.; Duke, N.C.; Field, C.D.; Fitzsimons, J.A.; Kirkman, H.; Mackenzie, J.R.; Saintilan, N. The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Mar. Policy 2016, 72, 139–155. [Google Scholar] [CrossRef]
- Zauki, N.A.M.; Satyanarayana, B.; Fairuz-Fozi, N.; Nelson, B.R.; Martin, M.B.; Akbar-John, B.; Chowdhury, A.J.K. Citizen science frontiers horseshoe crab population regain at their spawning beach in East Peninsular Malaysia. J. Environ. Manag. 2019, 232, 1012–1020. [Google Scholar] [CrossRef]
- Nayak, A.; Equbal, J.; Sanghamitra Rout, S.; Dash, B.; Thiruchitrambalam, G.; Bhadury, P.; Behara, S.; Raut, D. Macrobenthic community of an anthropogenically influenced mangrove associated estuary on the East coast of India: An approach for ecological assessment. Front. Mar. Sci. 2022, 9, 1008912. [Google Scholar] [CrossRef]
Journals | Quartile (2021) | Impact Factor (2021) | Record Count |
---|---|---|---|
Estuarine, Coastal and Shelf Science | Q1 | 3.10 | 221 |
Journal of Coastal Research | Q3 | 0.67 | 113 |
Science of the Total Environment | Q1 | 10.15 | 85 |
Ocean & Coastal Management | Q1 | 4.33 | 79 |
Estuaries and Coasts | Q1 | 2.78 | 78 |
PLoS ONE | Q1 | 3.58 | 77 |
Hydrobiologia | Q1 | 2.60 | 71 |
Marine Pollution Bulletin | Q1 | 6.49 | 65 |
Remote Sensing of Environment | Q1 | 13.63 | 64 |
Wetlands | Q2 | 2.00 | 61 |
Funding Agencies | Total Number of Grants |
---|---|
National Science Foundation (NSF) | 293 |
National Natural Science Foundation of China (NSFC) | 283 |
National Council for Scientific and Technological Development (CNPq) | 199 |
Australian Research Council | 190 |
Coordination for the Improvement of Higher Education Personnel (CAPES) | 129 |
National Council of Science and Technology (CONACYT) | 91 |
São Paulo Research Foundation (FAPESP) | 84 |
UK Research and Innovation (UKRI) | 84 |
Ministry of Education, Culture, Sports, Science & Technology | 74 |
C * | Si1 | Si2 | Yr | Label (LSI) | Label (LLR) |
---|---|---|---|---|---|
0 | 207 | 0.908 | 2010 | Mangrove forest | Carbon stock |
1 | 194 | 0.904 | 2016 | Mangrove forest | Saudi Arabia |
2 | 159 | 0.874 | 2015 | Coastal wetland | Expansion |
3 | 124 | 0.908 | 2014 | Sea-level rise | Sea-level rise |
4 | 87 | 0.951 | 2006 | Sea-level rise | Moreton Bay Southeast Queensland |
5 | 84 | 0.925 | 2003 | Northern Brazil | French Guiana |
6 | 68 | 0.993 | 1993 | Rhizophora mangle | Anatomy physiology growth |
7 | 64 | 0.984 | 2002 | Soil elevation | Soil elevation |
8 | 41 | 0.971 | 2009 | Holocene mangrove dynamics | South-eastern Brazil |
9 | 37 | 0.971 | 2016 | Mangrove dominated estuary | Mangrove-dominated estuary |
Title | References | Cluster | Citation Count | Journal |
---|---|---|---|---|
“The Botany of Mangroves” | Tomlinson [62] | #6 | 227 | Cambridge University Press |
“Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21)” | Hamilton and Casey [63] | #2 | 143 | Global Ecology and Biogeography |
“The vulnerability of Indo-Pacific mangrove forests to sea-level rise” | Lovelock et al. [64] | #3 | 128 | Nature |
“Mangroves among the most carbon-rich forests in the tropics” | Donato et al. [65] | #0 | 117 | Nature Geoscience |
“Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events” | Cavanaugh et al. [66] | #2, #3 | 115 | PNAS * |
“Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012” | Richards and Friess [67] | #6 | 114 | PNAS * |
“How mangrove forests adjust to rising sea level” | Krauss et al. [33] | #3 | 114 | New Phytologist |
“Carbon cycling and storage in mangrove forests” | Alongi [32] | #0 | 112 | Annual Review of Marine Science |
“Status and distribution of mangrove forests of the world using earth observation satellite data” | Giri et al. [49] | #2 | 111 | Global Ecology and Biogeography |
“Mangrove expansion and salt marsh decline at mangrove poleward limits” | Saintilan et al. [68] | #2 | 97 | Global Change Biology |
Reference | Cluster | Citation Count | Journal | Article Summary |
---|---|---|---|---|
Waycott et al. [69] | #10 | 247 | PNAS * | In terms of biodiversity loss, seagrass meadows are right up there with mangroves, coral reefs, and tropical rainforests. |
Loarie et al. [70] | #10 | 161 | Nature | Mangrove forests had the highest index of the velocity of temperature change (km yr−1). |
Alongi [19] | #10 | 104 | Environmental Conservation | A review of the global mangrove forests’ condition with concluding remarks that linked the fate of mangrove forests after 2025 with technology and ecological, genetics, and forestry modelling. |
Chmura et al. [71] | #0 | 92 | Global Biogeochemical Cycles | Data on carbon sequestration by mangroves and salt marshes from the western and eastern coasts of the Atlantic and Pacific Oceans, the Indian Ocean, the Mediterranean Sea, and the Gulf of Mexico. |
Erwin [72] | #2, #6 | 90 | Wetlands Ecology and Management | A policy paper which discusses the significance of effective long-term restoration and management strategies for wetlands worldwide. |
Halpern et al. [73] | #10 | 57 | Conservation Biology | The rocky reef, coral reef, hard-shelf, mangrove, and offshore epipelagic ecosystems were identified as the most at-risk in a quantitative survey among subject-matter experts. |
McKee et al. [74] | #6, #7 | 48 | Global Ecology and Biogeography | In response to rising sea levels, the mangrove forests typical of the Caribbean have adapted by storing sediment at their roots’ base. |
Gratwicke and Speight [75] | #6 | 37 | Journal of Fish Biology | Tropical marine habitats had a higher number of species and greater habitat complexity, according to the habitat assessment score (HAS). |
Amiro et al. [76] | #0 | 32 | Journal of Geophysical Research: Biogeosciences | Net ecosystem production (NEP) carbon loss from all ecosystems was revealed by eddy covariance measurements of carbon dioxide flux from North American forests. |
Cahoon et al. [77] | #9, #6 | 27 | Journal of ecology | Peat collapse in mangrove forests on the islands of Guanaja and Roatan, Honduras, was brought on by changes in sediment elevation and accretion dynamics after Hurricane Mitch. |
Reference | Cluster | Citation Count | Journal | Article Summary |
Duarte and Cebrián [78] | #0 | 51 | Limnology and Oceanography | As marine ecosystems shift from being dominated by phytoplankton to angiosperms, the proportion of NPP used within the systems and consumed by herbivores decreases, while the proportion of NPP stored in sediments increases. |
Nicholls et al. [79] | #7, #2 | 25 | Global Environmental Change | The general circulation model (GCM) scenarios for global sea level rise demonstrated that, in the absence of an adaptive response, even a relatively small global rise in sea level could have significant negative effects on mangrove forests. |
Stirling et al. [80] | #6 | 21 | Earth and Planetary Science Letters | The timing of the end of the last interglacial period is constrained by a unique regressive reef sequence at Mangrove Bay, according to a report on the ages of eight last interglacial fossil reefs along Western Australia’s continental margin. |
Furukawa et al. [81] | #7 | 15 | Estuarine, Coastal and Shelf Science | Middle Creek mangrove swamp in Cairns, Australia was studied for its tidal currents and it was discovered that the spring flood tide trapped suspended sediment from coastal waters. The clay was selectively trapped by the mangrove’s flocculation of finer particles. |
Hoorn [82] | #5 | 15 | Palaeogeography, Palaeoclimatology, Palaeoecology | Sedimentological and palynological evidence suggests that the Guyana Shield was the primary contributor of sediment to the basins of northwestern Amazonia during the Early Miocene. |
Kautsky et al. [83] | #0, #9 | 14 | Aquaculture | Acidification brought on by shrimp farms in mangrove environments can reduce disease resistance either directly or indirectly by causing heavy metals to be released from sediments. |
Smith et al. [84] | #3 | 19 | BioScience | Following Hurricane Andrew, the potential interaction between two different scales of disturbance (hurricanes and lightning strikes) within mangrove forest systems was evaluated. |
McKee [85] | #7 | 11 | Journal of Ecology | Soil redox potentials and interstitial water sulphide concentrations influenced the distributions of two dominant mangrove species in a neotropical forest. Reducing soil conditions and sulphide decreased root oxygen concentrations significantly. |
Ellison and Stoddart [86] | #10 | 9 | Journal of Coastal Research | The stratigraphic record of mangrove ecosystems during sea-level fluctuations during the holocene indicates that low islands will be especially susceptible to the loss of mangrove ecosystems during the projected relative sea-level rise over the next 50 years. |
Hemminga et al. [87] | #0 | 6 | Marine Ecology Progress Series | Carbon flux measurements taken in Gazi Bay, Kenya show a strong correlation between the POM fluxes of the mangrove forest and the seagrass meadows that border it. |
References | Year | Strength | Begin | End |
---|---|---|---|---|
Donato et al. [65] | 2011 | 57.45 | 2012 | 2016 |
Giri et al. [49] | 2011 | 50.99 | 2012 | 2016 |
Tomlinson [62] | 2016 | 37.56 | 2016 | 2019 |
Alongi [32] | 2014 | 33.37 | 2016 | 2019 |
Alongi [90] | 2008 | 32.88 | 2009 | 2013 |
Mcleod et al. [91] | 2011 | 31.72 | 2012 | 2019 |
Krauss et al. [33] | 2014 | 30.03 | 2015 | 2019 |
Gilman et al. [92] | 2008 | 28.82 | 2009 | 2013 |
Lovelock et al. [64] | 2015 | 28.35 | 2017 | 2021 |
Cavanaugh et al. [66] | 2014 | 28.08 | 2015 | 2019 |
Cluster | Cluster Label | Keyword Label |
---|---|---|
#0 | Palynology | Sediment, organic matter, estuary, climate, sea level, evolution, model, coastal, coast, environmental change, record, marine sediment, system, gulf, sea, Holocene, basin, indicator, continental shelf |
#1 | Remote sensing | Vulnerability, sea-level rise, adaptation, classification, accretion, protection, area, establishment, coastal erosion, delta, regeneration, landscape, gradient, recovery, rehabilitation, protected areas, time series |
#2 | Coral reef | Dynamics, ecosystem, impact, mangrove forest, management, pattern, conservation, community, diversity, response, restoration, ecosystem service, biodiversity, abundance, ecology, assemblage, resilience, population, island |
#3 | Blue carbon | Organic carbon, wetland, biomass, variability, sequestration, soil, storage, productivity, carbon stock, land use, freshwater, stock, emission, deforestation, coastal ecosystem, carbon dioxide, decomposition, exchange, nutrient, biogeochemistry, flux |
#4 | Photosynthesis | Forest, growth, salinity, Avicennia marina, nitrogen, Rhizophora mangle, temperature, stable isotope, plant, gas exchange, drought, nutrient enrichment, tolerance, Laguncularia racemosa, seedling, stress, mangrove plant |
#5 | Heavy metals | Bay, carbon, water, accumulation, seasonal variation, water quality, transport, surface sediment, trace metal, environmental impact, contamination, mangrove sediment, pollution, phosphorus, geochemistry |
#6 | Climate change | Sea level rise, mangrove, vegetation, salt marsh, coastal wetland, Florida, Australia, expansion, Gulf of Mexico, dispersal, black mangrove, wave attenuation, seagrass, carbon storage, tidal marsh, eutrophication, deposition, mangrove expansion |
#7 | Behaviour | Ocean, density, pacific, inundation, bird, science, precipitation, movement, level rise, intertidal, |
#8 | Embryonic development | Crab, fiddle crab, hypoxia, dissolved oxygen, canonical correspondence analysis, fatty acid, habitat quality, ocypodidae, biochemical composition, decapod, consumption |
#9 | Coastal management | Chlorophyll, fluorescence, cotton, energy change, dissipation, transformation, mangrove forest, ATP, adenylate kinase, adenylate energy change |
Keywords | Start Year | Frequency | Burst Begin | Burst End |
---|---|---|---|---|
climate change | 2000 | 871 | 2002 | 2018 |
forest | 1992 | 660 | 1996 | 2010 |
sea level rise | 1992 | 427 | 1996 | 2007 |
dynamics | 1993 | 403 | 1996 | 2007 |
ecosystem | 1996 | 375 | 1999 | 2010 |
mangrove | 1993 | 356 | 1995 | 2008 |
impact | 2003 | 331 | 2002 | 2007 |
sediment | 1997 | 312 | 1996 | 2010 |
mangrove forest | 2001 | 310 | 2005 | 2010 |
growth | 1992 | 282 | 1996 | 2007 |
Effect | Description | Reference |
---|---|---|
Habitat loss | Due to the trees’ inability to survive in newly flooded areas or for extended periods, rising sea levels can result in the disappearance of mangrove forests. The numerous species, including fish, crabs, and birds that depend on mangroves for habitat, may suffer as a result. | Loucks et al. [118]; Li et al. [119] |
Modifications in ecosystem function | Mangrove forests are essential to the well-being and operation of coastal ecosystems. The ecosystem as a whole may be negatively impacted by the loss of mangroves brought on by sea level rise. | Lovelock and Ellison [59] |
Coastal erosion | By providing natural protection from storms and waves, mangrove forests serve as a buffer against coastal erosion. Increased erosion, damage to the coastal margins, and harm to dependent communities may result from the loss of mangroves brought on by sea level rise. | Thampanya et al. [26] |
Displacement of communities | Rising sea levels may force communities living near mangrove forests to relocate, leading to social and economic disruption. | Gilman et al. [120]; Barua et al. [121] |
Effect | Description | Reference |
---|---|---|
Drought | Irrespective of their ability to grow and thrive, drought can stress mangrove trees. In some instances, a protracted drought can even cause mangrove trees to perish. | Mafi-Gholami et al. [125,127] |
Flooding | Mangrove forests may also suffer from increased flooding brought on by changes in precipitation patterns. Coastal flooding can result in environmental degradation and ecological imbalance. Consequences include mangrove forest migration inland or seaward, sedimentation and biodiversity threat. | Munji et al. [134]; Wong et al. [135] |
Alterations in nutrient availability | Variations in precipitation patterns can also impact the availability of nutrients in mangrove soils. For instance, increased precipitation may wash nutrients away, while drought may make water-soluble nutrients less available. | Hilaluddin et al. [136] |
Effect | Description | Reference |
---|---|---|
Increased photosynthesis | Through the process of photosynthesis, mangrove trees are able to absorb and store atmospheric CO2. Increased photosynthesis and higher rates of carbon sequestration in mangrove forests may result from higher atmospheric CO2. | Reef et al. [143] |
Alterations in nutrient cycling | Increasing atmospheric CO2 may change the nutrients available in mangrove soils, which may impact the development and survival of mangrove trees. | Lovelock et al. [59]; Alongi [137] |
Changes in water availability | Increasing atmospheric CO2 concentrations may cause water cycle changes affecting mangrove forests’ water availability. This may affect the development and survival of mangrove trees. | Lovelock et al. [59]; Driever et al. [144] |
Alterations in atmospheric and oceanic temperatures | Increasing atmospheric CO2 may be a factor in rising global temperatures, which may have an effect on mangrove forests by altering sea level and the frequency and severity of extreme weather events. | Ellison [145]; Lovelock and Ellison [146] |
Effect | Description | Reference |
---|---|---|
Vertical accretion | One way that mangroves can adapt to rising sea levels is through a process called vertical accretion, in which sediment is deposited on the surface of the forest floor. This can help to keep pace with rising sea levels and prevent the mangroves from being inundated. | MacKenzie et al. [160] |
Seed dispersal | Mangroves reproduce via nautohydrochory, a process that allows seeds to float on water and be transported to new locations. As sea levels rise or their habitat changes, this enables them to colonize new landward areas. | Wijayasinghe et al. [161] |
Genetic diversity | Mangroves with a high level of genetic diversity have a better chance of adapting to shifting environmental conditions. These ecosystems’ resilience can be improved by conserving a variety of mangrove species and populations. | Duke et al. [162]; Arnaud-Haond et al. [163] |
Restoration and conservation efforts | Planting new mangrove seedlings and restoring damaged mangrove forests can help increase these ecosystems’ resilience. Protecting existing mangroves from development and other threats can also help to ensure their long-term survival. However, the approaches for (re)establishing mangroves have advantages and disadvantages that must be carefully considered before implementation. | Jones et al. [164]; Zimmer et al. [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segaran, T.C.; Azra, M.N.; Lananan, F.; Burlakovs, J.; Vincevica-Gaile, Z.; Rudovica, V.; Grinfelde, I.; Rahim, N.H.A.; Satyanarayana, B. Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature. Forests 2023, 14, 421. https://doi.org/10.3390/f14020421
Segaran TC, Azra MN, Lananan F, Burlakovs J, Vincevica-Gaile Z, Rudovica V, Grinfelde I, Rahim NHA, Satyanarayana B. Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature. Forests. 2023; 14(2):421. https://doi.org/10.3390/f14020421
Chicago/Turabian StyleSegaran, Thirukanthan Chandra, Mohamad Nor Azra, Fathurrahman Lananan, Juris Burlakovs, Zane Vincevica-Gaile, Vita Rudovica, Inga Grinfelde, Nur Hannah Abd Rahim, and Behara Satyanarayana. 2023. "Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature" Forests 14, no. 2: 421. https://doi.org/10.3390/f14020421
APA StyleSegaran, T. C., Azra, M. N., Lananan, F., Burlakovs, J., Vincevica-Gaile, Z., Rudovica, V., Grinfelde, I., Rahim, N. H. A., & Satyanarayana, B. (2023). Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature. Forests, 14(2), 421. https://doi.org/10.3390/f14020421