Ingestion of Species-Specific dsRNA Alters Gene Expression and Can Cause Mortality in the Forest Pest, Ips calligraphus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Gene Selection
2.3. dsRNA Synthesis
2.4. Bioassays
2.5. Gene Expression
2.6. mRNA Sequencing
2.7. De Novo Transcriptome Assembly
2.8. Identification of RNAi Machinery
3. Results
3.1. Gene Expression
3.2. Survival
3.3. Transcriptome Assembly and Identification of RNAi Pathway Homologs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovett, G.M.; Canham, C.D.; Arthur, M.A.; Weathers, K.C.; Fitzhugh, R.D. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 2006, 56, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Schowalter, T.D. Ecology and management of bark beetles (Coleoptera: Curculionidae: Scolytinae) in southern pine forests. J. Integr. Pest Manag. 2012, 3, A1–A7. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, W.; Deng, Y. Summer rainfall variability over the Southeastern United States and its intensification in the 21st century as assessed by CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 340–354. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Fu, R.; Deng, Y.; Wang, H. Changes to the North Atlantic Subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Clim. 2011, 24, 1499–1506. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Konings, A.G.; Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 2020, 10, 1091–1095. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest insects and climate change. Curr. For. Rep. 2018, 4, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Bentz, B.; Regniere, J.; Fettig, C.; Hansen, E.; Hayes, J.; Hicke, J.; Kelsey, R.; Negron, J. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Garraway, E. The biology of Ips calligraphus and Ips grandicollis (Coleoptera: Scolytidae) in Jamaica. Can. Entomol. 1986, 118, 113–121. [Google Scholar] [CrossRef]
- Haack, R.A.; Billings, R.F.; Richter, A.M. Life history parameters of bark beetles (Coleoptera: Scolytidae) attacking West Indian Pine in the Dominican Republic. Fla. Entomol. 1989, 72, 591–603. [Google Scholar] [CrossRef]
- Zamora, R.A.; Lapis, E.B. Life history and phenology of Ips calligraphus Germar in Benguet province [Philippines]. Philipp. Technol. J. 1987, 12, 43–60. [Google Scholar]
- Hopping, G.R. The North American species in group X of Ips De Geer (Coleoptera: Scolytidae). Can. Entomol. 1965, 97, 803–809. [Google Scholar] [CrossRef]
- Haack, R.A.; Foltz, J.L.; Wilkinson, R.C. Longevity and fecundity of Ips calligraphus (Coleoptera: Scolytidae) in relation to slash pine phloem thickness. Ann. Entomol. Soc. Am. 1984, 77, 657–662. [Google Scholar] [CrossRef]
- Christiansen, E.; Waring, R.H.; Berryman, A.A. Resistance of conifers to bark beetle attack: Searching for general relationships. For. Ecol. Manag. 1987, 22, 89–106. [Google Scholar] [CrossRef]
- Miller, D.R.; Rabaglia, R.J. Ethanol and (−)-α-Pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. J. Chem. Ecol. 2009, 35, 435–448. [Google Scholar] [CrossRef]
- Drooz, A.T. Insects of Eastern Forests; USDA Forest Service Miscellaneous Publication No. 1426; USDA Forest Service: Washington, DC, USA, 1985; Volume 1. [Google Scholar]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.-C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Clarke, S.R.; Billings, R. Influence of pine bark beetles on the West Gulf Coastal Plain. Tex. J. Sci. 2000, 52, 105–126. [Google Scholar]
- McNichol, B.H.; Montes, C.R.; Barnes, B.F.; Nowak, J.T.; Villari, C.; Gandhi, K.J.K. Interactions between southern Ips bark beetle outbreaks, prescribed fire, and loblolly pine (Pinus taeda L.) mortality. For. Ecol. Manag. 2019, 446, 164–174. [Google Scholar] [CrossRef]
- Wood, D.L.; Stark, R.W. The life history of Ips Calligraphus (Coleoptera: Scolytidae) with notes on its biology in California. Can. Entomol. 1968, 100, 145–151. [Google Scholar] [CrossRef]
- Morris, J.L.; Cottrell, S.; Fettig, C.J.; Hansen, W.D.; Sherriff, R.L.; Carter, V.A.; Clear, J.L.; Clement, J.; Derose, R.J.; Hicke, J.A.; et al. Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. J. Appl. Ecol. 2017, 54, 750–760. [Google Scholar] [CrossRef]
- Lantschner, M.V.; Atkinson, T.H.; Corley, J.C.; Liebhold, A.M. Predicting North American Scolytinae invasions in the Southern Hemisphere. Ecol. Appl. 2017, 27, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Johnson, A.J.; Gao, L.; Wu, C.; Hulcr, J. Two new invasive Ips bark beetles (Coleoptera: Curculionidae) in mainland China and their potential distribution in Asia. Pest Manag. Sci. 2021, 77, 4000–4008. [Google Scholar] [CrossRef] [PubMed]
- Nitnavare, R.B.; Bhattacharya, J.; Singh, S.; Kour, A.; Hawkesford, M.J.; Arora, N. Next generation dsRNA-based insect control: Success so far and challenges. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Hamby, R.; Sanchez, J.N.; Cai, Q.; Yan, Q.; Jin, H. RNAs—A new frontier in crop protection. Curr. Opin. Biotechnol. 2021, 70, 204–212. [Google Scholar] [CrossRef]
- Sen, G.L.; Blau, H.M. A brief history of RNAi: The silence of the genes. FASEB J. 2006, 20, 1293–1299. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Peng, Y.; Zhang, H.; Wang, K.; Zhao, C.; Zhu, G.; Reddy Palli, S.; Han, Z. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biol. 2021, 18, 1747–1759. [Google Scholar] [CrossRef]
- Pampolini, F.; Rieske, L.K. Emerald Ash Borer specific gene silencing has no effect on non-target organisms. Front. Agron. 2020, 2. [Google Scholar] [CrossRef]
- Hollowell, H.; Rieske, L.K. Southern pine beetle-specific RNA interference exhibits no effect on model nontarget insects. J. Pest Sci. 2022, 95, 1429–1441. [Google Scholar] [CrossRef]
- Bachman, P.M.; Huizinga, K.M.; Jensen, P.D.; Mueller, G.; Tan, J.; Uffman, J.P.; Levine, S.L. Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regul. Toxicol. Pharmacol. 2016, 81, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Fishilevich, E.; Vélez, A.M.; Storer, N.P.; Li, H.; Bowling, A.J.; Rangasamy, M.; Worden, S.E.; Narva, K.E.; Siegfried, B.D. RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag. Sci. 2016, 72, 1652–1663. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.B.; Mishra, S.K.; Sridharan, K.; Barnes, E.R.; Alyokhin, A.; Tuttle, R.; Kokulapalan, W.; Garby, D.; Skizim, N.J.; Tang, Y.W.; et al. First sprayable double-stranded RNA-based biopesticide product targets Proteasome Subunit Beta Type-5 in Colorado Potato Beetle (Leptinotarsa decemlineata). Front. Plant Sci. 2021, 12, 728652. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 2018, 74, 1239–1250. [Google Scholar] [CrossRef]
- Garbian, Y.; Maori, E.; Kalev, H.; Shafir, S.; Sela, I. Bidirectional transfer of RNAi between Honey Bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog. 2012, 8, e1003035. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.B.; Duan, J.J.; Palli, S.R.; Rieske, L.K. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis. Sci. Rep. 2018, 8, 5020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyre, B.R.; Rodrigues, T.B.; Rieske, L.K. RNA interference and validation of reference genes for gene expression analyses using qPCR in southern pine beetle, Dendroctonus frontalis. Sci. Rep. 2019, 9, 5640. [Google Scholar] [CrossRef] [Green Version]
- Kyre, B.R.; Bentz, B.J.; Rieske, L.K. Susceptibility of mountain pine beetle (Dendroctonus ponderosae Hopkins) to gene silencing through RNAi provides potential as a novel management tool. For. Ecol. Manag. 2020, 473, 118322. [Google Scholar] [CrossRef]
- Rodrigues, T.B.; Dhandapani, R.K.; Duan, J.J.; Palli, S.R. RNA interference in the Asian Longhorned Beetle: Identification of key RNAi genes and reference genes for RT-qPCR. Sci. Rep. 2017, 7, 8913. [Google Scholar] [CrossRef] [Green Version]
- Nunes, F.M.F.; Aleixo, A.C.; Barchuk, A.R.; Bomtorin, A.D.; Grozinger, C.M.; Simões, Z.L.P. Non-Target effects of green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) used in honey bee RNA interference (RNAi) assays. Insects 2013, 4, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.; Rieske, L.K. Validation of reference genes for quantitative PCR in the forest pest, Ips calligraphus. Sci. Rep. 2021, 11, 23523. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lanier, G.N.; Cameron, E.A. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). Can. Entomol. 1969, 101, 862–870. [Google Scholar] [CrossRef]
- Song, L.; Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 2015, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2018, 47, D309–D314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.-S.; Shukla, J.N.; Gong, Z.J.; Mogilicherlaa, K.; Palli, S.R. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochem. Mol. Biol. 2016, 78, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.-S.; Mogilicherla, K.; Gurusamy, D.; Chen, X.; Chereddy, S.; Palli, S. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. USA 2018, 115, 201809381. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.S.; Koo, J.; George, S.; Palli, S.R. Evaluation of inhibitor of apoptosis genes as targets for RNAi-mediated control of insect pests. Arch. Insect Biochem. Physiol. 2020, 104, e21689. [Google Scholar] [CrossRef]
- Persengiev, S.P.; Zhu, X.; Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004, 10, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.S.; Obar, R.A.; Schroeder, C.C.; Austin, T.W.; Poodry, C.A.; Wadsworth, S.C.; Vallee, R.B. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 1991, 351, 583–586. [Google Scholar] [CrossRef]
- Vélez, A.M.; Fishilevich, E. The mysteries of insect RNAi: A focus on dsRNA uptake and transport. Pestic. Biochem. Physiol. 2018, 151, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.; Groβe-Wilde, E.; Krokene, P.; Roy, A.; Chakraborty, A.; Löfstedt, C.; Vogel, H.; Andersson, M.N.; Schlyter, F. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun. Biol. 2021, 4, 1059. [Google Scholar] [CrossRef]
- Keeling, C.I.; Yuen, M.M.S.; Liao, N.Y.; Docking, T.R.; Chan, S.K.; Taylor, G.A.; Palmquist, D.L.; Jackman, S.D.; Nguyen, A.; Li, M.; et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013, 14, R27. [Google Scholar] [CrossRef] [Green Version]
- Fisher, K.E.; Tillett, R.L.; Fotoohi, M.; Caldwell, C.; Petereit, J.; Schlauch, K.; Tittiger, C.; Blomquist, G.J.; MacLean, M. RNA-Seq used to identify ipsdienone reductase (IDONER): A novel monoterpene carbon-carbon double bond reductase central to Ips confusus pheromone production. Insect Biochem. Mol. Biol. 2021, 129, 103513. [Google Scholar] [CrossRef] [PubMed]
- Pratt, A.J.; Macrae, I.J. The RNA-induced Silencing Complex: A versatile gene-silencing machine. J. Biol. Chem. 2009, 284, 17897–17901. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Zeng, Y.; Xie, W.; Wu, Q.; Wang, S.; Zhou, X.; Zhang, Y. Genome-wide identification and analysis of genes associated with RNA interference in Bemisia tabaci. Pest Manag. Sci. 2019, 75, 3005–3014. [Google Scholar] [CrossRef]
- Rodrigues, T.B.; Rieske, L.K.; Duan, J.J.; Mogilicherla, K.; Palli, S.R. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis. Sci. Rep. 2017, 7, 7379. [Google Scholar] [CrossRef] [Green Version]
- Mehlhorn, S.; Ulrich, J.; Baden, C.U.; Buer, B.; Maiwald, F.; Lueke, B.; Geibel, S.; Bucher, G.; Nauen, R. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pestic. Biochem. Physiol. 2021, 176, 104870. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Z.; Zhang, R.; Kong, X.; Liu, F.; Fang, J.; Zhang, S.; Zhang, Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: Screening target genes and analyzing lethal effect. Pest Manag. Sci. 2023. [Google Scholar] [CrossRef]
- Mendelsohn, M.L.; Gathmann, A.; Kardassi, D.; Sachana, M.; Hopwood, E.M.; Dietz-Pfeilstetter, A.; Michelsen-Correa, S.; Fletcher, S.J.; Székács, A. Summary of discussions from the 2019 OECD conference on RNAi based pesticides. Front. Plant Sci. 2020, 11, 740. [Google Scholar] [CrossRef]
- Hollowell, H.; Wallace, M.; Rieske, L.K. The trigger for RNA interference to silence essential genes in southern pine beetle, Dendroctonus frontalis, demonstrates no lethal effects on pine-associated nontarget insects. Agric. For. Entomol. 2022, 1–13. [Google Scholar] [CrossRef]
- Pampolini, F.; Rodrigues, T.B.; Leelesh, R.S.; Kawashima, T.; Rieske, L.K. Confocal microscopy provides visual evidence and confirms the feasibility of dsRNA delivery to emerald ash borer through plant tissues. J. Pest Sci. 2020, 93, 1143–1153. [Google Scholar] [CrossRef]
- Bragg, Z.; Rieske, L.K. Feasibility of systemically applied dsRNAs for pest-specific RNAi-induced gene silencing in white oak. Front. Plant Sci. 2022, 13, 830226. [Google Scholar] [CrossRef] [PubMed]
- Bragg, Z.; Rieske, L.K. Spatial distribution and retention in loblolly pine seedlings of exogenous dsRNAs applied through roots. Int. J. Mol. Sci. 2022, 23, 9167. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.B.; Hunter, W.B.; Park, A.L.; Gundersen-Rindal, D.E. Double strand RNA delivery system for plant-sap-feeding insects. PLoS ONE 2017, 12, e0171861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, W.B.; Glick, E.; Paldi, N.; Bextine, B.R. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest. Entomol. 2012, 37, 85–87. [Google Scholar] [CrossRef]
- Murphy, K.A.; Tabuloc, C.A.; Cervantes, K.R.; Chiu, J.C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 2016, 6, 22587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joga, M.R.; Mogilicherla, K.; Smagghe, G.; Roy, A. RNA Interference-based Forest Protection Products (FPPs) against wood-boring Coleopterans: Hope or hype? Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Tull, A.R.; Gladfelter, H.; Pampolini, F.; Rieske, L.; Nelson, C.D.; Merkle, S. Development of a new genetic transformation system for white and green ash using embryogenic cultures. Forests 2022, 13, 671. [Google Scholar] [CrossRef]
- Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Hsiang, T.; Patynek, P.; Stereńczak, K.; Olejarski, I.; Oszako, T. Health assessment and genetic structure of monumental Norway spruce trees during a bark beetle (Ips typographus L.) outbreak in the Białowieża Forest District, Poland. Forests 2020, 11, 647. [Google Scholar] [CrossRef]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [Green Version]
Gene Name | Sequence 5′3′ | R2 | %E |
---|---|---|---|
16s rRNA—16s Ribosomal RNA | CAAACCTTTCATTCCAGCTTTC | 0.99 | 103.8 |
AAAATACTGCGGCCGTTAAA | |||
28s rRNA—28s Ribosomal RNA | TCGACCTCTGGTGACTGTTG | 0.99 | 105.4 |
ACTTTCAGGACCCGTCTTGA | |||
hsp—Heat Shock Protein | GTTAGAACGTCCCTCAGTTTC | 0.99 | 96.2 |
TGGTTGCGGTTCGTTAAG | |||
iap—Inhibitor of Apoptosis | AGCATCAGGCTGAGAATAAC | 0.99 | 103.4 |
CTCTCACAGCGTTACAGATAG | |||
shi—Shibire | CGAAGTGAGAACGAACCAATA | 0.99 | 91.6 |
CCCTCGGCAATCAAGTAATC |
Gene name | Sequence 5′3′ | Amplicon Size |
---|---|---|
hsp—Heat Shock Protein | TAATACGACTCACTATAGGGCTTTGTCCGCAACCATAAATAC | 429 |
TAATACGACTCACTATAGGGAGGATCGCCACTCGATTA | ||
iap—Inhibitor of Apoptosis | TAATACGACTCACTATAGGGGAGAGCAACTTCTCCGTTTAG | 373 |
TAATACGACTCACTATAGGGGCCAGAATATGGCACTGTAG | ||
shi—Shibire | TAATACGACTCACTATAGGGCCCTGAGGATCAACTTCTTTAG | 423 |
TAATACGACTCACTATAGGGCCTTCCTAGAGGATCTGGTATAG | ||
gfp—Green Fluorescent Protein | TAATACGACTCACTATAGGGCGATGCCACCTACGGCAA | 248 |
TAATACGACTCACTATAGGGTGTCGCCCTCGAACTTCA |
RNAi-Related Gene | BLASTx Hit | Top Hit Accession | Comparison | PANTHER Classification | Accession |
---|---|---|---|---|---|
Dicer-1 | Endoribonuclease Dcr-1 | XP_019765036.1 (Dendroctonus ponderosae) | E = 0.0; bits = 2863; %ID = 77.83% | Endoribonuclease dicer (PTHR14950: SF37) | OQ420293 |
Dicer-2 | Endoribonuclease Dicer isoform X2 | XP_048517572.1 (Dendroctonus ponderosae) | E = 0.0; bits = 2240; %ID = 69.03% | Dicer-2, isoform A (PTHR14950: SF36) | OQ420294 |
Ribonuclease 3 | Ribonuclease 3 | XP_030748887.1 (Sitophilus oryzae) | E = 0.0; bits = 1776; %ID = 83.43% | Ribonuclease 3 (PTHR11207: SF0) | OQ420295 |
Argonaute 2 | Protein argonaute-2 isoform X1 | XP_019754001.2 (Dendroctonus ponderosae) | E = 0.0; bits = 1796; %ID = 95.73% | Protein argonaute-2 (PTHR22891: SF59) | OQ420296 |
PIWI-like protein 1 | Piwi-like protein Siwi | XP_019768894.1 (Dendroctonus ponderosae) | E = 0.0; bits = 1073; %ID = 62.58% | PIWI-like protein 1 (PTHR22891: SF164) | OQ420297 |
PIWI-like protein 2 | Piwi-like protein Ago3 | XP_030752623.1 (Sitophilus oryzae) | E = 0.0; bits = 649; %ID = 70.34% | PIWI-like protein 2 (PTHR22891: SF111) | OQ420298 |
Staufen | Double-stranded RNA-binding protein Staufen homolog 2 isoform X3 | XP_019760432.1 (Dendroctonus ponderosae) | E = 0.0; bits = 1126; %ID = 85.19% | Maternal effect protein staufen (PTHR46054: SF3) | OQ420299 |
SID-1 | SID1 transmembrane family member 1 isoform X2 | XP_019759106.1 (Dendroctonus ponderosae) | E = 0.0; bits = 1104; %ID = 76.21% | Cholesterol uptake associated (PTHR12185: SF14) | OQ420300 |
Loquacious | Interferon-inducible dsRNA-dependent protein kinase activator A homolog isoform X2 | XP_048522468.1 (Dendroctonus ponderosae) | E = 0.0; bits = 598; %ID = 78.12% | Loquacious isoform B (PTHR46205: SF3) | OQ420301 |
Exportin-5 | Exportin-5 | XP_019754709.2 (Dendroctonus ponderosae) | E = 0.0; bits = 1885; %ID = 83.57% | Exportin-5 (PTHR11223: SF3) | OQ420302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, M.; Rieske, L.K. Ingestion of Species-Specific dsRNA Alters Gene Expression and Can Cause Mortality in the Forest Pest, Ips calligraphus. Forests 2023, 14, 422. https://doi.org/10.3390/f14020422
Wallace M, Rieske LK. Ingestion of Species-Specific dsRNA Alters Gene Expression and Can Cause Mortality in the Forest Pest, Ips calligraphus. Forests. 2023; 14(2):422. https://doi.org/10.3390/f14020422
Chicago/Turabian StyleWallace, Mary, and Lynne K. Rieske. 2023. "Ingestion of Species-Specific dsRNA Alters Gene Expression and Can Cause Mortality in the Forest Pest, Ips calligraphus" Forests 14, no. 2: 422. https://doi.org/10.3390/f14020422
APA StyleWallace, M., & Rieske, L. K. (2023). Ingestion of Species-Specific dsRNA Alters Gene Expression and Can Cause Mortality in the Forest Pest, Ips calligraphus. Forests, 14(2), 422. https://doi.org/10.3390/f14020422