A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Natural Plots
2.1.2. Simulated Plots
2.2. Neighborhood Indices
2.3. Construction of Dynamic Multi-Objective Optimization Model of Forest Spatial Structure
2.4. Construction of Tree-Level Multi-Objective Forest Harvest Model (MO-PSO)
2.4.1. Particle Swarm Optimization
2.4.2. The Method of MO-PSO Model Construction
3. Results
3.1. Model Performance
3.2. Thinning Intensities
3.3. Competition, Structure and Spatial Distribution Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryan, C.M.; Cerveny, L.K.; Robinson, T.L.; Blahna, D.J. Implementing the 2012 forest planning rule: Best available scientific information in forest planning assessments. For. Sci. 2018, 64, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T.; Lähde, E.; Laiho, O. Which trees should be removed in thinning treatments? For. Ecosyst. 2015, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Borges, P.; Eid, T.; Bergseng, E. Applying simulated annealing using different methods for the neighborhood search in forest planning problems. Eur. J. Oper. Res. 2014, 233, 700–710. [Google Scholar] [CrossRef]
- Borgesa, J.G.; Hoganson, H.M. Structuring a landscape by forestland classification and harvest scheduling spatial constraints. For. Ecol. Manag. 2000, 130, 269–275. [Google Scholar] [CrossRef]
- Seiwa, K.; Eto, Y.; Hishita, M.; Masaka, K. Effects of thinning intensity on species diversity and timber production in a conifer (Cryptomeria japonica) plantation in Japan. J. For. Res. 2012, 17, 468–478. [Google Scholar] [CrossRef]
- Bettinger, P.; Sessions, J. Spatial forest planning: To adopt, or not to adopt? J. For. 2003, 101, 24–29. [Google Scholar] [CrossRef]
- Kangas, J.; Kuusipalo, J. Integrating biodiversity into forest management planning and decision-making. For. Ecol. Manag. 1993, 61, 1–15. [Google Scholar] [CrossRef]
- Pohjanmies, T.; Triviño, M.; Le Tortorec, E.; Salminen, H.; Mönkkönen, M. Conflicting objectives in production forests pose a challenge for forest management. Ecosyst. Serv. 2017, 28, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, R.; Temperli, C.; Jacobsen, J.B.; Thorsen, B.J.; Meilby, H.; Lexer, M.J.; Lindner, M.; Bugmann, H.; Borges, J.G.; Palma, J.; et al. A framework for modeling adaptive forest management and decision making under climate change. Ecol. Soc. 2017, 22, 40. [Google Scholar] [CrossRef]
- Pommerening, A. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manag. 2006, 224, 266–277. [Google Scholar] [CrossRef]
- Bettinger, P.; Tang, M. Tree-level harvest optimization for structure-based forest management based on the species mingling index. Forests 2015, 6, 1121–1144. [Google Scholar] [CrossRef]
- Dong, L.; Wei, H.; Liu, Z. Optimizing forest spatial structure with neighborhood-based indices: Four case studies from northeast China. Forests 2020, 11, 413. [Google Scholar] [CrossRef] [Green Version]
- Knoke, T.; Stang, S.; Remler, N.; Seifert, T. Ranking the importance of quality variables for the price of high quality beech timber (Fagus sylvatica L.). Ann. For. Sci. 2006, 63, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Wing, B.M.; Boston, K.; Ritchie, M.W. A technique for implementing group selection treatments with multiple objectives using an airborne lidar-derived stem map in a heuristic environment. For. Sci. 2019, 65, 211–222. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Pukkala, T. Selecting the trees to be harvested based on the relative value growth of the remaining trees. Eur. J. For. Res. 2016, 135, 581–592. [Google Scholar] [CrossRef]
- Packalen, P.; Pukkala, T.; Pascual, A. Combining spatial and economic criteria in tree-level harvest planning. For. Ecosyst. 2020, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Kimmins, J.P.; Welham, C.; Seely, B.; Meitner, M.; Rempel, R.; Sullivan, T. Science in Forestry: Why does it sometimes disappoint or even fail us? For. Chron. 2005, 81, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Carnol, M.; Baeten, L.; Branquart, E.; Grégoire, J.-C.; Heughebaert, A.; Muys, B.; Ponette, Q.; Verheyen, K. Ecosystem services of mixed species forest stands and monocultures: Comparing practitioners’ and scientists’ perceptions with formal scientific knowledge. For. An Int. J. For. Res. 2014, 87, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Tóth, S.F.; McDill, M.E. Promoting large, compact mature forest patches in harvest scheduling models. Environ. Model. Assess. 2008, 13, 1–15. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, J.; Li, Y.; Li, W.; Wang, L.; Yang, Y. Using the particle swarm optimization algorithm to calibrate the parameters relating to the turbulent flux in the surface layer in the source region of the Yellow River. Agric. For. Meteorol. 2017, 232, 606–622. [Google Scholar] [CrossRef] [Green Version]
- Fotakis, D.G.; Sidiropoulos, E.; Myronidis, D.; Ioannou, K. Spatial genetic algorithm for multi-objective forest planning. For. Policy Econ. 2012, 21, 12–19. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Li, Q.; Zuo, Q.; Gao, H.; Liu, J.; Tian, Y. Forest Land Quality Evaluation and the Protection Zoning of Subtropical Humid Evergreen Broadleaf Forest Region Based on the PSO-TOPSIS Model and the Local Indicator of Spatial Association: A Case Study of Hefeng County, Hubei Province, China. Forests 2021, 12, 325. [Google Scholar] [CrossRef]
- PrasannaVenkatesan, S.; Kumanan, S. Multi-objective supply chain sourcing strategy design under risk using PSO and simulation. Int. J. Adv. Manuf. Technol. 2012, 61, 325–337. [Google Scholar] [CrossRef]
- Aguirre, O.; Hui, G.; von Gadow, K.; Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 2003, 183, 137–145. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of forest structure research: A review. Curr. For. Rep. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Guo, Q.; Nie, D.; Bai, X.; Jiang, Y. Research on the change trend of dominant tree population distribution patterns during development process of climax forest communities. Acta Bot. Sin. 1999, 23, 256–268. [Google Scholar]
- Chen, C.; Liu, J.; Yu, K.; Chen, J.; Ge, Y. Simulated Cutting for the Mixed Forest of Pinus massoniana and Broad-leaved Tree Species Based on Optimized Spatial Structure. J. Northeast For. Univ. 2010, 30, 29–32. [Google Scholar]
- Hui, G.; HU, Y.; Zhao, Z. Research Progress of Structure-based Forest Management. For. Res. 2018, 31, 85–93. [Google Scholar]
- Qiu, H.; Liu, S.; Zhang, Y.; Li, J. Variation in height-diameter allometry of ponderosa pine along competition, climate, and species diversity gradients in the western United States. For. Ecol. Manag. 2021, 497, 119477. [Google Scholar] [CrossRef]
- Li, J.; Zhu, K.; Liu, S.; Li, D.; Zhang, G.; Liu, X.; Yang, W. Introducing tree neighbouring relationship factors in forest pattern spatial analysis: Weighted Delaunay triangulation method. J. For. Res. 2021, 32, 1941–1951. [Google Scholar] [CrossRef]
- Weintraub, A.; Bare, B.B. New issues in forest land management from an operations research perspective. Interfaces 1996, 26, 9–25. [Google Scholar] [CrossRef]
- Pukkala, T.; Ketonen, T.; Pykäläinen, J. Predicting timber harvests from private forests—A utility maximisation approach. For. Policy Econ. 2003, 5, 285–296. [Google Scholar] [CrossRef]
- Stoll, P.; Weiner, J.; Muller-Landau, H.; Müller, E.; Hara, T. Size symmetry of competition alters biomass–density relationships. Proc. R. Soc. B Biol. Sci. 2002, 269, 2191–2195. [Google Scholar] [CrossRef] [PubMed]
- Rewald, B.; Leuschner, C. Belowground competition in a broad-leaved temperate mixed forest: Pattern analysis and experiments in a four-species stand. Eur. J. For. Res. 2009, 128, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.C.; Ades, P.K.; Bi, H. Stochastic structure and individual-tree growth models. For. Ecol. Manag. 2001, 154, 261–276. [Google Scholar] [CrossRef]
- Li, Y.; Hui, G.; Wang, H.; Zhang, G.; Ye, S. Selection priority for harvested trees according to stand structural indices. iForest-Biogeosci. For. 2017, 10, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T.; Miina, J.; Kellomäki, S. Response to different thinning intensities in young Pinus sylvestris. Scand. J. For. Res. 1998, 13, 141–150. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. For. Ecol. Manag. 2004, 188, 51–63. [Google Scholar] [CrossRef]
- Borges, J.G.; Hoganson, H.M.; Rose, D.W. Combining a decomposition strategy with dynamic programming to solve spatially constrained forest management scheduling problems. For. Sci. 1999, 45, 201–212. [Google Scholar]
- Thomas, S.C.; Halpern, C.B.; Falk, D.A.; Liguori, D.A.; Austin, K.A. Plant diversity in managed forests: Understory responses to thinning and fertilization. Ecol. Appl. 1999, 9, 864–879. [Google Scholar] [CrossRef]
- Li, Y.; Ye, S.; Hui, G.; Hu, Y.; Zhao, Z. Spatial structure of timber harvested according to structure-based forest management. For. Ecol. Manag. 2014, 322, 106–116. [Google Scholar] [CrossRef]
- Forrester, D.I. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions. For. Ecol. Manag. 2013, 310, 336–347. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Norway spruce stands in Finland. For. Int. J. For. Res. 2004, 77, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Pérez-de-Lis, G.; García-González, I.; Rozas, V.; Arévalo, J.R. Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Ann. For. Sci. 2011, 68, 1093. [Google Scholar] [CrossRef] [Green Version]
- Dang, P.; Gao, Y.; Liu, J.; Yu, S.; Zhao, Z. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Sci. Total Environ. 2018, 630, 171–180. [Google Scholar] [CrossRef]
- Fang, S.; Lin, D.; Tian, Y.; Hong, S. Thinning intensity affects soil-atmosphere fluxes of greenhouse gases and soil nitrogen mineralization in a lowland poplar plantation. Forests 2016, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Settineri, G.; Mallamaci, C.; Mitrović, M.; Sidari, M.; Muscolo, A. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy. Eur. J. For. Res. 2018, 137, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Vogeler, J.C.; Yang, Z.; Cohen, W.B. Mapping post-fire habitat characteristics through the fusion of remote sensing tools. Remote Sens. Environ. 2016, 173, 294–303. [Google Scholar] [CrossRef]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
Site | DW | LH | DS | LT | WT |
---|---|---|---|---|---|
Altitude (m) | 1300 | 68 | 217 | 335 | 713 |
Slope (°) | 47 | 35 | 27 | 15 | 38 |
Aspect | E | W | ES | EN | S |
Canopy density | 0.75 | 0.65 | 0.70 | 0.80 | 0.60 |
Mean DBH (cm) | 12.7 | 10.3 | 14.7 | 11.3 | 9.4 |
Mean Height (m) | 11.3 | 9.1 | 13.8 | 9.7 | 7.1 |
Mean Crown (m) | 2.4 | 2.7 | 2.0 | 3.1 | 2.5 |
Number of species | 8 | 7 | 10 | 6 | 8 |
Index | Calculation Formula | Variable Definition |
---|---|---|
Uniform angle (ANGL) | is the uniform angle of central tree i, n is the number of neighboring trees, is the variable of uniform angle. When the angle between central tree i and neighboring tree j is less than the standard angle, = 1, otherwise, = 0. | |
DBH Dominance (DOMI) | is the neighborhood comparison of central tree i, is the value variable of neighborhood comparison. When the DBH of neighboring tree j is smaller than that of central tree i, = 0, otherwise, = 1. | |
Species mingling (MING) | is the species mingling of central tree i, is the value variable of the mingling degree. When the central tree i and neighboring tree j are the same trees, = 0, otherwise = 1. |
Distribution Pattern | MO-PSO | PSO | RD-TH | ||||||
---|---|---|---|---|---|---|---|---|---|
AITE | ALIV | /% | AITE | ALIV | RUNN | ALIV | |||
Uniform | 26.9 | 0.697 | 31.94 | 34.2 | 0.664 | 30.34 | 100,000 | 0.631 | 27.01 |
Random | 37.4 | 0.702 | 29.51 | 49.6 | 0.693 | 27.72 | 100,000 | 0.676 | 24.36 |
Aggregated | 43.9 | 0.604 | 24.71 | 54.3 | 0.597 | 20.33 | 100,000 | 0.554 | 19.77 |
Plot Code | Intensity | DBH/cm | MING | RIP/% | DOMI | RIP/% | ANGL | RIP/% | L-Index | RIP/% |
---|---|---|---|---|---|---|---|---|---|---|
DW | 0% | 12.710 (3.143) | 0.473 (0.223) | 0.590 (0.351) | 0.560 (0.259) | 0.612 (0.225) | ||||
15% | 13.107 (2.967) | 0.491 (0.201) | 3.81 | 0.425 (0.332) | −27.97 | 0.484 (0.246) | −13.57 | 0.671 (0.203) | 9.60 | |
30% | 13.412 (2.762) | 0.502 (0.198) | 2.24 | 0.336 (0.303) | −20.94 | 0.442 (0.246) | −8.68 | 0.719 (0.213) | 7.19 | |
45% | 13.430 (2.784) | 0.515 (0.190) | 2.59 | 0.303 (0.278) | −9.82 | 0.407 (0.224) | −7.92 | 0.749 (0.197) | 4.15 | |
LH | 0% | 10.360 (3.853) | 0.572 (0.210) | 0.485 (0.350) | 0.550 (0.275) | 0.594 (0.198) | ||||
15% | 11.797 (3.521) | 0.589 (0.199) | 2.97 | 0.431 (0.338) | −11.13 | 0.514 (0.265) | −6.55 | 0.661 (0.176) | 11.32 | |
30% | 11.903 (3.326) | 0.603 (0.192) | 2.38 | 0.342 (0.314) | −20.65 | 0.474 (0.257) | −7.78 | 0.708 (0.188) | 7.07 | |
45% | 12.001 (3.117) | 0.612 (0.189) | 1.49 | 0.290 (0.283) | −15.20 | 0.447 (0.245) | −5.70 | 0.732 (0.172) | 3.33 | |
DS | 0% | 6.710 (2.976) | 0.514 (0.223) | 0.499 (0.357) | 0.529 (0.250) | 0.607 (0.215) | ||||
15% | 7.286 (2.853) | 0.539 (0.192) | 4.86 | 0.447 (0.346) | −10.42 | 0.498 (0.240) | −5.86 | 0.672 (0.197) | 10.63 | |
30% | 7.074 (2.793) | 0.548 (0.189) | 1.67 | 0.350 (0.315) | −21.70 | 0.470 (0.246) | −5.62 | 0.708 (0.201) | 5.44 | |
45% | 7.295 (2.707) | 0.564 (0.167) | 2.92 | 0.311 (0.292) | −11.14 | 0.452 (0.242) | −3.83 | 0.738 (0.193) | 4.23 | |
LT | 0% | 11.320 (3.194) | 0.604 (0.231) | 0.493 (0.349) | 0.531 (0.265) | 0.605 (0.208) | ||||
15% | 12.036 (3.013) | 0.630 (0.203) | 4.30 | 0.445 (0.339) | −9.74 | 0.493 (0.252) | −7.16 | 0.672 (0.184) | 11.02 | |
30% | 12.213 (2.936) | 0.641 (0.204) | 1.75 | 0.357 (0.316) | −19.78 | 0.449 (0.249) | −8.92 | 0.715 (0.194) | 6.45 | |
45% | 12.501 (2.903) | 0.657 (0.189) | 2.50 | 0.312 (0.291) | −12.61 | 0.431 (0.246) | −4.01 | 0.722 (0.177) | 1.01 | |
WT | 0% | 8.430 (3.723) | 0.511 (0.231) | 0.506 (0.356) | 0.504 (0.274) | 0.615 (0.225) | ||||
15% | 8.989 (3.237) | 0.533 (0.206) | 4.35 | 0.456 (0.349) | −9.88 | 0.467 (0.262) | −7.34 | 0.681 (0.208) | 10.75 | |
30% | 9.035 (2.898) | 0.540 (0.197) | 1.16 | 0.370 (0.319) | −18.86 | 0.423 (0.262) | −9.42 | 0.721 (0.211) | 5.85 | |
45% | 9.127 (2.836) | 0.549 (0.194) | 1.83 | 0.312 (0.292) | −15.68 | 0.409 (0.261) | −3.31 | 0.746 (0.205) | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Zhang, H.; Lei, K.; Hu, X.; Yang, T.; Jiang, X. A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure. Forests 2023, 14, 441. https://doi.org/10.3390/f14030441
Qiu H, Zhang H, Lei K, Hu X, Yang T, Jiang X. A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure. Forests. 2023; 14(3):441. https://doi.org/10.3390/f14030441
Chicago/Turabian StyleQiu, Hanqing, Huaiqing Zhang, Kexin Lei, Xingtao Hu, Tingdong Yang, and Xian Jiang. 2023. "A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure" Forests 14, no. 3: 441. https://doi.org/10.3390/f14030441
APA StyleQiu, H., Zhang, H., Lei, K., Hu, X., Yang, T., & Jiang, X. (2023). A New Tree-Level Multi-Objective Forest Harvest Model (MO-PSO): Integrating Neighborhood Indices and PSO Algorithm to Improve the Optimization Effect of Spatial Structure. Forests, 14(3), 441. https://doi.org/10.3390/f14030441