Assessment of the Combined Charring and Coating Treatments as a Wood Surface Protection Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Materials
2.2. Wood Surface Treatments
Recording of Samples Mass Loos
2.3. Chemical Analysis of Surfaces
2.4. Microscopic Investigations of Surfaces
2.4.1. Analysis of Microscopic Structure
2.4.2. Surface Roughness Measurements
2.5. Short-term Water and Coating Uptake Analysis
2.6. Determination of Indentation Hardness
2.7. Natural Weathering Test
2.8. Monitoring of Colour Changes
3. Results and Discussion
3.1. Mass Loss Due to Surface Treatments
3.2. Colour Changes Caused with Surface Treatments
3.3. FTIR Spectra
3.4. Surface Microscopic Structure
3.5. Uptake of Liquids
3.5.1. Uptake of Coating in Wood
3.5.2. Uptake of Water in Treated Wood
3.6. Indentation Hardness
3.7. Changes Caused with Natural Weathering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prieto, J.; Kiene, J. Wood Coatings: Chemistry and Practice, 1st ed.; Vincentz Network GmbH & Co. KG: Hanover, Germany, 2018; 396p. [Google Scholar]
- Resi Kerdiati, N.L.K. Understanding wood finishing using the japanese wood burning technique (Shou Sugi Ban) in architecture. J. Aesthet. Des. Art Manag. 2021, 1, 15–23. [Google Scholar]
- Ebner, D.H.; Barbu, M.-C.; Klaushofer, J.; Čermák, P. Surface modification of spruce and fir sawn-timber by charring in the traditional japanese method—Yakisugi. Polymers 2021, 13, 1662. [Google Scholar] [CrossRef]
- Čermák, P.; Dejmal, A.; Paschová, Z.; Kymäläinen, M.; Dömény, J.; Brabec, M.; Hess, D.; Rautkari, L. One-sided surface charring of beech wood. J. Mater. Sci. 2019, 54, 9497–9506. [Google Scholar] [CrossRef]
- Roberts, A.F. The heat of reaction during the pyrolysis of wood. Combust. Flame 1971, 17, 79–86. [Google Scholar] [CrossRef]
- Richte, F.; Atreya, A.; Kotsovinos, P.; Rein, G. The effect of chemical composition on the charring of wood across scales. Proc Combust. Inst. 2019, 37, 4053–4061. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Zhou, X.; Dai, J.; Deng, Z. Experimental and numerical study of the effect of sample orientation on the pyrolysis and ignition of wood slabs exposed to radiation. J. Fire Sci. 2012, 30, 211–223. [Google Scholar] [CrossRef]
- Machová, D.; Oberle, A.; Zárybnická, L.; Dohnal, J.; Šeda, V.; Dömény, J.; Vacenovská, V.; Kloiber, M.; Pěnčík, J.; Tippner, J.; et al. Surface characteristics of one-sided charred beech wood. Polymers 2021, 13, 1551. [Google Scholar] [CrossRef]
- Frangi, A.; Fontana, M. Charring rates and temperature profiles of wood sections. Fire Mater. 2003, 27, 91–102. [Google Scholar] [CrossRef]
- Kwon, S.-M.; Kim, N.-H.; Cha, D.-S. An investigation on the transition characteristics of the wood cell walls during carbonization. Wood Sci. Technol. 2009, 43, 487–498. [Google Scholar] [CrossRef]
- Zachar, M.; Čebalová, I.; Kačíková, D.; Zacharová, L. The effect of heat flux to the fire-technical and chemical properties of spruce wood (Picea abies L.). Materials 2021, 14, 4989. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Preston, C.M.; Schmidt, M.W.I.; Werner, R.A.; Schulze, E.D. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Org. Geochem. 2002, 33, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Morozovs, A.; Laiveniece, L.; Lubinskis, V. Wood one-side surface charring of timber for claddings or recycled wood. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2021; pp. 994–1002. [Google Scholar] [CrossRef]
- Baroudi, D.; Ferrantelli, A.; Li, K.Y.; Hostikka, S. A thermomechanical explanation for the topology of crack patterns observed on the surface of charred wood and particle fibreboard. Combust. Flame 2017, 182, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Byrne, C.E.; Nagle, D.C. Carbonization of wood for advanced materials applications. Carbon 1991, 35, 259–266. [Google Scholar] [CrossRef]
- Gospodinova, D.; Dineff, P. New surface charred wood effects for charcoal coating, graphic image and drawing. In Proceedings of the 11th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 11–14 September 2019. [Google Scholar] [CrossRef]
- Li, G.; Gao, L.; Liu, F.; Qiu, M.; Dong, G. Quantitative studies on charcoalification: Physical and chemical changes of charring wood. Fundam. Res. 2022, in press. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.; Kim, C.-K.; Shim, K.B. Determination of charring thickness of wood by residual strength analysis. Bioresources 2022, 17, 1485–1493. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Fan, H.; Wang, J. Wood carbonization as a protective treatment on resistance to wood destroying fungi. Int. Biodeterior. Biodegrad. 2018, 129, 42–49. [Google Scholar] [CrossRef]
- Buksans, E.; Laiveniece, L.; Lubinskis, V. Solid wood surface modification by charring and its impact on reaction to fire performance engineering for rural development. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2021; pp. 899–905. [Google Scholar] [CrossRef]
- Ebner, D.; Stelzer, R.; Barbu, M.C. Study of wooden surface carbonization using the traditional japanese yakisugi technique. Pro Ligno 2019, 15, 278–283. [Google Scholar]
- Yuan, S.; Sun, X.; Wang, W.; Zhou, B.; Sun, X.; Sun, J.; Wang, X. The reaction-to-fire performance of wood covered with a transparent film: A potential method for the preservation of chinese wooden historical buildings. Int. J. Arch. Herit. 2022. [Google Scholar] [CrossRef]
- Peterson, C.J.; Gerard, P.D.; Wagner, T.L. Charring does not affect wood infestation by subterranean termites. Entomol. Exp. Appl. 2008, 126, 78–84. [Google Scholar] [CrossRef]
- Kampe, A.; Pfriem, A. A note on artificial weathering of spruce (Picea abies) with a carbonised layer. Int. Wood Prod. J. 2018, 9, 86–89. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Hautamäki, S.; Lillqvist, K.; Segerholm, K.; Rautkari, L. Surface modification of solid wood by charring. J. Mater. Sci. 2017, 52, 6111–6119. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Čermák, P.; Hautamäki, S.; Rautkari, L. Sorption-related characteristics of surface charred spruce wood. Materials 2018, 11, 2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šeda, V.; Machová, D.; Dohnal, J.; Dömény, J.; Zárybnická, L.; Oberle, A.; Vacenovská, V.; Čermák, P. Effect of one-sided surface charring of beech wood on density profile and surface wettability. Appl. Sci. 2021, 11, 4086. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Lourençon, T.V.; Lillqvist, K. Natural weathering of soft- and hardwoods modified by contact and flame charring methods. Eur. J. Wood Wood Prod. 2022, 80, 1309–1320. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Sjökvist, T.; Dömény, J.; Rautkari, L. Artificial weathering of contact-charred wood—The effect of modification duration, wood species and material density. Materials 2022, 15, 3951. [Google Scholar] [CrossRef]
- Sohbatzadeh, F.; Shabannejad, A.; Ghasemi, M.; Mahmoudsani, Z. Deposition of halogen-free flame retardant and water-repellent coatings on firwood surfaces using the new version of DBD. Prog. Org. Coat. 2021, 151, 106070. [Google Scholar] [CrossRef]
- Hasburgh, L.E.; Zelinka, S.L.; Bishell, A.B.; Kirker, G.T. Durability and fire performance of charred wood siding (Shou Sugi Ban). Forests 2021, 12, 1262. [Google Scholar] [CrossRef]
- SIST EN 927-3; Paints and Varnishes—Coating Materials and Coating Systems for Exterior Wood—Part 3: Natural Weathering Test. European Committee for Standardization: Brussels, Belgium, 2019.
- Schmid, J.; Klippel, M.; Viertel, M.; Presl, R.; Fahrni, R.; Totaro, A.; Frangi, A. Charring of timber—determination of the residual virgin cross section and charring rates. In Proceedings of the World Conference on Timber Engineering, Santiago, Chile, 24–27 August 2020. [Google Scholar]
- Du Noüy, P.L. An interfacial tensiometer for universal use. J. Gen. Physiol. 1925, 7, 625–631. [Google Scholar] [CrossRef]
- Hertz, H.R. Über die Berührung fester elastischer Körper. J. Die Reine Angew. Math. 1881, 92, 156–171. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook—Wood as an Engineering Material; Forest Products Laboratory: Madison, WI, USA, 2010; pp. 1–46. [Google Scholar]
- SIST EN ISO 2810; Paints and Varnishes—Natural Weathering of Coatings—Exposure and Assessment. European Committee for Standardization: Brussels, Belgium, 2020.
- SIST ISO 4628-4; Paints and varnishes—Evaluation of Degradation of Coatings—Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance—Part 4: Assessment of Degree of Cracking. International Organization for Standardization: Geneva, Switzerland, 2016.
- SIST ISO 4628-5; Paints and varnishes—Evaluation of Degradation of Coatings—Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance—Part 5: Assessment of Degree of Flaking. International Organization for Standardization: Geneva, Switzerland, 2016.
- SIST EN ISO 16492; Paints and Varnishes—Evaluation of the Surface Disfigurement Caused by Fungi and Algae on Coatings. European Committee for Standardization: Brussels, Belgium, 2014.
- Corbalán, M.; Millán, M.S.; Yzue, M.J. Color pattern recognition with CIELAB Coordinates. Opt. Eng. 2002, 41, 130–138. [Google Scholar] [CrossRef]
- Gašparík, M.; Karami, E.; Sethy, A.K.; Das, S.; Kytka, T.; Paukner, F.; Gaff, M. Effect of freezing and heating on the screw withdrawal capacity of Norway spruce and European larch wood. Constr. Build. Mater. 2021, 303, 124457. [Google Scholar] [CrossRef]
- Buchelt, B.; Wagenführ, A. Evaluation of colour differences on wood surfaces. Eur. J. Wood Prod 2012, 70, 389–391. [Google Scholar] [CrossRef]
- Guo, Y.; Bustin, R.M. FTIR spectroscopy and reflectance of moderncharcoals and fungal decayed woods: Implications for studies of inertinite in coals. Int. J. Coal Geol. 1998, 37, 29–53. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Martínez Cortizas, A. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Tintner, J.; Preimesberger, C.; Pfeifer, C.; Soldo, D.; Ottner, F.; Wriessnig, K.; Rennhofer, H.; Lichtenegger, H.; Novotny, E.H.; Smidt, E. Impact of pyrolysis temperature on charcoal characteristics. Ind. Eng. Chem. Res. 2018, 57, 15613–15619. [Google Scholar] [CrossRef]
- Dias, A.F.J.; Nunes de Oliveira, R.; Deglise, X.; Dias de Souza, N.; Otávio Brito, J. Infrared spectroscopy analysis on charcoal generated by the pyrolysis of Corymbia citriodora wood. Matéria 2019, 24, 7. [Google Scholar] [CrossRef]
- Michell. A.J. FTIR spectroscopic studies of the reactions of wood and of iignin model compounds with inorganic agents. Wood Sci. Technol. 1993, 27, 69–80. [CrossRef]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Pánek, M.; Kubovský, I.; Oberhofnerová, E.; Štěrbová, I.; Niemz, P.; Osvald, A.; Kačík, F. Influence of natural weathering on the ignition and relative burning rate of selected softwoods. Constr. Build. Mater. 2021, 304, 124615. [Google Scholar] [CrossRef]
- Constantine, M.; Mooney, S.; Hibbert, B.; Marjo, C.; Bird, M.; Cohen, T.; Forbes, M.; McBeathd, A.; Rich, A.; Stride, J. Using charcoal, ATR FTIR and chemometrics to model the intensity of pyrolysis: Exploratory steps towards characterising fire events. Sci. Total Environ. 2021, 783, 147052. [Google Scholar] [CrossRef]
- Li, G.; Hse, C.; Qin, T. Wood liquefaction with phenol by microwave heating and FTIR evaluation. J. For. Res. 2015, 26, 1043–1048. [Google Scholar] [CrossRef]
- Liu, X.Y.; Timar, M.C.; Varodi, A.M.; Sawyer, G. An investigation of accelerated temperature-induced ageing of four wood species: Colour and FTIR. Wood Sci. Technol. 2017, 51, 357–378. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Nishimiya, K.; Hata, T.; Imamura, Y.; Ishihara, S. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J. Wood Sci. 1998, 44, 56–61. [Google Scholar] [CrossRef]
- Evans, P.D.; Cullis, I.; Kim, J.D.W.; Leung, L.H.; Hazneza, S.; Heady, R.D. Microstructure and mechanism of grain raising in wood. Coatings 2017, 7, 135. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Rautkari, L. Effect of weathering on surface functional groups of charred norway spruce cladding panels. Forests 2020, 11, 1373. [Google Scholar] [CrossRef]
- Leikanger Friquin, K. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 2011, 35, 303–327. [Google Scholar] [CrossRef]
- Žlahtič, M.; Humar, M. Influence of artificial and natural weathering on the moisture dynamic of wood. Bioresources 2017, 12, 117–142. [Google Scholar] [CrossRef] [Green Version]
Wood Type | Surface Treatment Method and Given Acronym | |||||
---|---|---|---|---|---|---|
Sanded | Sanded + Coated | Charred + Brushed | Charred + Brushed + Coated | Charred | Charred + Coated | |
Spruce | Sp-S | Sp-S + Co | Sp-Ch + B | Sp-Ch + B+Co | Sp-Ch | Sp-Ch + Co |
Larch | La-S | La-S + Co | La-Ch + B | La-Ch + B+Co | La-Ch | La-Ch + Co |
Surface Treatment | Type of Wood | |
---|---|---|
Spruce | Larch | |
S | ||
S + Co | ||
Ch + B | ||
Ch + B + Co | ||
Ch | ||
Ch + Co |
Wood type | Surface Treatment | Pd [µm] | EHz [MPa] | ||
---|---|---|---|---|---|
Avg. | St. dev. | Avg. | St. dev. | ||
Sp | S | 124.38 | 26.34 | 0.52 | 0.20 |
S + Co | 86.21 | 27.54 | 0.89 | 0.39 | |
Ch + B | 147.90 | 37.88 | 0.52 | 0.19 | |
Ch + B + Co | 155.62 | 19.47 | 0.43 | 0.10 | |
Ch | 384.36 | 62.20 | 0.13 | 0.03 | |
Ch + Co | 488.83 | 32.88 | 0.06 | 0.02 | |
La | S | 77.59 | 41.13 | 1.70 | 1.39 |
S + Co | 69.50 | 19.81 | 1.41 | 0.55 | |
Ch + B | 65.31 | 23.20 | 1.65 | 0.71 | |
Ch + B + Co | 106.93 | 49.99 | 1.69 | 1.17 | |
Ch | 122.48 | 4.41 | 0.69 | 0.15 | |
Ch + Co | 155.48 | 33.37 | 0.63 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žigon, J.; Pavlič, M. Assessment of the Combined Charring and Coating Treatments as a Wood Surface Protection Technique. Forests 2023, 14, 440. https://doi.org/10.3390/f14030440
Žigon J, Pavlič M. Assessment of the Combined Charring and Coating Treatments as a Wood Surface Protection Technique. Forests. 2023; 14(3):440. https://doi.org/10.3390/f14030440
Chicago/Turabian StyleŽigon, Jure, and Matjaž Pavlič. 2023. "Assessment of the Combined Charring and Coating Treatments as a Wood Surface Protection Technique" Forests 14, no. 3: 440. https://doi.org/10.3390/f14030440
APA StyleŽigon, J., & Pavlič, M. (2023). Assessment of the Combined Charring and Coating Treatments as a Wood Surface Protection Technique. Forests, 14(3), 440. https://doi.org/10.3390/f14030440