The Potential of Uncoated Norway Spruce as a Façade Material—A Review
Abstract
:1. Introduction
2. Durability of Spruce Relative to Other Wood Species
3. The Durability of Spruce Heartwood
4. The Importance of Water Content in Wood
5. Ageing of Spruce
6. The Permeability of Spruce
7. The Effect of Density
8. The Processing of Wood
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petric, M. Surface modification of wood: A critical review. Rev. Adhes. Adhes 2013, 1, 216–247. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Enhancing weathering resistance of wood—A review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef]
- Rüther, P.; Time, B. External wood claddings–performance criteria, driving rain and large-scale water penetration methods. Wood Mater. Sci. Eng. 2015, 10, 287–299. [Google Scholar] [CrossRef]
- Humar, M.; Kržišnik, D.; Lesar, B.; Brischke, C. The performance of wood decking after five years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef] [Green Version]
- Sandak, J.; Sandak, A.; Riggio, M. Characterization and monitoring of surface weathering on exposed timber structures with a multi-sensor approach. Int. J. Archit. Herit. 2015, 9, 674–688. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Sjömar, P. Byggnadsteknik Och Timmermanskonst: En Studie Med Exempel Från Några Medeltida Knuttimrade Kyrkor Och Allmogehus; Chalmers University of Technology: Gothenburg, Sweden, 1988. [Google Scholar]
- Seim, A.; Marquer, L.; Bisson, U.; Hofmann, J.; Herzig, F.; Kontic, R.; Lechterbeck, J.; Muigg, B.; Neyses-Eiden, M.; Rzepecki, A. Historical spruce abundance in Central Europe: A combined dendrochronological and palynological approach. Front. Ecol. Evol. 2022, 10, 909453. [Google Scholar] [CrossRef]
- Klein, A.; Grabner, M. Analysis of construction timber in rural Austria: Wooden log walls. Int. J. Archit. Herit. 2015, 9, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, C.T. A climate index for estimating potential for decay in wood structures above ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publ. Off. EU: Luxembourg, 2016; pp. 114–116. [Google Scholar]
- Niklewski, J.; Brischke, C.; Frühwald Hansson, E. Numerical study on the effects of macro climate and detailing on the relative decay hazard of Norway spruce. Wood Mater. Sci. Eng. 2021, 16, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Bösch, H. Fassadenverkleidungen aus unbehandeltem Holz; Lignum: Zürich, Switzerland, 1998. [Google Scholar]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Solberg, S. Summer drought: A driver for crown condition and mortality of Norway spruce in Norway. For. Pathol. 2004, 34, 93–104. [Google Scholar] [CrossRef]
- Bosela, M.; Tumajer, J.; Cienciala, E.; Dobor, L.; Kulla, L.; Marčiš, P.; Popa, I.; Sedmák, R.; Sedmáková, D.; Sitko, R. Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Sci. Total Environ. 2021, 752, 141794. [Google Scholar] [CrossRef] [PubMed]
- EN 350:2016; Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. CEN: Brussels, Belgium,, 2016.
- Flæte, P.; Evans, F.; Alfredsen, G. Natural durability of different wood species: Results after five years testing in ground contact. Nord. -Balt. Netw. Wood Mater. Sci. Eng. For. Landsc. Work. Pap. 2009, 43, 65–70. [Google Scholar]
- Evans, F.G.; Alfredsen, G.; Flæte, P.O. Natural durability of wood in Norway-results after eight years above ground exposure. In Proceedings of the 7th Meeting of the Nordic-Baltic Network in Wood Material Science & Engineering (WSE), Oslo, Norway, 27–28 October 2011. [Google Scholar]
- Rapp, A.; Augusta, U. The full guideline for the “double layer test method”—A field test method for determining the durability of wood out of ground. In Proceedings of the International Research Group on Wood Protection, Ljubjana, Slovenia, 6–10 June 2004. IRG/WP 04-20290. [Google Scholar]
- Metsä-Kortelainen, S.; Viitanen, H. Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Mater. Sci. Eng. 2017, 12, 129–139. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Preston, A. Testing the durability of timber above ground: A review on methodology. Wood Mater. Sci. Eng. 2016, 11, 283–304. [Google Scholar] [CrossRef]
- Johansson, P.; Jermer, J.; Johansson, I. Field trial with wood preservatives for class AB. SP Swed. Natl. Test. Res. Inst. Borås Swed. 2001, 33, 1–40. [Google Scholar]
- Brischke, C.; Meyer-Veltrup, L.; Bornemann, T. Moisture performance and durability of wooden façades and decking during six years of outdoor exposure. J. Build. Eng. 2017, 13, 207–215. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Alfredsen, G.; Humar, M.; Flæte, P.-O.; Isaksson, T.; Brelid, P.L.; Westin, M.; Jermer, J. The combined effect of wetting ability and durability on outdoor performance of wood: Development and verification of a new prediction approach. Wood Sci. Technol. 2017, 51, 615–637. [Google Scholar] [CrossRef]
- Keržič, E.; Humar, M. Studies on the material resistance and moisture dynamics of wood after artificial and natural weathering. Wood Mater. Sci. Eng. 2022, 17, 551–557. [Google Scholar] [CrossRef]
- Kržišnik, D.; Lesar, B.; Thaler, N.; Planinšič, J.; Humar, M. A study on the moisture performance of wood determined in laboratory and field trials. Eur. J. Wood Wood Prod. 2020, 78, 219–235. [Google Scholar] [CrossRef]
- Kutnik, M.; Suttie, E.; Brischke, C. European standards on durability and performance of wood and wood-based products–Trends and challenges. Wood Mater. Sci. Eng. 2014, 9, 122–133. [Google Scholar] [CrossRef]
- Blom, Å.; Bergström, M. Above Ground Durability of Swedish Softwood. Ph.D. Thesis, Växjö University, Växjö, Sweden, 2005. [Google Scholar]
- Blom, Å.; Johansson, J.; Sivrikaya, H. Some factors influencing susceptibility to discoloring fungi and water uptake of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and Oriental spruce (Picea orientalis). Wood Mater. Sci. Eng. 2013, 8, 139–144. [Google Scholar] [CrossRef]
- Sandberg, K. Degradation of Norway spruce (Picea abies) heartwood and sapwood during 5.5 years’ above-ground exposure. Wood Mater. Sci. Eng. 2008, 3, 83–93. [Google Scholar] [CrossRef]
- Sandberg, K. Norway Spruce Heartwood: Properties Related to Outdoor Use. Ph.D. Thesis, Luleå tekniska Universitet, Norrbotten, Sweden, 2009. [Google Scholar]
- Metsä-Kortelainen, S.; Viitanen, H. Decay resistance of sapwood and heartwood of untreated and thermally modified Scots pine and Norway spruce compared with some other wood species. Wood Mater. Sci. Eng. 2009, 4, 105–114. [Google Scholar] [CrossRef]
- Longuetaud, F.; Mothe, F.; Leban, J.-M. Automatic detection of the heartwood/sapwood boundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images. Comput. Electron. Agric. 2007, 58, 100–111. [Google Scholar] [CrossRef]
- Bush, D.; McCarthy, K.; Meder, R. Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann. For. Sci. 2011, 68, 1057. [Google Scholar] [CrossRef] [Green Version]
- Jokipii-Lukkari, S.; Delhomme, N.; Schiffthaler, B.; Mannapperuma, C.; Prestele, J.; Nilsson, O.; Street, N.R.; Tuominen, H. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. Plant Physiol. 2018, 176, 2851. [Google Scholar] [CrossRef] [Green Version]
- Berthier, S.; Kokutse, A.D.; Stokes, A.; Fourcaud, T. Irregular Heartwood Formation in Maritime Pine (Pinus pinaster Ait): Consequences for Biomechanical and Hydraulic Tree Functioning. Ann. Bot. 2001, 87, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J. Heartwood formation and natural durability—A review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar]
- Hillis, W.E. Heartwood and Tree Exudates; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Eaton, R.A.; Hale, M.D.C. Wood: Decay, Pests, and Protection; Chapman & Hall: London, UK, 1993; p. 546. [Google Scholar]
- Ekman, R. Analysis of the Nonvolatile Extractives in Norway Spruce Sapwood and Heartwood; Åbo Akademi: Åbo, Finland, 1979. [Google Scholar]
- Lie, S.K.; Vestøl, G.I.; Høibø, O.; Gobakken, L.R. Surface mould growth on wood: A comparison of laboratory screening tests and outdoor performance. Eur. J. Wood Wood Prod. 2019, 77, 1137–1150. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Nilsson, T.; Daniel, G.; Abad, A. Biological degradation of wood. Archaeol. Wood 1990, 225, 141–174. [Google Scholar]
- Tiemann, H.D. Effect of Moisture upon the Strength and Stiffness of Wood; US Department of Agriculture, Forest Service: Washington, DC, USA, 1906. [Google Scholar]
- Fredriksson, M.; Thybring, E.E. On sorption hysteresis in wood: Separating hysteresis in cell wall water and capillary water in the full moisture range. PLoS ONE 2019, 14, e0225111. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L.; Brischke, C. Fungal decay at different moisture levels of selected European-grown wood species. Int. Biodeterior. Biodegrad. 2015, 103, 23–29. [Google Scholar] [CrossRef]
- Barkas, W.W. Fibre Saturation Point of Wood. Nature 1935, 135, 545. [Google Scholar] [CrossRef]
- Sjökvist, T. Coated Norway Spruce: Influence of Wood Characteristics on Water Sorption and Coating Durability. Ph.D. Thesis, Linnaeus University Press, Växjö, Sweden, 2019. [Google Scholar]
- De Meijer, M.; Militz, H. Moisture transport in coated wood. Part 1: Analysis of sorption rates and moisture content profiles in spruce during liquid water uptake. Eur. J. Wood Wood Prod. 2000, 58, 354–362. [Google Scholar] [CrossRef]
- Geving, S.; Erichsen, T.H.; Nore, K.; Time, B. Hygrothermal Conditions in Wooden Claddings–Test House Measurements; Norwegian Building Research Institute: Oslo, Norway, 2006; Volume 407. [Google Scholar]
- Viitanen, H.; Bjurman, J. Mould growth on wood under fluctuating humidity conditions. Mater. Und Org. 1995, 29, 27–46. [Google Scholar]
- Kránitz, K. Effect of Natural Aging on Wood. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2014. [Google Scholar]
- Varganici, C.-D.; Rosu, L.; Rosu, D.; Mustata, F.; Rusu, T. Sustainable wood coatings made of epoxidized vegetable oils for ultraviolet protection. Environ. Chem. Lett. 2021, 19, 307–328. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under UV irradiation: A lignin characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef]
- Kaila, P. Sunshine: The worst enemy of wooden façades. In Old Cultures in New Worlds; ICOMOS: Washington, DC, USA, 1987; pp. 333–338. [Google Scholar]
- Kránitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Hon, D.N.-S.; Ifju, G.; Feist, W.C. Characteristics of free radicals in wood. Wood Fiber Sci. 1980, 12, 121–130. [Google Scholar]
- Matsuo, M.; Yokoyama, M.; Umemura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M. Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung 2011, 65, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Žlahtič-Zupanc, M.; Lesar, B.; Humar, M. Changes in moisture performance of wood after weathering. Constr. Build. Mater. 2018, 193, 529–538. [Google Scholar] [CrossRef]
- Malas, A. Rubber nanocomposites with graphene as the nanofiller. In Progress in Rubber Nanocomposites; Elsevier: Duxford, UK, 2017; pp. 179–229. [Google Scholar]
- Harris, J.M. Heartwood formation in Pinus radiata (D.Don.). New Phytol. 1954, 53, 517–524. [Google Scholar] [CrossRef]
- Phillips, E.W.J. Movement of the pit membrane in coniferous woods, with special reference to preservative treatment. For. Int. J. For. Res. 1933, 7, 109–120. [Google Scholar] [CrossRef]
- Comstock, G.; Côté, W. Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Sci. Technol. 1968, 2, 279–291. [Google Scholar] [CrossRef]
- Liese, W.; Bauch, J. On anatomical causes of the refractory behaviour of spruce and Douglas fir. Inst. Wood Science. J. 1967, 4, 3–14. [Google Scholar]
- Blom, Å.; Thörnqvist, T.; Bergström, M. Outdoor exposure of untreated Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) wood samples. Wood Mater. Sci. Eng. 2010, 5, 204–210. [Google Scholar] [CrossRef]
- Blom, Å.; Bergström, M. Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) wood-panels exposed out of ground contact in Sweden for two years. Eur. J. Wood Wood Prod. 2006, 64, 53–61. [Google Scholar] [CrossRef]
- Routa, J.; Brännström, H.; Anttila, P.; Mäkinen, M.; Jänis, J.; Asikainen, A. Wood extractives of Finnish pine, spruce and birch–availability and optimal sources of compounds. Nat. Resour. Bioeconomy Stud. 2017, 73, 1–55. [Google Scholar]
- Hill, C.; Kymäläinen, M.; Rautkari, L. Review of the use of solid wood as an external cladding material in the built environment. J. Mater. Sci. 2022, 57, 9031–9076. [Google Scholar] [CrossRef]
- Olsson, T.; Megnis, M.; Varna, J.; Lindberg, H. Study of the transverse liquid flow paths in pine and spruce using scanning electron microscopy. J. Wood Sci. 2001, 47, 282–288. [Google Scholar] [CrossRef]
- Tarvainen, V.; Saranpää, P.; Repola, J. Discoloration of Norway spruce and Scots pine timber during drying. In Proceedings of the 7th International Wood Drying Conference, Tsukuba, Japan, 9–13 July 2001; pp. 294–299. [Google Scholar]
- Arzola-Villegas, X.; Lakes, R.; Plaza, N.Z.; Jakes, J.E. Wood moisture-induced swelling at the cellular scale—Ab intra. Forests 2019, 10, 996. [Google Scholar] [CrossRef] [Green Version]
- Morén, T. The Basics of Wood Drying: Moisture Dynamics, Drying Methods, Wood Responses; Valutec AB: Skellefteå, Sweden, 2016. [Google Scholar]
- Dinwoodie, J.M. Timber: Its Nature and Behaviour; E & FN Spon: London, UK, 2000. [Google Scholar]
- Thörnqvist, T. Några Egenskaper Hos Sydsvenskt Virke; Södra: Växjö, Sweden, 1992. [Google Scholar]
- Kifetew, G.; Lindberg, H.; Wiklund, M. Tangential and radial deformation field measurements on wood during drying. Wood Sci. Technol. 1997, 31, 35–44. [Google Scholar] [CrossRef]
- Fonti, P.; Sell, J. Radial split resistance of chestnut earlywood and its relation to ring width. Wood Fiber Sci. 2007, 35, 201–208. [Google Scholar]
- Sjökvist, T.; Wålinder, M.E.; Blom, Å. Liquid sorption characterisation of Norway spruce heartwood and sapwood using a multicycle Wilhelmy plate method. Int. Wood Prod. J. 2018, 9, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Vestøl, G.I.; Sivertsen, M.S. Effects of outdoor weathering and wood properties on liquid water absorption in uncoated Norway spruce cladding. For. Prod. J. 2011, 61, 352–358. [Google Scholar] [CrossRef]
- Sell, J.; Feist, W.C. Role of density in the erosion of wood during weathering. For. Prod. J. 1986, 36, 57–60. [Google Scholar]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for predicting clearwood mechanical properties of Scots pine. For. Sci. 2016, 62, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Grekin, M.; Surini, T. Shear strength and perpendicular-to-grain tensile strength of defect-free Scots pine wood from mature stands in Finland and Sweden. Wood Sci. Technol. 2008, 42, 75–91. [Google Scholar] [CrossRef]
- Alfredsen, G.; Brischke, C.; Marais, B.N.; Stein, R.F.; Zimmer, K.; Humar, M. Modelling the material resistance of wood—Part 1: Utilizing durability test data based on different reference wood species. Forests 2021, 12, 558. [Google Scholar] [CrossRef]
- Saranpää, P. Basic density, longitudinal shrinkage and tracheid length of juvenile wood of Picea abies (L.) Karst. Scand. J. For. Res. 1994, 9, 68–74. [Google Scholar] [CrossRef]
- Gerhards, C.C. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood Fiber Sci. 1982, 14, 4–36. [Google Scholar]
- Virta, J.; Koponen, S.; Absetz, I. Cupping of wooden cladding boards in cyclic conditions—A study of boards made of Norway spruce (Picea abies) and Scots pine sapwood (Pinus sylvestris). Wood Sci. Technol. 2005, 39, 431–438. [Google Scholar] [CrossRef]
- Sandberg, D.; Azoulay, M.; Baudin, A.; Blom, Å.; Carlsson, B.; Eliasson, L.; Johansson, J.; Kifetew, G.; Nilsson, B.; Nilsson, D. Utvändiga Träfasader: Inverkan av Materialval, Konstruktion och Ytbehandling på Beständigheten hos Fasader av Gran och Tall; Linnéuniversitetet: Växjö, Sweden, 2011. [Google Scholar]
- Gupta, B.; Jelle, B.; Hovde, P.; Rütsher, P. FTIR spectroscopy as a tool to predict service life of wooden cladding. In Proceedings of the CIB World Congress, Paris, France, 10–13 May 2010; pp. 10–13. [Google Scholar]
- Jämsä, S.; Ahola, P.; Viitaniemi, P. Long-term natural weathering of coated ThermoWood. Pigment Resin Technol. 2000, 29, 68–74. [Google Scholar] [CrossRef]
- Time, B. Hygroscopic Moisture Transport in Wood; Norwegian University of Science and Technology Trondheim: Trondheim, Norway, 1998. [Google Scholar]
- Nopens, M.; Riegler, M.; Hansmann, C.; Krause, A. Simultaneous change of wood mass and dimension caused by moisture dynamics. Sci. Rep. 2019, 9, 10309. [Google Scholar] [CrossRef] [Green Version]
- Pourmand, P.; Wang, L.; Dvinskikh, S.V. Assessment of moisture protective properties of wood coatings by a portable NMR sensor. J. Coat. Technol. Res. 2011, 8, 649–654. [Google Scholar] [CrossRef]
- Brischke, C.; Meyer, L.; Alfredsen, G.; Humar, M.; Francis, L.; Flæte, P.-O.; Larsson-Brelid, P. Natural durability of timber exposed above ground-A survey [Prirodna trajnost drva izlozenoga iznad zemlje-Pregled istrazivanja]. Drv. Ind. 2013, 64, 113–129. [Google Scholar] [CrossRef]
- Sandberg, D. Distortion and visible crack formation in green and seasoned timber: Influence of annual ring orientation in the cross section. Eur. J. Wood Prod. 2005, 63, 11–18. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svensson Meulmann, S.; Sjökvist, T. The Potential of Uncoated Norway Spruce as a Façade Material—A Review. Forests 2023, 14, 1153. https://doi.org/10.3390/f14061153
Svensson Meulmann S, Sjökvist T. The Potential of Uncoated Norway Spruce as a Façade Material—A Review. Forests. 2023; 14(6):1153. https://doi.org/10.3390/f14061153
Chicago/Turabian StyleSvensson Meulmann, Sebastian, and Tinh Sjökvist. 2023. "The Potential of Uncoated Norway Spruce as a Façade Material—A Review" Forests 14, no. 6: 1153. https://doi.org/10.3390/f14061153
APA StyleSvensson Meulmann, S., & Sjökvist, T. (2023). The Potential of Uncoated Norway Spruce as a Façade Material—A Review. Forests, 14(6), 1153. https://doi.org/10.3390/f14061153