Effects of Drought Stress and Ca Supply on the Biomass Allocation Strategies of Poplar and Mulberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions and Experimental Materials
2.2. Experimental Design
2.3. Sample Collection
2.4. Measurements
2.4.1. Biomass
2.4.2. Leaf Characteristics
2.4.3. Gas Exchange Parameters
2.4.4. Soil Water Extractable Ca
2.4.5. Leaf, Stem, and Root Ca Concentration
2.5. Statistical Analysis
3. Results
3.1. Soil Calcium Concentration
3.2. Leaf, Stem and Root Calcium Concentration and Content
3.3. Photosynthetic Parameters
3.4. Biomass Accumulation
3.5. Biomass Allocation
3.6. Leaf Characteristics
4. Discussion
4.1. Responses of Plant Ca Uptake to Drought and Ca Treatments
4.2. Growth and Leaf Gas Exchange Responses to Drought and Ca Treatments
4.3. Biomass Allocation Patterns in Response to Drought
4.4. Ca Increases Drought Resistance via Biomass Allocation and Plant WUE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Bahn, M.; Lattanzi, F.A.; Hasibeder, R.; Wild, B.; Koranda, M.; Danese, V.; Brüggemann, N.; Schmitt, M.; Siegwolf, R.; Richter, A. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 2013, 198, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Zang, U.; Goisser, M.; Grams, T.E.E.; Haberle, K.-H.; Matyssek, R.; Matzner, E.; Matzner, E.; Borken, W. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery. Tree Physiol. 2014, 34, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, P.; Wang, T.; Liu, Q.; Wang, W. Root respiration and belowground carbon allocation respond to drought stress in a perennial grass (Bothriochloa ischaemum). Catena 2020, 188, 104449. [Google Scholar] [CrossRef]
- Chen, R.; Ran, J.; Hu, W.; Dong, L.; Ji, M.; Jia, X.; Lu, J.; Gong, H.; Aqeel, M.; Yao, S.; et al. Effects of biotic and abiotic factors on forest biomass fractions. Natl. Sci. Rev. 2021, 8, nwab025. [Google Scholar] [CrossRef]
- Hamidou, F.; Heynikoye, M.; Halilou, O.; Upadhyaya, H.D.; Vadez, V. Drought (WS) and low phosphorus (LP) stress in groundnut: Water extraction pattern and tolerance related traits for breeding program. In Proceedings of the InterDrought, Hyderabad, India, 21–25 February 2017. [Google Scholar]
- Shi, H.; Ma, W.; Song, J.; Lu, M.; Rahman, S.U.; Bui, T.T.X.; Vu, D.D.; Zheng, H.; Wang, J.; Zhang, Y. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol. 2017, 37, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- Bauw, P.D.; Vandamme, E.; Lupembe, A.; Mwakasege, L.; Senthilkumar, K.; Dramé, K.N.; Merckx, R. Anatomical root responses of rice to combined phosphorus and water stress-relations to tolerance and breeding opportunities. Funct. Plant Biol. 2019, 46, 1009–1022. [Google Scholar] [CrossRef]
- Zhang, Z.; Tariq, A.; Zeng, F.; Graciano, C.; Zhang, B. Nitrogen application mitigates drought-induced metabolic changes in Alhagi sparsifolia seedlings by regulating nutrient and biomass allocation patterns. Plant Physiol. Biochem. 2020, 155, 828–841. [Google Scholar] [CrossRef]
- Meena, S.K.; Pandey, R.; Sharma, S.; Gayacharan, K.T.; Singh, M.P.; Dikshit, H.K. Physiological basis of combined stress tolerance to low phosphorus and drought in a diverse set of mungbean germplasm. Agronomy 2021, 11, 99. [Google Scholar] [CrossRef]
- Wu, F.; Bao, W.; Li, F.; Wu, N. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of sophora davidii seedlings. Environ. Exp. Bot. 2008, 63, 248–255. [Google Scholar] [CrossRef]
- Broadley, M.R.; Bowen, H.C.; Cotterill, H.L.; Hammond, J.P.; Meacham, M.C.; Mead, A.; White, P.J. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 2003, 54, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Gruber, B.D.; Giehl, R.F.H.; Friedel, S.; Wirén, N.V. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013, 163, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Hirschi, K.D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 2004, 136, 2438–2442. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Q. Exogenous calcium alters activities of antioxidant enzymes in Trifolium repens L. leaves under PEG-induced water deficit. J. Plant Nutr. 2010, 33, 1874–1885. [Google Scholar] [CrossRef]
- He, L.; Lu, X.; Tian, J.; Yang, Y.; Li, B.; Li, J.; Guo, S. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 2012, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Dolatabadian, A.; Sanavy, S.A.M.M.; Gholamhoseini, M.; Joghan, A.K.; Majdi, M.; Kashkooli, A.B. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiol. Mol. Biol. Plants 2013, 19, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Zhang, B. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H+-ATPase and Ca2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. Ecotoxicol. Environ. Saf. 2018, 165, 261–269. [Google Scholar] [CrossRef]
- Lawrence, G.B.; David, M.B.; Shortle, W.C. A new mechanism for calcium loss in forest-floor soils. Nature 1995, 378, 162–165. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C.; Siccama, T.G.; Johnson, C.E.; Lovett, G.M.; Fahey, T.J.; Reiners, W.A.; Ryan, D.F.; Martin, C.W.; et al. The biogeo-chemistry of calcium at Hubbard Brook. Biogeochemistry 1998, 41, 89–173. [Google Scholar] [CrossRef]
- Page, B.D.; Bullen, T.D.; Mitchell, M.J. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 2008, 88, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Zou, X.M. From matching site with trees towards matching calcium with trees. J. Nanjing For. Univ. Nat. Sci. Ed. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Li, Z.; Wang, S.; Zhou, H.; Song, X. Triggers of widespread dieback and mortality of poplar (Populus spp.) plantations across northern china. J. Arid Environ. 2019, 174, 104076. [Google Scholar] [CrossRef]
- Song, X.; Gao, X.; Wu, P.; Zhao, X.; Zhang, W.; Zou, Y.; Siddique, K.H.M. Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila Mill.) orchards in a loessial, semi-arid, hilly area of China. Sci. Total Environ. 2020, 723, 137739. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, Y.; Dong, X.; Yan, S. Inducible defense responses in Populus alba berolinensis to Pb stress. S. Afr. J. Bot. 2018, 119, 295–300. [Google Scholar] [CrossRef]
- Xu, S.; Li, B.; Li, P.; He, X.; Chen, W.; Yang, K.; Lia, Y.; Wang, Y. Soil high Cd exacerbates the adverse impact of elevated O3 on Populus alba ’Berolinensis’ L. Ecotoxicol. Environ. Saf. 2019, 174, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Yang, Q.; Tan, S.; Wang, T.; Zhang, Y.; Yang, Y.; Yin, W.; Xia, X.; Guo, H.; Li, Z. Regulation of cytokinin biosynthesis using PtRD26pro-IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus. J. Integr. Plant Biol. 2022, 64, 771–786. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Wang, J.; Wu, X.; Ma, S.; Xu, Z.; Zhou, T.; Xu, N.; Tang, X.; An, B. Increased CO2 concentrations increasing water use efficiency and improvement PSII function of mulberry seedling leaves under drought stress. J. Plant Interact. 2019, 14, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Li, X.; He, G.; Che, Y.; Teng, Z.; Shao, J.; Xu, N.; Sun, G. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol. Environ. Saf. 2020, 190, 110164. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Guan, Y.; Li, M.; Wang, Y.; An, M.; Zhang, Y.; Liu, G.; Xu, N.; Sun, G. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress. Ecotoxicol. Environ. Saf. 2020, 193, 110259. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Dominic, K.; Wang, T.; Fan, T.; Hu, F.; Wang, Y.; Zhang, L.; Lia, L.; Zhao, W. Mulberry (Morus alba) MmSK gene enhances tolerance to drought stress in transgenic mulberry. Plant Physiol. Biochem. 2018, 132, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, C.; Qiu, L.; Li, C.; Zhang, J.; Meng, P. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China. Agric. For. Meteorol. 2018, 252, 39–48. [Google Scholar] [CrossRef]
- Cao, X.; Shen, Q.; Liu, L.; Cheng, J. Relationships of growth, stable carbon isotope composition and anatomical properties of leaf and xylem in seven mulberry cultivars: A hint towards drought tolerance. Plant Biol. 2020, 22, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, D.; Wang, X.; Gu, J.; Mei, L. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant Soil 2006, 288, 155–171. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhanga, Y.; Shea, H.; Liud, X.; Ruana, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Ou, L.J.; Wei, G.; Zhang, Z.Q.; Dai, X.Z.; Zou, X.X. Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species. Photosynthetica 2015, 53, 85–94. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods for Soil and Agro-Chemistry; China Agricultural Science and Technology Publishing House: Beijing, China, 2000; pp. 197–317. [Google Scholar]
- Li, Y.; Zhang, T.; Zhou, Y.; Zou, X.; Yin, Y.; Li, H.; Liu, L.; Zhang, S. Ectomycorrhizal symbioses increase soil calcium availability and water use efficiency of Quercus acutissima seedlings under drought stress. Eur. J. For. Res. 2021, 140, 1039–1048. [Google Scholar] [CrossRef]
- White, P.J. The pathways of calcium movement to the xylem. J. Exp. Bot. 2001, 52, 891–899. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Liese, R.; Lübbe, T.; Albers, N.W.; Meier, I.C. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 2017, 38, 83–95. [Google Scholar] [CrossRef]
- Blum, J.D.; Klaue, A.; Nezat, C.A.; Driscoll, C.T.; Johnson, C.E.; Siccama, T.G.; Eagar, C.; Fahey, T.J.; Likens, G.E. Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 2002, 417, 729–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quirk, J. Effects of Evolutionary Advances in Plant-Mycorrhiza Associations on Biological Weathering. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2012. [Google Scholar]
- Bigelow, S.W.; Canham, C.D. Nutrient limitation of juvenile trees in a northern hardwood forest: Calcium and nitrate are preeminent. For. Ecol. Manag. 2007, 243, 310–319. [Google Scholar] [CrossRef]
- Liu, T.W.; Wu, F.H.; Wang, W.H.; Chen, J.; Li, Z.J.; Dong, X.J.; Patton, J.; Pei, Z.M.; Zheng, H.L. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiol. 2011, 31, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.A.; Ashraf, U.; Tanveer, M.; Khan, I.; Hussain, S.; Shahzad, B.; Zohaib, A.; Abbas, F.; Saleem, M.F.; Ali, I. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Barutcular, C.; Dizlek, H.; EL-Sabagh, A.; Sahin, T.; Elsabagh, M.; Islam, S. Nutritional quality of maize in response to drought stress during grain-filling stages in Mediterranean climate condition. J. Exp. Biol. Agric. Sci. 2016, 4, 644–652. [Google Scholar] [CrossRef]
- Li, H.; Huo, Y.; Weng, X.; Zhou, Y.; Sun, Y.; Zhang, G.; Zhang, S.; Liu, L.; Pei, J. Regulation of the growth of mongolian pine (Pinus sylvestris var. mongolica) by calcium-water coupling in a semiarid region. Ecol. Indic. 2022, 137, 108736. [Google Scholar] [CrossRef]
- Shang, Y. Effects of elevated ozone and water deficit on poplar saplings: Changes in carbon and nitrogen stocks and their allocation to different organs. For. Ecol. Manag. 2019, 441, 89–98. [Google Scholar] [CrossRef]
- Wilson, P.J.; Thompson, K.; Hodgson, J.G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 2010, 143, 155–162. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. Ecology 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- Liu, F.; Stützel, H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic. 2004, 102, 15–27. [Google Scholar] [CrossRef]
- Vitra, A.; Deléglise, C.; Meisser, M.; Risch, A.C.; Signarbieux, C.; Lamacque, L.; Delzon, S.; Buttler, A.; Mariotte, P. Responses of plant leaf economic and hydraulic traits mediate the effects of early-and late-season drought on grassland productivity. AoB Plants 2019, 11, plz023. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Paoletti, E.; Saitanis, C.J.; Manning, W.J.; Sugai, T.; Koike, T. Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O3-induced injury. Sci. Total Environ. 2016, 573, 1053–1062. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Freeman, J.; Grene, R.; Tokuhisa, J. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: A focus on vegetative growth and photosynthetic parameters. PLoS ONE 2014, 9, e115380. [Google Scholar] [CrossRef]
- Beikircher, B.; Cesare, D.C.; Mayr, S. Hydraulics of high-yield orchard trees: A case study of three Malus domestica cultivars. Tree Physiol. 2013, 33, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Hashim, A.L.; Mohamed, S. Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture 2021, 11, 285. [Google Scholar] [CrossRef]
- Shao, H.B.; Song, W.Y.; Chu, L.Y. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biol. 2008, 331, 587–596. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biol. 2018, 18, 180. [Google Scholar] [CrossRef] [PubMed]
- Ranty, B.; Aldon, D.; Cotelle, V.; Galaud, J.P.; Thuleau, P.; Mazars, C. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 2016, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Beer, C. Impact of soil freezing and thawing dynamics on soil organic carbon stocks in permafrost regions. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 052013. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Solgi, S.; Sepaskhah, A.R. Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric. Water Manag. 2019, 225, 105784. [Google Scholar] [CrossRef]
- Jones, H.G.; Tardieu, F. Modelling water relations of horticultural crops: A review. Sci. Hortic. 1998, 74, 21–46. [Google Scholar] [CrossRef]
- Pei, Z.M.; Murata, Y.; Benning, G.; Thomine, S.; Klüsener, B.; Allen, G.J.; Grill, E.; Schroeder, J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 2000, 406, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, Y.; Ma, C.; Miao, R.; Wu, C.; Long, Y.; Ge, T.; Wu, Z.; Hou, X.; Zhang, J.; et al. Cngc2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol. 2017, 173, 1342–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Zhou, Y.B.; Li, H.; Zhang, S.Z.; Fang, Y.; Zhang, Y.J.; Zou, X. Linking tree water use efficiency with calcium and precipitation. Tree Physiol. 2022, 12, 2419–2431. [Google Scholar] [CrossRef] [PubMed]
Calcium Treatment | Ca0 | Ca200 | FCa | Fwater | FCa × water | ||
---|---|---|---|---|---|---|---|
Water Treatment | Moist | Drought | Moist | Drought | |||
Mulberry | |||||||
Water extractable Ca (mg·kg−1) | 21.34 ± 0.80 D | 43.28 ± 0.75 C | 175.58 ± 6.71 B | 219.22 ± 16.32 A | 348.951 ** | 13.764 ** | 1.507 |
Poplar | |||||||
Water extractable Ca (mg·kg−1) | 17.4 ± 0.49 C | 36.93 ± 2.89 B | 176.25 ± 1.73 A | 182.71 ± 8.88 A | 1026.796 ** | 7.469 ** | 0.176 |
Calcium Treatment | Ca0 | Ca200 | FCa | Fwater | FCa × water | ||
---|---|---|---|---|---|---|---|
Water Treatment | Moist | Drought | Moist | Drought | |||
Mulberry | |||||||
Leaf (mg·g−1) | 22.44 ± 1.61 C | 24.85 ± 2.43 C | 45.80 ± 3.56 B | 67.37 ± 5.29 A | 86.966 ** | 12.218 ** | 7.885 ** |
Stem (mg·g−1) | 16.22 ± 1.60 D | 22.98 ± 1.02 C | 38.51 ± 0.34 B | 50.75 ± 3.17 A | 182.535 ** | 26.289 ** | 2.189 |
Root (mg·g−1) | 28.10 ± 1.75 C | 26.80 ± 0.48 C | 42.74 ± 3.00 B | 76.97 ± 4.92 A | 114.939 ** | 29.689 ** | 34.527 ** |
Poplar | |||||||
Leaf (mg·g−1) | 7.73 ± 0.34 C | 11.25 ± 0.23 B | 11.72 ± 0.65 B | 22.67 ± 2.92 A | 337.870 ** | 297.421 ** | 78.177 ** |
Stem (mg·g−1) | 4.07 ± 0.19 C | 8.20 ± 0.37 B | 8.10 ± 0.31 B | 15.76 ± 1.21 A | 199.705 ** | 199.705 ** | 17.987 ** |
Root (mg·g−1) | 15.21 ± 0.57 C | 21.03 ± 0.44 B | 22.00 ± 0.40 AB | 25.21 ± 2.17 A | 56.103 ** | 38.049 ** | 3.168 |
Calcium Treatment | Ca0 | Ca200 | FCa | Fwater | FCa × water | ||
---|---|---|---|---|---|---|---|
Water Treatment | Moist | Drought | Moist | Drought | |||
mulberry | |||||||
Leaf (mg·plant−1) | 118.79 ± 7.82 B | 78.58 ± 3.02 C | 187.93 ± 10.88 A | 111.95 ± 2.76 B | 53.516 ** | 68.739 ** | 6.513 * |
Stem (mg·plant−1) | 60.95 ± 3.29 B | 31.12 ± 2.85 D | 125.74 ± 7.65 A | 45.29 ± 1.46 C | 78.376 ** | 152.889 ** | 32.222 ** |
Root (mg·plant−1) | 80.29 B ± 4.99 B | 39.08 C ± 2.58 C | 120.31A ± 6.48 A | 74.06 B ± 5.32 B | 55.219 ** | 75.101 ** | 0.25 |
Total (mg·plant−1) | 267.17 ± 8.29 B | 146.76 ± 4.97 C | 451.68 ± 19.32 A | 230.39 ± 3.69 B | 136.994 ** | 205.251 ** | 17.41 ** |
poplar | |||||||
Leaf (mg·plant−1) | 131.84 ± 8.67 B | 112.20 ± 6.62 C | 192.26 ± 11.67 A | 191.91 ± 4.86 A | 87.661 ** | 1.007 | 2.946 |
Stem (mg·plant−1) | 54.82 ± 3.99 B | 43.67 ± 2.58 C | 95.39 ± 6.68 A | 54.32 ± 2.66 B | 53.482 ** | 55.588 ** | 18.246 ** |
Root (mg·plant−1) | 71.74 ± 6.37 B | 48.12 ± 1.79 C | 102.93 ± 7.46 A | 66.58 ± 3.34 B | 22.295 ** | 32.520 ** | 1.465 |
Total (mg·plant−1) | 258.39 ± 9.35 C | 203.98 ± 9.47 D | 390.22 ± 12.21 A | 313.17 ± 13.60 B | 112.542 ** | 33.490 ** | 0.993 |
Calcium Treatment | Ca0 | Ca200 | FCa | Fwater | FCa × water | ||
---|---|---|---|---|---|---|---|
Water Treatment | Moist | Drought | Moist | Drought | |||
Mulberry | |||||||
Leaf biomass (g/plant) | 5.48 ± 0.83 A | 2.03 ± 0.10 B | 4.39 ± 0.48 A | 1.52 ± 0.07 C | 3.279 | 54.688 ** | 0.609 |
Stem biomass (g/plant) | 4.1 ± 0.08 A | 1.28 ± 0.07 B | 3.36 ± 0.29 A | 0.91 ± 0.02 C | 12.625 * | 278.592 ** | 1.236 |
Root biomass (g/plant) | 2.8 ± 0.48 A | 1.46 ± 0.1 B | 2.81 ± 0.18 A | 0.95 ± 0.03 C | 3.823 | 163.652 ** | 4.044 |
Total biomass (g/plant) | 12.39 ± 1.91 A | 4.77 ± 0.18 B | 10.56 ± 0.64 A | 3.38 ± 0.02 C | 13.309 * | 280.881 ** | 0.237 |
Poplar | |||||||
Leaf biomass (g/plant) | 17.03 ± 0.92 A | 10.01 ± 0.61 C | 14.03 ± 1.17 B | 8.48 ± 0.05 D | 5.917 * | 1392.677 ** | 0.188 |
Stem biomass (g/plant) | 14.31 ± 1.05 A | 5.01 ± 0.33 B | 11.83 ± 1.07 A | 3.45 ± 0.48 C | 7.214 * | 155.065 ** | 0.023 |
Root biomass (g/plant) | 4.66 ± 0.46 A | 2.29 ± 0.13 C | 4.67 ± 0.33 A | 2.64 ± 0.13 B | 0.600 | 89.269 ** | 0.537 |
Total biomass (g/plant) | 34.97 ± 1.66 A | 16.54 ± 0.98 B | 30.54 ± 2.03 A | 14.57 ± 0.56 C | 6.621 * | 174.765 ** | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Dong, G.; Tian, Y.; Zhou, Y.; Li, Y.; Zhang, S.; Li, H. Effects of Drought Stress and Ca Supply on the Biomass Allocation Strategies of Poplar and Mulberry. Forests 2023, 14, 505. https://doi.org/10.3390/f14030505
Zhang T, Dong G, Tian Y, Zhou Y, Li Y, Zhang S, Li H. Effects of Drought Stress and Ca Supply on the Biomass Allocation Strategies of Poplar and Mulberry. Forests. 2023; 14(3):505. https://doi.org/10.3390/f14030505
Chicago/Turabian StyleZhang, Tengzi, Guijun Dong, Yaguang Tian, Yongbin Zhou, Yanan Li, Songzhu Zhang, and Hui Li. 2023. "Effects of Drought Stress and Ca Supply on the Biomass Allocation Strategies of Poplar and Mulberry" Forests 14, no. 3: 505. https://doi.org/10.3390/f14030505
APA StyleZhang, T., Dong, G., Tian, Y., Zhou, Y., Li, Y., Zhang, S., & Li, H. (2023). Effects of Drought Stress and Ca Supply on the Biomass Allocation Strategies of Poplar and Mulberry. Forests, 14(3), 505. https://doi.org/10.3390/f14030505