Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates
Abstract
:1. Introduction
2. Study Area, Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Gap-Filled Landsat Data
2.2.2. LANDFIRE Datasets
- Existing Vegetation Height (EVH), which represents the estimated average height of the dominant vegetation for a 30 m grid cell for vegetation lifeforms. EVH values are divided into three distinct ranges depending on lifeform: 0.1 to 1 m with decimeter increments for the herbaceous lifeform, 0.1 to 3 m for the shrub lifeform, and 1 to 99 m in 1 m increments for the tree lifeform.
- Forest Canopy Height (CH), which represents the estimated average height of the top of the vegetated canopy and is estimated in forested areas only.
- Forest Canopy Base Height (CBH), which represents the average height from the ground to a forest stand’s canopy bottom.
- Existing Vegetation Type (EVT) for land cover and species cover information. EVT is meant to represent the current distribution of the terrestrial ecological systems classification. Given that stem volume is dependent on tree species, species cover information was a vital input in generating regional-level products.
- Forest Canopy Cover (CC) for canopy cover information. CC describes the percent cover of the tree canopy in a stand and is estimated in forested areas only.
- Forest Canopy Bulk Density (CBD) for ancillary forest structure information. CBD represents the density of available canopy fuel in a stand and is estimated in forested areas only.
2.2.3. Plot-Level Airborne Lidar Data
2.2.4. Land Cover Disturbance Data
2.3. Data Processing
2.3.1. Processing Airborne Lidar Data and Estimation of Tree Attributes
2.3.2. Generating Reference Volume Data
2.3.3. Preprocessing and Combining Predictor Variables
2.4. Stem Volume Modeling
2.4.1. XGBoost Model Building and Assessment
- Separate models were built using LANDFIRE data only and using each of three Landsat 8 images.
- Combined models were built using LANDFIRE with each of the Landsat images. A combined model was also built by combining all the LANDFIRE and Landsat 8 data regardless of acquisition date to assess the benefit of using all the multitemporal Landsat data.
2.4.2. Generating and Validating the Regional Stem Volume Product
- First, airborne lidar data from the 30 independent sites (Section 2.2.3, Figure 1) were used to derived stem volume estimates following methods in Section 2.3.1 and Section 2.3.2. The derived reference stem volume estimates were compared to matching estimates from the generated stem volume product using metrics in Section 2.4.1.
- Second, comparative assessments were conducted against existing FIA county-level stem volume estimates to determine the agreement between the two products. County-level stem volume estimates were derived from the FIA Landcover County Estimates 2017 dataset [52], which represents forest area estimates and associated percent sampling error by county generated from the Forest FIA inventory measurements for the year 2017. Data for 2017 were used because of the closeness in time to both the airborne lidar acquisition and the LANDFIRE release dates. The generated stem volume product was aggregated at the county level, and totals were compared to FIA county estimates to facilitate the comparison. The FIA County stem volume estimates compared were the net merchantable bole volume of live trees with at least 12.7 cm DBH on forest land. Again, evaluation metrics in Section 2.4.1 were used to assess the agreement between the two products. A further evaluation of the two products was conducted based on the percent sampling error included in the FIA data, which represent a standard deviation estimate for each per-county volume estimates. These error data were used in this study to construct per-county 95% confidence intervals to provide a graphical view of which of the study-county stem volume estimates fell within the FIA confidence interval.
3. Results
3.1. Stem Modeling with Landsat and LANDFIRE Data
3.1.1. Model Performance with Separate Landsat and LANDFIRE Data
3.1.2. Model Performance with Combined Landsat and LANDFIRE Data
3.1.3. Model Variable Importance
3.2. Stem Volume Product Generation and Comparison with Reference Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Pine Forests | Mixed Forests | |||||||
---|---|---|---|---|---|---|---|---|
Predictors | MAE (m3) | pMAE (%) | RMSE (m3) | rRMSE (%) | MAE (m3) | pMAE (%) | RMSE (m3) | rRMSE (%) |
Combined model with LS and LF | 2.7 | 17.1 | 3.8 | 24.1 | 1.5 | 13.8 | 2.00 | 18.6 |
Independent testing over 30 plots | 3.7 | 34.7 | 4.9 | 45.9 | 4.78 | 37.87 | 6.1 | 48.3 |
References
- Radtke, P.; Walker, D.; Frank, J.; Weiskittel, A.; DeYoung, C.; MacFarlane, D.; Domke, G.; Woodall, C.; Coulston, J.; Westfall, J. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 2017, 90, 32–46. [Google Scholar] [CrossRef]
- Adhikari, S.; Ozarska, B. Minimizing environmental impacts of timber products through the production process “from sawmill to final products”. Environ. Syst. Res. 2018, 7, 6. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; Crowther, T.W.; et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef] [PubMed]
- Malambo, L.; Popescu, S.C. Assessing the agreement of icesat-2 terrain and canopy height with airborne lidar over us ecozones. Remote Sens. Environ. 2021, 266, 112711. [Google Scholar] [CrossRef]
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 2015, 21, 1762–1776. [Google Scholar] [CrossRef]
- Oswalt, C.M.; Conner, R.C. Southern Forest Inventory and Analysis Volume Equation User’s Guide; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2011; pp. 1–22. [Google Scholar]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for united states tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Popescu, S.C.; Wynne, R.H.; Scrivani, J.A. Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For. Sci. 2004, 50, 551–565. [Google Scholar]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal field-based plant height estimation using 3d point clouds generated from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C. Update of forest inventory data with lidar and high spatial resolution satellite imagery. Can. J. Remote Sens. 2008, 34, 5–12. [Google Scholar] [CrossRef]
- Oono, K.; Tsuyuki, S. Estimating individual tree diameter and stem volume using airborne lidar in Saga prefecture, Japan. Open J. For. 2018, 8, 205. [Google Scholar] [CrossRef]
- Blackard, J.; Finco, M.; Helmer, E.; Holden, G.; Hoppus, M.; Jacobs, D.; Lister, A.; Moisen, G.; Nelson, M.; Riemann, R. Mapping us forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Inkinen, M.; Engdahl, M.; Linko, S.; Zhu, Y.-H. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For. Ecol. Manag. 2000, 128, 109–120. [Google Scholar] [CrossRef]
- Wijaya, A.; Kusnadi, S.; Gloaguen, R.; Heilmeier, H. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and gis. J. For. Res. 2010, 21, 1–12. [Google Scholar] [CrossRef]
- Kathuria, A.; Turner, R.; Stone, C.; Duque-Lazo, J.; West, R. Development of an automated individual tree detection model using point cloud lidar data for accurate tree counts in a pinus radiata plantation. Aust. For. 2016, 79, 126–136. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- Graves, S.J.; Caughlin, T.T.; Asner, G.P.; Bohlman, S.A. A tree-based approach to biomass estimation from remote sensing data in a tropical agricultural landscape. Remote Sens. Environ. 2018, 218, 32–43. [Google Scholar] [CrossRef]
- Colgan, M.S.; Asner, G.P.; Swemmer, T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol. Appl. 2013, 23, 1170–1184. [Google Scholar] [CrossRef]
- Hyppä, J.; Inkinen, M. Detecting and estimating attributes of single tree using lidar. Photogramm. J. Finl. 1999, 16, 27–42. [Google Scholar]
- Straub, C.; Koch, B. Estimating single tree stem volume of pinus sylvestris using airborne laser scanner and multispectral line scanner data. Remote Sens. 2011, 3, 929–944. [Google Scholar] [CrossRef]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Gering, L.R.; May, D.M. The relationship of diameter at breast height and crown diameter for four species groups in hardin county, tennessee. South. J. Appl. For. 1995, 19, 177–181. [Google Scholar] [CrossRef]
- Lamson, N.I. Dbh/Crown Diameter Relationships in Mixed Appalachian Hardwood Stands; US Department of Agriculture: Washington, DC, USA, 1987. [Google Scholar]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Rollins, M.G. Landfire: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of modis vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 2013, 6, 427–448. [Google Scholar] [CrossRef]
- Crippen, R.E.; Buckley, S.; Agram, P.S.; Belz, J.E.; Gurrola, E.M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.M.; Neumann, M. Nasadem Global Elevation Model of Earth: Methods for the Refinement and Merger of Srtm and Aster Gdem. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; American Geophysical Union: Washington, DC, USA, 2016; p. IN43B-1692. [Google Scholar]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 2011, 116, G04021. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly landsat time series: 1. Landtrendr-temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.; Coward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Puliti, S.; Breidenbach, J.; Astrup, R. Estimation of forest growing stock volume with uav laser scanning data: Can it be done without field data? Remote Sens. 2020, 12, 1245. [Google Scholar] [CrossRef]
- Esteban, J.; McRoberts, R.E.; Fernández-Landa, A.; Tomé, J.L.; Nӕsset, E. Estimating forest volume and biomass and their changes using random forests and remotely sensed data. Remote Sens. 2019, 11, 1944. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of sentinel-2 and landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Krasnow, K.; Schoennagel, T.; Veblen, T.T. Forest fuel mapping and evaluation of landfire fuel maps in Boulder county, Colorado, USA. For. Ecol. Manag. 2009, 257, 1603–1612. [Google Scholar] [CrossRef]
- Falcone, J.A. U.S. Conterminous Wall-to-Wall Anthropogenic Land Use Trends (nwalt), 1974–2012; 2327-638X; US Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Elliott, L. Descriptions of systems, mapping subsystems, and vegetation types for Texas. In Texas Parks and Wildlife Ecological Systems Classification and Mapping Project; Texas Parks & Wildlife Department: Austin, TX, USA, 2014. [Google Scholar]
- Engle, D. Oak Ecology. Available online: https://texnat.tamu.edu/library/symposia/brush-sculptors-innovations-for-tailoring-brushy-rangelands-to-enhance-wildlife-habitat-and-recreational-value/oak-ecology/ (accessed on 12 December 2021).
- Malambo, L.; Heatwole, C.D. A multitemporal profile-based interpolation method for gap filling nonstationary data. IEEE Trans. Geosci. Remote Sens. 2015, 54, 252–261. [Google Scholar] [CrossRef]
- Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Maneta, M.P.; Camps-Valls, G.; Robinson, N.; Muñoz-Marí, J.; Sedano, F.; Clinton, N.; Running, S.W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud. Remote Sens. Environ. 2020, 247, 111901. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Thatcher, C.A.; Lukas, V.; Stoker, J.M. The 3d Elevation Program and Energy for the Nation; 2327–6932; US Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Stevens, D.L., Jr.; Olsen, A.R. Spatially balanced sampling of natural resources. J. Am. Stat. Assoc. 2004, 99, 262–278. [Google Scholar] [CrossRef]
- Malambo, L.; Heatwole, C.D. Automated training sample definition for seasonal burned area mapping. ISPRS J. Photogramm. Remote Sens. 2020, 160, 107–123. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the landtrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. Lidr: An r package for analysis of airborne laser scanning (als) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H. Seeing the trees in the forest. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J. Imputation of individual longleaf pine (Pinus palustris mill.) tree attributes from field and lidar data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]
- Lonesome, M.; Popescu, S.; Ku, N.-W.; Rakestraw, J.; Owoola, T. Regional stem volume scaling using airborne lidar and landsat imagery. In Proceedings of the AGU Fall Meeting; New Orleans, LA, USA, 13–17 December 2021, American Geophysical Union: Washington, DC, USA, 2021; p. B55Q-03. [Google Scholar]
- Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33. [Google Scholar]
- USFS. Fia County Estimates 2017. Available online: https://data.fs.usda.gov/geodata/ (accessed on 10 January 2020).
- Bolton, D.K.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Hermosilla, T.; Queinnec, M.; Luther, J.E.; van Lier, O.R.; Fournier, R.A.; et al. Optimizing landsat time series length for regional mapping of lidar-derived forest structure. Remote Sens. Environ. 2020, 239, 111645. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal landsat ndvi time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Wilson, B.T.; Woodall, C.W.; Griffith, D.M. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Manag. 2013, 8, 1. [Google Scholar] [CrossRef]
- Sprintsin, M.; Karnieli, A.; Sprintsin, S.; Cohen, S.; Berliner, P. Relationships between stand density and canopy structure in a dryland forest as estimated by ground-based measurements and multi-spectral spaceborne images. J. Arid Environ. 2009, 73, 955–962. [Google Scholar] [CrossRef]
- Huang, X.; Wu, W.; Shen, T.; Xie, L.; Qin, Y.; Peng, S.; Zhou, X.; Fu, X.; Li, J.; Zhang, Z. Estimating forest canopy cover by multiscale remote sensing in northeast Jiangxi, China. Land 2021, 10, 433. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of individual tree crowns in airborne lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Paris, C.; Valduga, D.; Bruzzone, L. A hierarchical approach to three-dimensional segmentation of lidar data at single-tree level in a multilayered forest. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4190–4203. [Google Scholar] [CrossRef]
- Coomes, D.A.; Dalponte, M.; Jucker, T.; Asner, G.P.; Banin, L.F.; Burslem, D.F.R.P.; Lewis, S.L.; Nilus, R.; Phillips, O.L.; Phua, M.-H.; et al. Area-based vs. tree-centric approaches to mapping forest carbon in southeast asian forests from airborne laser scanning data. Remote Sens. Environ. 2017, 194, 77–88. [Google Scholar] [CrossRef]
- Apicella, L.; De Martino, M.; Quarati, A. Copernicus user uptake: From data to applications. ISPRS Int. J. Geo-Inf. 2022, 11, 121. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of gedi and landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Gini, R.; Passoni, D.; Pinto, L.; Sona, G. Use of unmanned aerial systems for multispectral survey and tree classification: A test in a park area of northern italy. Eur. J. Remote Sens. 2014, 47, 251–269. [Google Scholar] [CrossRef]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using random forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Girardeau-Montaut, D. CloudCompare (v2.10.02)[GPL Software]. 2020. Available online: http://www.cloudcompare.org (accessed on 12 December 2021).
- Malambo, L.; Popescu, S.C.; Horne, D.W.; Pugh, N.A.; Rooney, W.L. Automated Detection and Measurement of Individual Sorghum Panicles Using Density-Based Clustering of Terrestrial Lidar Data. ISPRS J. Photogramm. Remote Sens. 2019, 149, 1–13. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization, version 2.9; USDA: Seattle, WA, USA, 2009; 123.
Species Group | Group Modeled As | Stem Class (j) | Model Coefficients | |||
---|---|---|---|---|---|---|
a1j | a2j | b1j | b2j | |||
Pines | loblolly pine | Sapling | 0.060342 | 0.002197 | ||
Pole | −0.81968 | 0.00214 | 1.11178 | 2.47363 | ||
Sawtimber | −0.65832 | 0.002107 | 1.11178 | 2.47363 | ||
Mixed forests | post oak | Sapling | 0.051922 | 0.002631 | ||
Pole | −0.36146 | 0.001892 | 1.237511 | 2.241176 | ||
Sawtimber | 0.301286 | 0.001791 | 1.237511 | 2.241176 |
Pine Forests | Mixed Forests | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | R2 | Bias (m3) | pBias (%) | MAE (m3) | pMAE (%) | R2 | Bias (m3) | pBias (%) | MAE (m3) | pMAE (%) |
LS Jan-18 | 0.60 | 0.2 | 1.5 | 3.7 | 24.1 | 0.41 | 0.02 | 0.19 | 2.0 | 18.9 |
LS May-18 | 0.70 | 0.2 | 1.3 | 3.2 | 21.0 | 0.49 | 0.05 | 0.44 | 1.8 | 17.0 |
LS Sep-17 | 0.65 | 0.1 | 0.8 | 3.4 | 22.3 | 0.45 | −0.05 | −0.45 | 1.8 | 17.4 |
LS Jan-18 Best 5 | 0.36 | 0.3 | 2.2 | 4.8 | 31.3 | 0.24 | 0.02 | 0.19 | 2.2 | 21.2 |
LS May-17 Best 5 | 0.44 | 0.2 | 1.2 | 4.5 | 29.0 | 0.32 | 0.07 | 0.68 | 2.1 | 19.8 |
LS Sep-17 Best 5 | 0.47 | 0.2 | 1.2 | 4.2 | 27.6 | 0.32 | −0.02 | −0.18 | 2.1 | 19.5 |
LF | 0.48 | 0.3 | 1.8 | 4.4 | 28.8 | 0.31 | −0.01 | −0.06 | 2.2 | 20.4 |
Pine Forests | Mixed Forests | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predictors | R2 | Bias (m3) | pBias (%) | MAE (m3) | pMAE (%) | R2 | Bias (m3) | pBias (%) | MAE (m3) | pMAE (%) |
LS Jan-18, LF | 0.70 | 0.18 | 1.2 | 3.3 | 21.2 | 0.52 | −0.12 | −1.1 | 1.8 | 16.8 |
LS May-18, LF | 0.76 | 0.04 | 0.2 | 3.0 | 19 | 0.59 | −0.05 | −0.4 | 1.6 | 15.3 |
LS Sep-18, LF | 0.74 | 0.03 | 0.2 | 3.1 | 19.7 | 0.56 | −0.04 | −0.4 | 1.7 | 15.3 |
Combined L8, LF | 0.81 | 0.04 | 0.3 | 2.7 | 17.1 | 0.67 | −0.02 | −0.2 | 1.5 | 13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malambo, L.; Popescu, S.C.; Rakestraw, J.; Ku, N.-W.; Owoola, T.A. Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates. Forests 2023, 14, 506. https://doi.org/10.3390/f14030506
Malambo L, Popescu SC, Rakestraw J, Ku N-W, Owoola TA. Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates. Forests. 2023; 14(3):506. https://doi.org/10.3390/f14030506
Chicago/Turabian StyleMalambo, Lonesome, Sorin C. Popescu, Jim Rakestraw, Nian-Wei Ku, and Tunde A. Owoola. 2023. "Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates" Forests 14, no. 3: 506. https://doi.org/10.3390/f14030506
APA StyleMalambo, L., Popescu, S. C., Rakestraw, J., Ku, N. -W., & Owoola, T. A. (2023). Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates. Forests, 14(3), 506. https://doi.org/10.3390/f14030506