Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Satellite Data Collection and Pre-Processing
2.3. Forest Cover and Accuracy Assessment
2.4. Environmental Factors
2.5. Model Construction
3. Results
3.1. Forest Cover Accuracy Assessment
3.2. Forest Cover and Environmental Variables
3.3. Statistical Analyses of Soil Organic Matter and Environmental Variables
3.4. Relationship between Soil Organic Matter and Environmental Variables
3.5. Multiple Linear Regression Model Analysis
3.6. Mapping Soil Organic Matter in Forest Cover
4. Discussion
4.1. Forest Cover and Environmental Variables
4.2. Soil Organic Matter and Environmental Variables
4.3. Soil Organic Matter Estimation Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landholm, D.M.; Pradhan, P.; Wegmann, P.; Sánchez, M.A.R.; Salazar, J.C.S.; Kropp, J.P. Reducing Deforestation and Improving Livestock Productivity: Greenhouse Gas Mitigation Potential of Silvopastoral Systems in Caquetá. Environ. Res. Lett. 2019, 14, 114007. [Google Scholar] [CrossRef]
- FAO. Carbono Orgánico Del Suelo: El Potencial Oculto; Lefévre, C., Rekik, F.V.A., Wiese, L., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Rodríguez Becerra, M.; Mance, H. Cambio Climático: Lo Que Está En Juego, Primera; Valderrama, J.A., Ed.; Foro Nacional Ambiental: Bogotá, Colombia, 2009; Volume s10-II. [Google Scholar]
- FAO. Global Forest Resource Assessment 2005: Progress towards Sustainable Forest Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 147. [Google Scholar]
- Pérez-Ramírez, S.; Ramírez, M.I.; Jaramillo-López, P.F.; Bautista, F. Contenido de Carbono Orgánico En El Suelo Bajo Diferentes Condiciones Forestales: Reserva de La Biosfera Mariposa Monarca, México. Rev. Chapingo Ser. Cienc. For. Del Ambient. 2013, 19, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Morales, B.P.; Mendoza-Cariño, M.; Sangerman-Jarquín, D.M.; Quevedo Nolasco, A.; Navarro Bravo, A. El Manejo Del Suelo En La Conservación de Carbono Orgánico. Rev. Mex. Cienc. Agrícolas 2018, 9, 1787–1799. [Google Scholar] [CrossRef] [Green Version]
- Hosciło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, H.; Wang, X.; Lü, Z. Accuracy Assessment of the Global Forest Watch Tree Cover 2000 in China. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102033. [Google Scholar] [CrossRef]
- Cano-Flores, O.; Vela-Correa, G.; Acevedo-Sandoval, O.A.; Valera-Pérez, M.Á. Organic Carbon Concentrations in the Woodland and Soils of the Protected Natural Area “El Faro” in Tlalmanalco, Estado de Mexico. Terra Latinoam. 2020, 38, 895–905. [Google Scholar] [CrossRef]
- Charro, E.; Hernández, S.; Martín, J.; Moyano, A.; Ruiz, N. Estimación Del Secuestro de Carbono En Suelos Bajo Masas Forestales de Pinus Halepensis En Castilla y León (España). Cuad. La SECF 2008, 130, 125–130. [Google Scholar]
- Galicia, L.; Gamboa, M.; Cram, S.; Vergara, B.; Ramírez, V.; Saynes, V.; Siebe, C. Almacén y Dinámica Del Carbono Orgánico Del Suelo En Bosques Templados de México. Terra Latinoam. 2016, 34, 1–29. [Google Scholar]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of Biomass in the Global Carbon Cycle. J. Geophys. Res. Biog. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Kumar, K.K.; Nagai, M.; Witayangkurn, A.; Kritiyutanant, K.; Nakamura, S. Above Ground Biomass Assessment from Combined Optical and SAR Remote Sensing Data in Surat Thani Province, Thailand. J. Geogr. Inf. Syst. 2016, 8, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Song, D.-X.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and Validation of 30 m Fractional Vegetation Cover over China through Integrated Use of Landsat 8 and Gaofen 2 Data. Sci. Remote Sens. 2022, 6, 1–20. [Google Scholar] [CrossRef]
- INEGI. Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación. Escala 1:250 000, Serie VII. Conjunto Nacional.’, Escala: 1:250 000. Edición: 1; Instituto Nacional de Estadística y Geografía: Aguascalientes, México, 2021.
- Guevara, M.; Vargas, R. Soil Organic Carbon Predictions across Mexico at 1 m of Soil Depth and 90 m of Spatial Resolution (1999–2009). Terra Latinoam. 2021, 39, 1–19. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K. Linear Regression Models to Estimate Exchangeable Sodium Percentage and Bulk Density of Salt Affected Soils in Sahl El-Hossinia, El-Sharkia Governorate, Egypt. Commun. Soil Sci. Plant Anal. 2019, 50, 2074–2087. [Google Scholar] [CrossRef]
- Van Huynh, C.; Pham, T.G.; Nguyen, L.H.K.; Nguyen, H.T.; Nguyen, P.T.; Le, Q.N.P.; Tran, P.T.; Nguyen, M.T.H.; Tran, T.T.A. Application GIS and Remote Sensing for Soil Organic Carbon Mapping in a Farm-Scale in the Hilly Area of Central Vietnam. Air Soil Water Res. 2022, 15, 4777. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, R.; Liu, D. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma 2012, 189–190, 627–634. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Pérez-Vázquez, Z.R.; Ángeles-Pérez, G.; Chávez-Vergara, B.; Valdez-Lazalde, J.R.; Ramírez-Guzmán, M.E. Spatial Approach for Modeling Litter Carbon in Forests under Management for Timber Production. Madera Y Bosques 2021, 27, 1–19. [Google Scholar] [CrossRef]
- Kuo, P.F.; Huang, T.E.; Putra, I.G.B. Comparing Kriging Estimators Using Weather Station Data and Local Greenhouse Sensors. Sensors 2021, 21, 1853. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Shi, T. Modeling and Predictive Mapping of Soil Organic Carbon Density in a Small-Scale Area Using Geographically Weighted Regression Kriging Approach. Sustainbility 2020, 12, 9330. [Google Scholar] [CrossRef]
- Piccini, C.; Francaviglia, R.; Marchetti, A. Predicted Maps for Soil Organic Matter Evaluation: The Case of Abruzzo Region (Italy). Land 2020, 9, 349. [Google Scholar] [CrossRef]
- Costa, E.M.; Tassinari, W.d.S.; Pinheiro, H.S.K.; Beutler, S.J.; dos Anjos, L.H.C. Mapping Soil Organic Carbon and Organic Matter Fractions by Geographically Weighted Regression. J. Environ. Qual. 2018, 47, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, C.R.; Li, W.D.; Lin, J.; Zhang, D.X. Mapping Soil Organic Matter with Limited Sample Data Using Geographically Weighted Regression. J. Spat. Sci. 2014, 59, 91–106. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Hu, P.L.; Liu, S.J.; Ye, Y.Y.; Zhang, W.; Wang, K.L.; Su, Y.R. Effects of Environmental Factors on Soil Organic Carbon under Natural or Managed Vegetation Restoration. L. Degrad. Dev. 2018, 29, 387–397. [Google Scholar] [CrossRef]
- Orr, B.J.; Cowie, A.L.; Castillo Sánchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Scientific Conceptual Framework for Land Degradation Neutrality. A Report of the Science-Policy Interface; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2017; p. 140. [Google Scholar]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping Soil Organic Matter Contents at Field Level with Cubist, Random Forest and Kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial Variability of Soil Organic Matter Using Remote Sensing Data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, L.; Zhu, A.X.; Rossiter, D.G.; Liu, J.; Liu, J.; Qin, C.; Wang, D. Mapping Soil Organic Matter Concentration at Different Scales Using a Mixed Geographically Weighted Regression Method. Geoderma 2016, 281, 69–82. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V. Dynamics of Soil Organic Matter in Primary and Secondary Forest Succession on Sandy Soils in the Netherlands: An Application of the ROMUL Model. Ecol. Modell. 2006, 190, 399–418. [Google Scholar] [CrossRef]
- López-Castañeda, A.; Zavala-Cruz, J.; Palma-López, D.J.; Rincón-Ramírez, J.A.; Bautista, F. Digital Mapping of Soil Profile Properties for Precision Agriculture in Developing Countries. Agronomy 2022, 12, 353. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, G.; López-Santos, A.; Velásquez-Valle, M.A.; Villanueva-Díaz, J.; García-Rodríguez, J.L. Spatial Distribution of Soil Organic Carbon by Digital Mapping: The Case of the Medio Aguanaval River Sub-Basin. Ing. Agrícola Biosist. 2021, 13, 227–245. [Google Scholar] [CrossRef]
- Guevara, M.; Federico Olmedo, G.; Stell, E.; Yigini, Y.; Aguilar Duarte, Y.; Arellano Hernández, C.; Arévalo, G.E.; Eduardo Arroyo-Cruz, C.; Bolivar, A.; Bunning, S.; et al. No Silver Bullet for Digital Soil Mapping: Country-Specific Soil Organic Carbon Estimates across Latin America. Soil 2018, 4, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and Mapping Soil Organic Carbon Stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Peri, P.; Maradei, D.; Lupi, A.; Vazquez, C.; Gyenge, J.; Gatica, M.; Sandoval, M.; Gaute, M. Estimación de Las Reservas de Carbono Orgánico Del Suelo Con Plantaciones Forestales y Otros Usos de La Tierra En Distintas Regiones de Argentina; INTA-Dirección Nacional de Desarrollo Foresto-Industrial del Ministerio de Agricultura Ganadería y Pesca: Buenos Aires, Argentina, 2022.
- Padilha, M.C.d.C.; Vicente, L.E.; Demattê, J.A.M.; dos Santos Wendriner Loebmann, D.G.; Vicente, A.K.; Salazar, D.F.U.; Guimarães, C.C.B. Using Landsat and Soil Clay Content to Map Soil Organic Carbon of Oxisols and Ultisols near São Paulo, Brazil. Geoderma Reg. 2020, 21, 253. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C. Prediction of Soil Organic Carbon in an Intensively Managed Reclamation Zone of Eastern China: A Comparison of Multiple Linear Regressions and the Random Forest Model. Sci. Total Environ. 2017, 592, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Duarte, E.; Zagal, E.; Barrera, J.A.; Dube, F.; Casco, F.; Hernández, A.J. Digital Mapping of Soil Organic Carbon Stocks in the Forest Lands of Dominican Republic. Eur. J. Remote Sens. 2022, 55, 213–231. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Aravena Acuña, M.C.; Silveira, E.M.O.; Von Müller, A.; La Manna, L.; González-Polo, M.; Chaves, J.E.; Cellini, J.M.; Lencinas, M.V.; Radeloff, V.C.; et al. Mapping Soil Organic Carbon Content in Patagonian Forests Based on Climate, Topography and Vegetation Metrics from Satellite Imagery. Remote Sens. 2022, 14, 5702. [Google Scholar] [CrossRef]
- FAO. Digital Soil Map of the World Version 3.6. Land and Water Development Division; FAO: Rome, Italy, 2003. [Google Scholar]
- CONAFOR. Inventario Estatal Forestal y de Suelos—Puebla 2013; Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT); Comisión Nacional Forestal (CONAFOR): Zapopan, Jalisco, México, 2014; p. 135. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- SEMARNAT. NOM-021-RECNAT-2000; SEMARNAT: Ciudad de México, México, 2002. [Google Scholar]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A Survival Guide to Landsat Preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Dodamani, B.M.; Dwarakish, G.S. Shoreline Analysis Using Landsat-8 Satellite Image. ISH J. Hydraul. Eng. 2021, 27, 347–355. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua—Servicio Meteorológico Nacional. Red de Estaciones Climatológicas. Available online: https://smn.conagua.gob.mx/es/ (accessed on 15 December 2022).
- Khan, I.A.; Khan, M.R.; Baig, M.H.A.; Hussain, Z.; Hameed, N.; Khan, J.A. Assessment of Forest Cover and Carbon Stock Changes in Sub-Tropical Pine Forest of Azad Jammu & Kashmir (AJK), Pakistan Using Multitemporal Landsat Satellite Data and Field Inventory. PLoS ONE 2020, 15, e0226341. [Google Scholar] [CrossRef] [Green Version]
- ESRI. ArcGis Desktop: Versión 10.4; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2016. [Google Scholar]
- Kogo, B.K.; Kumar, L.; Koech, R. Forest Cover Dynamics and Underlying Driving Forces Affecting Ecosystem Services in Western Kenya. Remote Sens. Appl. Soc. Environ. 2019, 14, 75–83. [Google Scholar] [CrossRef]
- Google Earth PRO; Google: Mountain View, CA, USA, 2022.
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Branders, S.; Pereira, A.; Bernard, G.; Ernst, M.; Albert, A. Leveraging Historical Data for High-Dimensional Regression Adjustment, a Composite Covariate Approach. ArXiv 2021, arXiv:2103.14421. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning; U.S Department of Agriculture. U.S. Government Printing Office: Washington, DC, USA, 1978; Volume 1. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation. In NASA/GSFC, Final Report, Greenbelt, MD, USA; Remote Sensing Center Texas A&M University: College Station, TA, USA, 1974; pp. 1–137. [Google Scholar]
- Baskan, O.; Dengiz, O.; Demirag, İ.T. The Land Productivity Dynamics Trend as a Tool for Land Degradation Assessment in a Dryland Ecosystem. Environ. Monit. Assess. 2017, 189, 1–21. [Google Scholar] [CrossRef]
- Cha, S.; Kim, C.; Kim, J.; Lee, A.L.; Park, K.; Koo, N.; Kim, Y.S.; Cha, S.; Kim, C.; Kim, J.; et al. Land-Use Changes and Practical Application of the Land Degradation Neutrality ( LDN ) Indicators : A Case Study in the Subalpine Forest Ecosystems. Republic of Korea. For. Sci. Technol. 2020, 16, 8–17. [Google Scholar] [CrossRef]
- Corradine, M.F.; Moreno, T. Plan de Ordenación y Manejo de La Cuenca Hidrográfica. In Actualización POMCA. Rio Garagoa; Consorcio Río Garagoa: Bogotá, Colombia, 2017; p. 131. [Google Scholar]
- ESRI. Cómo Funciona Pendiente. Available online: https://desktop.arcgis.com/es/arcmap/10.5/tools/3d-analyst-toolbox/how-slope-works.htm (accessed on 15 November 2021).
- Foster, G.R.; Meyer, L.D.; Onstad, C.A. Runoff Erosivity Factor and Variable Slope Length Exponents for Soil Loss Estimates. Trans. Am. Soc. Agric. Eng. 1977, 20, 683–687. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng. 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Pena, S.B.; Abreu, M.M.; Magalhães, M.R.; Cortez, N. Water Erosion Aspects of Land Degradation Neutrality to Landscape Planning Tools at National Scale. Geoderma 2020, 363, 114093. [Google Scholar] [CrossRef]
- Garcia Calabrese, M.V.; Paniagua, M.T.; Chicaiza, E. Análisis de La Distribución Espacial de La Precipitación Anual (1979–2014) Aplicando Métodos de Interpolación En La Región Occidental Del Paraguay. Rev. Geog. 2022, 164, 63–81. [Google Scholar] [CrossRef]
- Arnoldus, H.M.J.; Boodt, M.D.; Gabriels, D. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. Assess. Eros. 1980, 1, 127–132. [Google Scholar]
- Castelan Vega, R.; Tamariz Flores, V.; Linares Fleites, G.; Cruz Montalvo, A. Agresividad de Las Precipitaciones En La Subcuenca Del Río San Marcos, Puebla, México. Investig. Geog. 2015, 83, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Royston, J. Algorithm AS 181: The W Test for Normality. J. Appl. Stat. 1982, 1, 176–180. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, 1460. [Google Scholar] [CrossRef]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of Spatial Hybrid Methods for Predicting Soil Organic Matter Using DEM Derivatives and Soil Parameters. Catena 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Feng, C.; Feng, C.; Li, L.; Sadeghpour, A. A Comparison of Residual Diagnosis Tools for Diagnosing Regression Models for Count Data. BMC Med. Res. Methodol. 2020, 20, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kpienbaareh, D.; Mohammed, K.; Luginaah, I.; Wang, J.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Estimating Groundnut Yield in Smallholder Agriculture Systems Using PlanetScope Data. Land 2022, 11, 1752. [Google Scholar] [CrossRef]
- Kweon, G.; Lund, E.; Maxton, C. Soil Organic Matter and Cation-Exchange Capacity Sensing with on-the-Go Electrical Conductivity and Optical Sensors. Geoderma 2013, 199, 80–89. [Google Scholar] [CrossRef]
- Peón, J.; Recondo, C.; Fernández, S.; Calleja, J.F.; De Miguel, E.; Carretero, L. Prediction of Topsoil Organic Carbon Using Airborne and Satellite Hyperspectral Imagery. Remote Sens. 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Kiani-harchegani, M.; Hamidreza, S. Practicing Land Degradation Neutrality (LDN) Approach in the Shazand Watershed, Iran. Sci. Total Environ. 2020, 698, 134319. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, G.; Hu, W. Mapping Tidal Flats with Landsat 8 Images and Google Earth Engine: A Case Study of the China’s Eastern Coastal Zone circa 2015. Remote Sens. 2019, 11, 924. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, I.; Cervantes, V.; Tamaríz-Flores, V.; Castelán, R. Land Degradation Neutrality: State and Trend of Degradation at the Subnational Level in Mexico. Land 2022, 11, 562. [Google Scholar] [CrossRef]
- Flores Cesareo, J.C.; Bustamante González, A.; Vargas López, S.; Cajuste, L.; Escobedo, F.J.; Ramírez Valadez, M. Cartografía Del Uso Del Suelo En La Subcuenca Huaquechula, Puebla, México, Con Un Índice Combinado de Imágenes de Satélite. Investig. Geog. 2020, 101, 1–14. [Google Scholar] [CrossRef]
- Mas, J.-F.; Velázquez, A.; Couturier, S. La Evaluación de Los Cambios de Cobertura/Uso Del Suelo En La República Mexicana. Investig. Ambient. 2009, 1, 23–39. [Google Scholar]
- Leyva-Ovalle, Á.; Valdez-Lazalde, J.R.; de los Santos-Posadas, H.M.; Martínez-Trinidad, T.; Herrera-Corredor, J.A.; Lugo-Espinosa, O.; García-Nava, J.R. Monitoreo de La Degradación Forestal En México Con Base En El Inventario Nacional Forestal y de Suelos (Infys). Madera Bosques 2017, 23, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Rosete, F.; Pérez, J.; Villalobos, M.; Navarro, E.; Salinas, E.; Remond, R. El Avance de La Deforestación En México 1976–2007. Madera Y Bosques 2014, 20, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Vega, M.B.; Febles, J.M. La Agresividad de La Lluvia En Áreas Rurales de La Provincia La Habana Como Factor de Presión En La Sostenibilidad Agroambiental. In II Seminario Internacional de Cooperación y Desarrollo en Espacios Rurales Iberoamericanos; Ministerio de Educación y Ciencia, España: Almeria, Spain, 2008. [Google Scholar]
- An, J.Y.; Park, B.B.; Chun, J.H.; Osawa, A. Litterfall Production and Fine Root Dynamics in Cool-Temperate Forests. PLoS ONE 2017, 12, e0180126. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Flores, L.M.; Mauricio-Gutiérrez, A.; Carcaño-Montiel, M.G.; Portillo-Manzano, E.; Gómez-Velázquez, L.; Sánchez-Alonso, P.; López-Reyes, L. Fungi Associated with Sick Trees of Pinus Patula in Tetela de Ocampo, Puebla, Mexico. Arch. Phytopathol. Plant Prot. 2020, 53, 591–611. [Google Scholar] [CrossRef]
- Gutiérrez-Flores, L.M.; López-Reyes, L.; Hipólito-Romero, E.; Torres-Ramírez, E.; Castañeda-Roldán, E.I.; Mauricio-Gutiérrez, A. Biological Control Perspectives in the Pine Forest (Pinus Spp.), an Environmentally Friendly Alternative to the Use of Pesticides. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2022, 40, 1–24. [Google Scholar] [CrossRef]
- Ramirez-Huerta, M.; Juárez-Sánchez, J.P.; Ramírez-Valverde, B.; Martínez-Carrera, D.C.; Morales-Acoltzi, T. Adaptación Alimentaria de Campesinos Productores de Maíz Ante La Variabilidad Climática En El Centro Oriente Del Estado de Puebla, México. Estud. Soc. Rev. Aliment. Contemp. Desarro. Reg. 2021, 222, 1–30. [Google Scholar] [CrossRef]
- Jian-Bing, W.; Du-Ning, X.; Xing-Yi, Z.; Xiu-Zhen, L.; Xiao-Yu, L. Spatial Variability of Soil Organic Carbon in Relation to Environmental Factors of a Typical Small Watershed in the Black Soil Region, Northeast China. Environ. Monit. Assess. 2006, 121, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Mora-Vallejo, A.; Claessens, L.; Stoorvogel, J.; Heuvelink, G.B.M. Small Scale Digital Soil Mapping in Southeastern Kenya. Catena 2008, 76, 44–53. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital Soil Mapping Algorithms and Covariates for Soil Organic Carbon Mapping and Their Implications: A Review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Mahmoudabadi, E.; Karimi, A.; Haghnia, G.H.; Sepehr, A. Digital Soil Mapping Using Remote Sensing Indices, Terrain Attributes, and Vegetation Features in the Rangelands of Northeastern Iran. Environ. Monit. Assess. 2017, 189, 500. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, C.; Li, W. Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter. GIScience Remote Sens. 2012, 49, 915–932. [Google Scholar] [CrossRef]
- Guo, P.T.; Wu, W.; Sheng, Q.K.; Li, M.F.; Liu, H.B.; Wang, Z.Y. Prediction of Soil Organic Matter Using Artificial Neural Network and Topographic Indicators in Hilly Areas. Nutr. Cycl. Agro. 2013, 95, 333–344. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Jiang, Q.; Zhang, H.; Chen, Y. Comparing Geospatial Techniques to Predict SOC Stocks. Soil Tillage Res. 2015, 148, 46–58. [Google Scholar] [CrossRef]
- Wang, B.; Gray, J.M.; Waters, C.M.; Rajin Anwar, M.; Orgill, S.E.; Cowie, A.L.; Feng, P.; Li Liu, D. Modelling and Mapping Soil Organic Carbon Stocks under Future Climate Change in South-Eastern Australia. Geoderma 2022, 405, 115442. [Google Scholar] [CrossRef]
- Gallegos, Á.; Bautista, F. Soil Profile Photograph Dataset from Central Mexico to Delineate Horizons and Quantify Coarse Fragments. Data Br. 2022, 40, 7749. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological Indicators of Soil Quality and Soil Organic Matter Characteristics in an Agricultural Management Continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Handal-Silva, A.; Pérez-Castresana, G.; Morán-Perales, J.; García-Suastegui, W. Historia de La Contaminación Hídrica Del Alto Balsas. Rev. Del Desarro. Urbano Sustentable 2017, 3, 10–23. [Google Scholar]
- Odhiambo, B.O.; Kenduiywo, B.K.; Were, K. Spatial Prediction and Mapping of Soil PH across a Tropical Afro-Montane Landscape. Appl. Geogr. 2020, 114, 102129. [Google Scholar] [CrossRef]
- Bouasria, A.; Ibno Namr, K.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 Image Pansharpening in Estimating Soil Organic Matter Using Multiple Linear Regression and Artificial Neural Networks. Geo-Spatial Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
Land Cover | Description | Reclassification |
---|---|---|
Forest | Forest vegetation with cover > 40%. | Forest cover |
Secondary forest | Forest vegetation with cover < 40%. | Forest cover |
Cropland | Crop areas and bare land | Non-forest cover |
Grassland | Grassed and shrub areas | Non-forest cover |
Settlement | Urban areas | Non-forest cover |
Forest Cover | Non-Forest Cover | |
---|---|---|
User’s accuracy (%) | 98.75 | 97.00 |
Producer’s accuracy (%) | 95.64 | 99.15 |
Rate | (%) | |
Overall accuracy | 0.977 | 97.7 |
Kappa | 0.952 | 95.2 |
True positive rate | 0.988 | 98.8 |
False positive rate | 0.030 | 3.0 |
Variable | Minimum | Maximum | Mean | SD | CV (%) |
---|---|---|---|---|---|
NDVI | 0.01 | 0.45 | 0.28 | 0.05 | 17.86 |
DEM (masl) | 2056.00 | 3506.00 | 2755.00 | 297.66 | 10.80 |
Slope (%) | 0.00 | 201.00 | 39.85 | 19.44 | 48.78 |
Precipitation (mm) | 589.00 | 993.00 | 749.00 | 81.45 | 10.87 |
Temperature (°C) | 9.80 | 19.20 | 14.50 | 2.80 | 19.31 |
LS-factor | 0.02 | 309.92 | 7.02 | 3.94 | 56.12 |
R-factor (MJ mm ha−1 yr−1) | 1856.80 | 3965.80 | 3039.90 | 576.10 | 18.95 |
Variable | Minimum | Maximum | Mean | SD | CV (%) |
---|---|---|---|---|---|
SOM (%) | 1.10 | 10.28 | 5.03 | 2.80 | 55.66 |
NDVI | 0.14 | 0.30 | 0.23 | 0.05 | 21.73 |
DEM (masl) | 2578.00 | 2808.00 | 2670 | 88.99 | 3.33 |
Slope (%) | 11.44 | 101.19 | 31.93 | 20.43 | 63.98 |
Precipitation (mm) | 720.30 | 839.40 | 773.6 | 39.70 | 5.13 |
Temperature (°C) | 11.58 | 16.22 | 14.26 | 1.97 | 13.81 |
LS-factor | 0.55 | 14.25 | 5.32 | 3.30 | 62.03 |
R-factor (MJ mm ha−1 yr−1) | 2801.00 | 3587.00 | 3088.00 | 322.43 | 10.44 |
Function | MLR | LOOCV | ||||
---|---|---|---|---|---|---|
R2 | RMSE | AIC | R2cv | RMSEcv | RPD | |
SOM = −36.96 + NDVI [22.20] + LS-factor [0.2839] + Precipitación [0.0456] | 0.78 | 1.27 | 83.117 | 0.69 | 1.53 | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo, I.; Tamaríz-Flores, V.; Castelán, R. Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico. Forests 2023, 14, 539. https://doi.org/10.3390/f14030539
Arroyo I, Tamaríz-Flores V, Castelán R. Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico. Forests. 2023; 14(3):539. https://doi.org/10.3390/f14030539
Chicago/Turabian StyleArroyo, Itzel, Víctor Tamaríz-Flores, and Rosalía Castelán. 2023. "Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico" Forests 14, no. 3: 539. https://doi.org/10.3390/f14030539
APA StyleArroyo, I., Tamaríz-Flores, V., & Castelán, R. (2023). Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico. Forests, 14(3), 539. https://doi.org/10.3390/f14030539