Influence of the Type and Use of Soil on the Distribution of Organic Carbon and Other Soil Properties in a Sustainable and Resilient Agropolitan System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Sampling
2.3. Soil Analyses
2.4. Statistical Analyses and GIS
3. Results and Discussion
3.1. Physical Properties of Soils
3.2. Chemical Properties: Soil Fertility
3.2.1. Organic Carbon
3.2.2. Nutrients and Fertility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surya, B.; Saleh, H.; Hamsina, H.; Idris, M.; Ahmad, D.N.A. Rural Agribusiness-Based Agropolitan Area Development and Environmental Management Sustainability: Regional Economic Growth Perspectives. Int. J. Energy Econ. Policy 2021, 11, 142–157. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional Peri-Urban Agriculture—A Review of Societal Demands and the Provision of Goods and Services by Farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Lan, T.; Xu, Z.; Wu, J.; Liu, Q.; Peng, J. Distinguishing the Effects of Land Use Policies on Ecosystem Services and Their Trade-Offs Based on Multi-Scenario Simulations. Appl. Geogr. 2023, 151, 102864. [Google Scholar] [CrossRef]
- Abramson, D.B. Ancient and Current Resilience in the Chengdu Plain: Agropolitan Development Re-‘Revisited. ’ Urban Stud. 2020, 57, 1372–1397. [Google Scholar] [CrossRef]
- Abramson, D.B. Periurbanization and the Politics of Development-as-City-Building in China. Cities 2016, 53, 156–162. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Simon Rojo, M.; Moratalla, A.Z.; Alonso, N.M.; Jimenez, V.H. Pathways towards the Integration of Periurban Agrarian Ecosystems into the Spatial Planning System. Ecol. Process. 2014, 3, 13. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Designing Multifunctional Urban Agroforestry with People in Mind. Urban Agric. Reg. Food Syst. 2021, 6, e20016. [Google Scholar] [CrossRef]
- Lovell, S. Urban Agroforestry and Its Potential Integration into City Planning Efforts. Urban Agric. Reg. Food Syst. 2020, 5, e20000. [Google Scholar] [CrossRef]
- Olivier, L.M. Urban Agroforestry: A Regenerative Approach for Climate Adaptation & Resilience on Schoolyards. Master’s Thesis, California State Polytechnic University, Pomona, CA, USA, 2021. [Google Scholar]
- Zanzi, A.; Andreotti, F.; Vaglia, V.; Alali, S.; Orlando, F.; Bocchi, S. Forecasting Agroforestry Ecosystem Services Provision in Urban Regeneration Projects: Experiences and Perspectives from Milan. Sustainability 2021, 13, 2434. [Google Scholar] [CrossRef]
- Egea Fernández, J.M.; Egea Sánchez, J.M. Huerta de Murcia towards a Sustainable and Resilient Agropolitan System; Oficina de Huerta, Concejalía de Urbanismo, Medio Ambiente y Huerta: Murcia, Spain, 2017. [Google Scholar]
- Martínez-Paz, J.M.; Banos-González, I.; Martínez-Fernández, J.; Esteve-Selma, M.Á. Assessment of Management Measures for the Conservation of Traditional Irrigated Lands: The Case of the Huerta of Murcia (Spain). Land Use Policy 2019, 81, 382–391. [Google Scholar] [CrossRef]
- Cánovas-Molina, A.; Cánovas Soler, A.; García-Frapolli, E. City-Traditional Agriculture Dialogues: The ‘Huerta de Murcia’ Case Study. Land Use Policy 2021, 111, 105780. [Google Scholar] [CrossRef]
- Ilieva, R.T.; Cohen, N.; Israel, M.; Specht, K.; Fox-Kämper, R.; Fargue-Lelièvre, A.; Poniży, L.; Schoen, V.; Caputo, S.; Kirby, C.K.; et al. The Socio-Cultural Benefits of Urban Agriculture: A Review of the Literature. Land 2022, 11, 622. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; Barrera, F.D.L.; Rozas, D.; Vieli, L.; Meli, P. Linking Public Urban Green Spaces and Human Well-Being: A Systematic Review. Urban Urban Green 2021. [Google Scholar] [CrossRef]
- Simón Rojo, M.; Zazo Moratalla, A.; Morán Alonso, N. Nuevos enfoques en la planificación urbanística para proteger los espacios agrarios periurbanos. Ciudades 2012, 151–166. [Google Scholar] [CrossRef]
- Chien, S.-C.; Krumins, J.A. Natural versus Urban Global Soil Organic Carbon Stocks: A Meta-Analysis. Sci. Total Environ. 2022, 807, 150999. [Google Scholar] [CrossRef]
- Soil Carbon Sequestration for Improved Land Management; World Soil Resources Reports; Food and Agricultural Organization of the United Nations: Rome, Italy, 2001; ISBN 978-92-5-104690-6.
- Lal, R.; Eckert, D.J.; Fausey, N.R.; Edwards, W.M. Conservation Tillage in Sustainable Agriculture. In Sustainable Agricultural Systems; CRC Press: Boca Raton, FL, USA, 1990; pp. 203–225. ISBN 978-1-00-307047-4. [Google Scholar]
- Lal, R. Residue Management, Conservation Tillage and Soil Restoration for Mitigating Greenhouse Effect by CO2-Enrichment. Soil Tillage Res 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Gifford, R.M. The Global Carbon Cycle: A Viewpoint on the Missing Sink. Func. Plant Biol. 1994, 21, 1–15. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing Organic Stocks in Agricultural Soils: Knowledge Gaps and Potential Innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.A.; Haider, A.; Nawaz, M. How Agricultural Practices Managing Market Risk Get Attributed to Climate Change? Quasi-Experiment Evidence. J. Rural. Stud. 2020, 73, 46–55. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon Sequestration in the Agricultural Soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Smith, P. Soils as Carbon Sinks: The Global Context. Soil Use Manag. 2004, 20, 212–218. [Google Scholar] [CrossRef]
- Padmanabhan, E.; Eswaran, H.; Reich, P.F. Soil Carbon Stocks in Sarawak, Malaysia. Sci. Total Environ. 2013, 465, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Black, A.L. Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 1994, 58, 185–193. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; El Khair, D.A.; Padoa-Schioppa, E.; Comolli, R. Soil Organic Carbon Stock in Different Urban Land Uses: High Stock Evidence in Urban Parks. Urban Ecosyst. 2020, 23, 159–171. [Google Scholar] [CrossRef]
- Gómez Orea, D. El Medio Físico y la Planificación; CFCA (Centro Internacional de Formación de Ciencias Ambientales): Madrid, Spain, 1980; ISBN 978-84-300-3666-0. [Google Scholar]
- Vilček, J.; Koco, Š.; Litavcová, E.; Torma, S. Characteristics of Soil Parameters of Agricultural Land Use Types, Their Location and Development Forecast. Land 2020, 9, 197. [Google Scholar] [CrossRef]
- IUSS Working Group. WRB World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- United States Department of Agriculture (USDA). Soil Survey Laboratory Methods Manual; Soil Survey Investigations; Department of Agriculture, National Resources Conservation Services, National Soil Survey Centre: Washington, DC, USA, 1996.
- Anne, P. Sur le Dosage Du Carbone Organique des Sols. Ann. Agron. 1945, 15, 161–172. [Google Scholar]
- Duchaufour, P.H. Pedalogie; Masson: Paris, France, 1970. [Google Scholar]
- Andrades, M. Prácticas de Edafología y Climatología; Universidad de La Rioja, Servicio de Publicaciones: La Rioja, Spain, 1996. [Google Scholar]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- R Development Core Team. R: The R Project for Statistical Computing; Version 4.1.3; The R Foundation: Indianapolis, IN, USA, 2022. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System; Version 2.0.1; Dufour: La Rochelle, France, 2008. [Google Scholar]
- Singer, M.J.; Ewing, S. Soil quality. In Handbook of Soil Science; CRC Press: Boca Raton, FL, USA, 2000; pp. 271–298. [Google Scholar]
- Gómez García, A. Caracterización de Los Suelos de Usos Agrícolas e Industrial de La Comarca de Molina de Segura (Murcia) Para Una Planificación Racional Del Territorio; University of Murcia: Murcia, Spain, 2016. [Google Scholar]
- Marín Sanleandro, P. Características Generales y Aspectos Mineralógicos de La Fertilidad En Potasio de Los Suelos Del Sector Meridional de La Vega Alta Del Segura (Murcia); University of Murcia: Murcia, Spain, 1992. [Google Scholar]
- Porta, J.; López Acevedo, M.; Poch, R.M. Edafología. Uso y Protección Del Suelo, 3rd ed.; Ediciones Mundiprensa: Madrid, Spain, 2013; ISBN 978-84-8476-750-3. [Google Scholar]
- Rühlmann, J.; Körschens, M.; Graefe, J. A New Approach to Calculate the Particle Density of Soils Considering Properties of the Soil Organic Matter and the Mineral Matrix. Geoderma 2006, 130, 272–283. [Google Scholar] [CrossRef]
- Schjønning, P.; McBride, R.A.; Keller, T.; Obour, P.B. Predicting Soil Particle Density from Clay and Soil Organic Matter Contents. Geoderma 2017, 286, 83–87. [Google Scholar] [CrossRef]
- Ball, B.C.; Campbell, D.J.; Hunter, E.A. Soil Compactibility in Relation to Physical and Organic Properties at 156 Sites in UK. Soil Tillage Res. 2000, 57, 83–91. [Google Scholar] [CrossRef]
- Ramírez, I.; Vaquero, A.; Vicente, M.; García, J.A. Mapa Digital de Suelos de La Región de Dirección; General de Medio Natural: Murcia, Spain, 1999. [Google Scholar]
- Szalbolcs, I. Salt-Affected Soils; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Richards, L.A. Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos; Editorial LIMUSA: Mexico City, Mexico, 1964. [Google Scholar]
- Shainberg, I. Salinity of Soils—Effects of Salinity on the Physics and Chemistry of Soils. In Plants in Saline Environments; Poljakoff-Mayber, A., Gale, J., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1975; pp. 39–55. ISBN 978-3-642-80929-3. [Google Scholar]
- Pizarro, F. Drenaje Agrícola y Recuperación de Suelos Salinos, 2nd ed.; Editorial Agrícola Española, S.A.: Madrid, Spain, 1985. [Google Scholar]
- Martínez Sánchez, J.M.J.; Pérez Sirvent, C. Desertification: Monitoring through Chemical Degradation Indicators; Desernet Project: Pilot Action Region of Murcia: INTERREG IIIB ESPACIO MEDOCC; Consejería de Agricultura de la Región de Murcia: Murcia, Spain, 2007. [Google Scholar]
- Vidal, J.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Navarro, M.C. Origin and Behaviour of Heavy Metals in Agricultural Calcaric Fluvisols in Semiarid Conditions. Geoderma 2004, 121, 257–270. [Google Scholar] [CrossRef]
- Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Sánchez, A. The Role of Low-Quality Irrigation Water in the Desertification of Semi-Arid Zones in Murcia, SE Spain. Geoderma 2003, 113, 109–125. [Google Scholar] [CrossRef]
- Vidal Otón, J. Evaluación de Los Principales Procesos de Degradación En Fluvisoles Calcáricos de La Huerta de Murcia; University of Murcia: Murcia, Spain, 2002. [Google Scholar]
- Rodrigo-Comino, J.; Keshavarzi, A.; Senciales-González, J.M. Evaluating Soil Quality Status of Fluvisols at the Regional Scale: A Multidisciplinary Approach Crossing Multiple Variables. River Res. Appl. 2021, 37, 1–15. [Google Scholar] [CrossRef]
- Ruiz Sinoga, J.D.; Pariente, S.; Diaz, A.R.; Martinez Murillo, J.F. Variability of Relationships between Soil Organic Carbon and Some Soil Properties in Mediterranean Rangelands under Different Climatic Conditions (South of Spain). Catena 2012, 94, 17–25. [Google Scholar] [CrossRef]
- Robledano-Aymerich, F.; Romero-Díaz, A.; Belmonte-Serrato, F.; Zapata-Pérez, V.M.; Martínez-Hernández, C.; Martínez-López, V. Ecogeomorphological Consequences of Land Abandonment in Semiarid Mediterranean Areas: Integrated Assessment of Physical Evolution and Biodiversity. Agric. Ecosyst. Environ. 2014, 197, 222–242. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. Effects of Secondary Succession and Afforestation Practices on Soil Properties after Cropland Abandonment in Humid Mediterranean Mountain Areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef]
- Bell, S.M.; Terrer, C.; Barriocanal, C.; Jackson, R.B.; Rosell-Melé, A. Soil Organic Carbon Accumulation Rates on Mediterranean Abandoned Agricultural Lands. Sci. Total Environ. 2021, 759, 143535. [Google Scholar] [CrossRef]
- Ortiz, R.; García, A.F.; Sánchez Navarro, A.; Marín Sanleandro, P.; Delgado Iniesta, M.J.; Hernández, J.; Álvarez, J. Riesgos de Salinización y Alcalinización de La Red de Riesgos Del Bajo Segura; Fundación Instituto Euromediterráneo del Agua: Murcia, Spain, 2008. [Google Scholar]
- Santa Cruz, F.; Bolarín, M.C.; Roig, A.; Caro, M. Adsorción de Fosfato Por Carbonato Cálcico. An. Edaf. Y Agrob. 1980, 1641–1649. [Google Scholar]
- García del Rey, Q. Contenido En Nutrientes y Caracterización Del Complejo de Cambio de Los Suelos En Los Términos Municipales de Torre Pacheco y Los Alcázares (Murcia); Proyecto Fin de Carrera, Universidad Politécnica de Cartagena: Cartagena, Spain, 2001. [Google Scholar]
- Pham, T.G.; Nguyen, H.T.; Kappas, M. Assessment of Soil Quality Indicators under Different Agricultural Land Uses and Topographic Aspects in Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 280–288. [Google Scholar] [CrossRef]
- Santos-Francés, F.; Martínez-Graña, A.; Ávila-Zarza, C.; Criado, M.; Sánchez, Y. Comparison of Methods for Evaluating Soil Quality of Semiarid Ecosystem and Evaluation of the Effects of Physico-Chemical Properties and Factor Soil Erodibility (Northern Plateau, Spain). Geoderma 2019, 354, 113872. [Google Scholar] [CrossRef]
- Guo, L.; Sun, Z.; Ouyang, Z.; Han, D.; Li, F. A Comparison of Soil Quality Evaluation Methods for Fluvisol along the Lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Ahmadi Mirghaed, F.; Souri, B. Spatial Analysis of Soil Quality through Landscape Patterns in the Shoor River Basin, Southwestern Iran. Catena 2022, 211, 106028. [Google Scholar] [CrossRef]
- de Santiago-Martín, A.; Valverde-Asenjo, I.; Quintana, J.R.; Vázquez, A.; Lafuente, A.L.; González-Huecas, C. Carbonate, Organic and Clay Fractions Determine Metal Bioavailability in Periurban Calcareous Agricultural Soils in the Mediterranean Area. Geoderma 2014, 221–222, 103–112. [Google Scholar] [CrossRef]
- Cobertera, E. Edafología Aplicada. Suelos, Producción Agraria, Planificación Territorial e Impactos Ambientales; Cátedra: Madrid, Spain, 1993. [Google Scholar]
- Reig, G.; Garanto, X.; Mas, N.; Iglesias, I. Long-Term Agronomical Performance and Iron Chlorosis Susceptibility of Several Prunus Rootstocks Grown under Loamy and Calcareous Soil Conditions. Sci. Hortic. 2020, 262, 109035. [Google Scholar] [CrossRef]
- Martínez Sánchez, J.M.J.; Pérez Sirvent, C. Niveles de Fondo y Niveles Genéricos de Referencia de Metales Pesados En Suelos de La Región de Murcia; Comunidad Autónoma de la Región de Murcia: Murcia, Spain, 2007. [Google Scholar]
- Jalali, M.; Hurseresht, Z. Assessment of Mobile and Potential Mobile Trace Elements Extractability in Calcareous Soils Using Different Extracting Agents. Front. Environ. Sci. Eng. 2020, 14, 7. [Google Scholar] [CrossRef]
Variable | Average | SD | Kruskal df = 2 Chi-Square | p Value | ||
---|---|---|---|---|---|---|
Fluvisol n = 34 | Regosol n = 33 | Fluvisol n = 34 | Regosol n = 33 | |||
silt + clay | 75.478 | 74.185 | 11.729 | 12.967 | 20,374 | 0.3611 |
Density | 19.647 | 18.771 | 14.330 | 11.770 | 22,591 | 0.3232 |
Hum. | 3.396 | 4.160 | 1.973 | 2.411 | 20,631 | 0.3565 |
OC | 10.582 | 5.262 | 4.693 | 3.458 | 204,374 | 0.03648 *** |
TN | 2.914 | 1.834 | 1.045 | 0.872 | 223,178 | 0.01425 *** |
C/N | 3.801 | 3.112 | 1.601 | 1.566 | 54,942 | 0.0641 |
CaCO3 | 351.793 | 363.379 | 60.563 | 77.569 | 1606 | 0.448 |
pH | 8.546 | 8.337 | 0.301 | 0.387 | 56,067 | 0.0606 |
EC | 481.63 | 1133.12 | 437.12 | 665.38 | 156,689 | 0.000395 *** |
Pavailable | 23.895 | 9.518 | 13.639 | 9.861 | 29,9491 | 0.000314 *** |
CEC | 14.697 | 13.313 | 3.655 | 3.834 | 37,002 | 0.1572 |
Kavailable | 35.621 | 25.008 | 20.153 | 12.608 | 57,954 | 0.05515 |
Mgavailable | 47.240 | 42.007 | 23.552 | 28.650 | 23,651 | 0.3065 |
Naavailable | 29.306 | 64.139 | 20.153 | 12.608 | 0.0915 | 0.9553 |
Cuavailable | 6.591 | 1.598 | 5.280 | 1.6908 | 291,275 | 0.000473 *** |
Feavailable | 1.758 | 0.555 | 1.858 | 0.540 | 265,556 | 0.001712 *** |
Mnavailable | 7.345 | 3.421 | 4.850 | 3.100 | 17,182 | 0.000185 *** |
Znavailable | 1.980 | 0.731 | 1.238 | 0.742 | 247,352 | 0.004254 *** |
Cutotal | 89.629 | 62.098 | 125.890 | 77.878 | 50,501 | 0.08006 |
Fetotal | 11599.6 | 10553.3 | 2350,32 | 2041.30 | 45,552 | 0.1025 |
Mntotal | 224.513 | 212.228 | 41.274 | 39.111 | 3328 | 0.1894 |
Zntotal | 44.160 | 23.754 | 33.412 | 21.377 | 119,264 | 0.002572 ** |
Variable | Use | Kruskal (df = 2) | ||||||
---|---|---|---|---|---|---|---|---|
Abandoned N = 14 | Cultivated N = 20 | Industrial N = 33 | Chi-Square | p Value α = 0.05 | ||||
Average | SD | Average | SD | Average | SD | |||
silt + clay | 77.61 | 12.74 | 75.08 | 11.13 | 73.83 | 13.00 | 1.268 | 0.5306 |
Density | 2.145 | 1.480 | 1.893 | 1.473 | 1.908 | 1.182 | 0.255 | 0.8805 |
Hum. | 3.41 | 2.14 | 3.46 | 1.93 | 4.10 | 2.42 | 0.933 | 0.6271 |
OC | 9.33 | 4.24 | 11.36 | 4.73 | 5.13 | 3.42 | 22.576 | 1.25 × 10−5 *** |
TN | 2.28 | 0.77 | 3.25 | 1.09 | 1.83 | 0.89 | 22.921 | 1.05 × 10−5 *** |
C/N | 4.16 | 1.67 | 3.79 | 1.78 | 3.06 | 1.56 | 4.218 | 0.1213 |
CaCO3 | 360.44 | 51.60 | 346.46 | 65.59 | 362.20 | 78.46 | 1.396 | 0.4975 |
pH | 8.55 | 0.34 | 8.55 | 0.27 | 8.32 | 0.38 | 6.998 | 0.03023 * |
EC | 810.45 | 1537.17 | 507.57 | 468.48 | 1160.98 | 655.26 | 13.094 | 0.001434 ** |
Pavailable | 20.1 | 12.8 | 21.1 | 13.2 | 9.14 | 9.77 | 32.130 | 1.06 × 10−4 *** |
CEC | 14.581 | 4.062 | 14.723 | 3.254 | 13.248 | 3.875 | 3.765 | 0.1522 |
Kavailable | 36.055 | 11.998 | 35.164 | 24.306 | 24.392 | 12.271 | 7.774 | 0.02051 * |
Mgavailable | 43.092 | 19.360 | 49.692 | 26.011 | 42.592 | 28.888 | 1.672 | 0.4335 |
Naavailable | 26.444 | 23.672 | 29.950 | 31.115 | 65.808 | 210.310 | 0.057 | 0.972 |
Cuavailable | 8.141 | 6.386 | 5.479 | 3.843 | 1.337 | 0.744 | 32.80 | 7.53 × 10−8 *** |
Feavailable | 1.567 | 1.651 | 1.791 | 1.977 | 0.556 | 0.549 | 26.13 | 2.12 × 10−6 *** |
Mnavailable | 6.778 | 5.227 | 7.191 | 4.782 | 3.448 | 3.144 | 11.89 | 0.002621 ** |
Znavailable | 2.219 | 2.303 | 2.066 | 0.954 | 0.730 | 0.54 | 24.36 | 5.13 × 10−6 *** |
Cutotal | 59.744 | 27.043 | 107.955 | 159.010 | 62.158 | 79.085 | 4.80 | 0.09056 |
Fetotal | 11,890.35 | 2596.26 | 11,289.95 | 2078.53 | 10,572.78 | 2069.75 | 4.01 | 0.1349 |
Mntotal | 212.850 | 38.037 | 231.050 | 41.663 | 211.985 | 39.692 | 4.40 | 0.1108 |
Zntotal | 36.996 | 28.817 | 52.378 | 36.805 | 23.266 | 21.516 | 12.82 | 0.00164 |
Variable | Wilcoxon Fluvisol-Regosol | |
---|---|---|
W | p Value α = 0.05 | |
OC | 206 | 8.69 × 10−6 |
TN | 920.5 | 6.71 × 10−6 |
EC | 272 | 0.0002967 |
Pavailable | 934 | 7.52 × 10−9 |
Cuavailable | 985 | 1.09 × 10−7 |
Feavailable | 968.5 | 3.32 × 10−7 |
Mnavailable | 868 | 7.46 × 10−5 |
Znavailable | 939 | 2.20 × 10−6 |
Zntotal | 801 | 0.002282 |
Variable | Wilcoxon Abandoned—Cultivated | Wilcoxon Abandoned—Industrial | Wilcoxon Cultivated—Industrial | |||
---|---|---|---|---|---|---|
W | p Value α = 0.05 | W | p Value α = 0.05 | W | p Value α = 0.05 | |
OC | 108 | 0.1664 | 398 | 0.0008 | 559 | 2.72× 10−8 |
TN | 67.5 | 0.00625 | 34.5 | 0.0375 | 577 | 6.09× 10−6 |
pH | 158 | 0.7897 | 333.5 | 0.05713 | 459.5 | 0.0179 |
EC | 138 | 0.7138 | 122 | 0.004548 | 161 | 0.001563 |
Pavailable | 87 | 0.09786 | 409 | 8.18× 10−6 | 571 | 7.80× 10−8 |
Kavailable | 180 | 0.299 | 371 | 0.00622 | 415 | 0.121 |
Cuavailable | 181 | 0.3136 | 427 | 0.00006843 | 617 | 1.46× 10−7 |
Feavailable | 119 | 0.3093 | 411.5 | 0.0002757 | 578 | 5.58× 10−6 |
Mnavailable | 144 | 0.8564 | 362 | 0.01009 | 496 | 0.001918 |
Znavailable | 122 | 0.364 | 385 | 0.002309 | 586 | 2.75× 10−6 |
Zntotal | 102 | 0.1119 | 315 | 0.1258 | 520 | 0.0004065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Sanleandro, P.; Gómez-García, A.M.; Blanco-Bernardeau, A.; Gil-Vázquez, J.M.; Alías-Linares, M.A. Influence of the Type and Use of Soil on the Distribution of Organic Carbon and Other Soil Properties in a Sustainable and Resilient Agropolitan System. Forests 2023, 14, 1085. https://doi.org/10.3390/f14061085
Marín-Sanleandro P, Gómez-García AM, Blanco-Bernardeau A, Gil-Vázquez JM, Alías-Linares MA. Influence of the Type and Use of Soil on the Distribution of Organic Carbon and Other Soil Properties in a Sustainable and Resilient Agropolitan System. Forests. 2023; 14(6):1085. https://doi.org/10.3390/f14061085
Chicago/Turabian StyleMarín-Sanleandro, Pura, Ana María Gómez-García, Arantzazu Blanco-Bernardeau, Juana María Gil-Vázquez, and María Asunción Alías-Linares. 2023. "Influence of the Type and Use of Soil on the Distribution of Organic Carbon and Other Soil Properties in a Sustainable and Resilient Agropolitan System" Forests 14, no. 6: 1085. https://doi.org/10.3390/f14061085
APA StyleMarín-Sanleandro, P., Gómez-García, A. M., Blanco-Bernardeau, A., Gil-Vázquez, J. M., & Alías-Linares, M. A. (2023). Influence of the Type and Use of Soil on the Distribution of Organic Carbon and Other Soil Properties in a Sustainable and Resilient Agropolitan System. Forests, 14(6), 1085. https://doi.org/10.3390/f14061085