Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Collection
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burns, R.M.; Honkala, B.H. Silvics of North America: 1. Conifers. Agriculture Handbook 654; United States Department of Agriculture—Forest Service: Washington, DC, USA, 1990; pp. 141–150.
- Langor, D.W.; Raske, A.G. Reproduction and development of the eastern larch beetle, Dendroctonus simplex Leconte (Coleoptera: Scolytidae). Can. Entomol. 1987, 119, 985–992. [Google Scholar] [CrossRef]
- Langor, D.W.; Raske, A.G. The eastern larch beetle, another threat to our forests (Coleoptera: Scolytidae). For. Chron. 1989, 65, 276–279. [Google Scholar] [CrossRef]
- Minnesota Department of Natural Resources. 2021 Forest Health Annual Report. Available online: https://files.dnr.state.mn.us/assistance/backyard/treecare/forest_health/annualreports/2021-annual-report.pdf (accessed on 6 January 2023).
- Mckee, F.R.; Aukema, B.H. Successful reproduction by the eastern larch beetle (Coleoptera: Curculionidae) in the absence of an overwintering period. Can. Entomol. 2015, 147, 602–610. [Google Scholar] [CrossRef]
- Ward, S.F.; Aukema, B. Anomalous outbreaks of an invasive defoliator and native bark beetle facilitated by warm temperatures, changes in precipitation and interspecific interactions. Ecography 2019, 42, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.F.; Aukema, B.; Fei, S.; Liebhold, A. Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology 2020, 101, e03156. [Google Scholar] [CrossRef] [PubMed]
- Langenheim, J. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.I.; Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defense of conifers again insects and pathogens. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef]
- Miller, R.H.; Berryman, A.A.; Ryan, C.A. Biotic elicitors of defense reactions in lodgepole pine. Phytochemistry 1986, 25, 611–612. [Google Scholar] [CrossRef]
- Raffa, K.F.; Smalley, E.B. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 1995, 102, 285–295. [Google Scholar] [CrossRef]
- Klepzig, K.D.; Smalley, E.B.; Raffa, K.F. Combined chemical defenses against an insect-fungal complex. J. Chem. Ecol. 1996, 22, 1367–1388. [Google Scholar] [CrossRef]
- Raffa, K.F.; Aukema, B.H.; Erbilgin, N.; Klepzig, K.D.; Wallin, K.F. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: An attempt to understand links between population patterns and physiological processes. Recent Adv. Phytochem. 2005, 39, 80–118. [Google Scholar]
- Werner, R.A.; Furniss, M.M.; Yarger, L.C.; Ward, T. Effects on Eastern Larch Beetle of Its Natural Attract and Synthetic Pheromones in Alaska; United States Department of Agriculture—Forest Service, Pacific Northwest Forest and Range Experiment Station: Portland, OR, USA, 1981; pp. 1–7. [Google Scholar]
- Prendergast, B.F. The Chemical Ecology of the Eastern Larch Beetle, Dendroctonus simplex LeConte, and the Spruce Beetle, D. rufipennis (Kirby). Master’s Thesis, State University of New York, Albany, NY, USA, 1991. [Google Scholar]
- Graham, E.E.; Storer, A.J. Interrupting the response of Dendroctonus simplex Leconte (Coleoptera: Curculionidae: Scolytinae) to compounds that elicit aggregation of adults. Gt. Lakes Entomol. 2011, 44, 53–63. [Google Scholar]
- Francke, W.; Bartels, J.; Meyerr, H.; Schroder, F.; Kohnle, U.; Baaderr, E.; Vite, J.P. Semiochemicals from bark beetles: New results, remarks, and reflections. J. Chem. Ecol. 1995, 21, 1043–1063. [Google Scholar] [CrossRef] [PubMed]
- Stairs, G.R. Monoterpene composition in Larix. Silvae Genet. 1967, 17, 182–186. [Google Scholar]
- Von Rudloff, E. The volatile twig and leaf oil terpene compositions of three western North American larches, Larix laricina, Larix occidentalis, and Larix lyallii. J. Nat. Prod. 1987, 50, 317–321. [Google Scholar] [CrossRef]
- Sun, J.; Miao, Z.; Zhang, Z.; Zhang, Z.; Gillette, N.E. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Scolytidae), Response to host semiochemicals in China. Environ. Entomol. 2004, 33, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, R.W.; Chen, Z.; Gaylord, M.L.; McMillin, J.D.; Wagner, M.R. Synergistic effects of α-pinene and exo-brevicomin on pine bark beetles and associated insects in Arizona. J. Appl. Entomol. 2008, 132, 387–397. [Google Scholar] [CrossRef]
- Kelsey, R.G.; Westlind, D.J.; Gaylord, M.L. Red turpentine beetle primary attraction to b-pinene or 3-carene (with and without ethanol) varies in western US forests. Agric. Forest Entomol. 2023, 25, 111–118. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 11 November 2022).
- Ward, S.F.; Kees, A.M.; Maddox, M.P., III; Montgomery, R.A.; Aukema, B.H. The role of simulated spring water stress in interactions between eastern larch and larch casebearer. Arthopod-Plant Interact. 2019, 12, 621–633. [Google Scholar] [CrossRef]
- Powell, J.S.; Raffa, K.F. Sources of variation in concentration and composition of foliar monoterpenes in tamarack (Larix laricina) seedlings: Roles and nutrient availability, time of season, and plant architecture. J. Chem. Ecol. 1999, 25, 1771–1797. [Google Scholar] [CrossRef]
- Harborne, J.B. Recent advances in the ecological chemistry of plant terpenoids. In Ecological Chemistry and Biochemistry of Plant Terpenoids; Harborne, J.B., Tomes-Barberan, G.A., Eds.; Claredon Press: Oxford, UK, 1991; pp. 399–426. [Google Scholar]
- Fischer, N.H. Plant terpenoids as allelopathic agents. In Ecological Chemistry and Biochemistry of Plant Terpenoids; Harborne, J.B., Tomes-Barberan, G.A., Eds.; Claredon Press: Oxford, UK, 1991; pp. 377–399. [Google Scholar]
- Dicke, M.; Savelis, M.W.; Takabayashi, J.; Bruin, J.; Posthumus, M.A. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 1990, 16, 3091–3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudson, J.T.; Tollsten, L.; Bergström, G. Floral scents-a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 1993, 33, 253–280. [Google Scholar] [CrossRef]
- Paine, T.D.; Raffa, K.F.; Harrington, T.C. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 1997, 43, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.L. The role of pheromones, kairomones and allomones on host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 1982, 27, 411–446. [Google Scholar] [CrossRef]
- Miller, D.R.; Borden, J.H. Dose-dependent and species-specific responses of pine bark beetles (Coleoptera: Scolytidae) to monoterpenes in association with pheromones. Can. Entomol. 2000, 132, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Werner, R.A. Toxicity and repellency of 4-allylanisole and monoterpenes from white spruce and tamarack to the spruce beetle and eastern larch beetle (Coleoptera: Scolytidae). Environ. Entomol. 1995, 24, 372–379. [Google Scholar] [CrossRef]
- Reid, M.L.; Purcell, J.R.C. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interact. 2011, 5, 331–337. [Google Scholar] [CrossRef]
- Manning, C.G.; Reid, M.L. Sub-lethal effects of monoterpenes on reproduction by mountain pine beetles. Agric For. Entomol. 2013, 15, 262–271. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.C.I.; Bohlmann, J. Toxicity of pine monoterpenes to mountain pine beetle. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef]
- Kallinová, B.; Brízová, R.; Knížek, M.; Turčáni, M.; Hoskovec, M. Volatiles from spruce trap-trees detected by Ips typographus bark beetles: Chemical and electrophysiological analyses. Arthropod-Plant Interact. 2014, 8, 305–316. [Google Scholar] [CrossRef]
- Poland, T.M.; Borden, J.H. Attraction of a bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetle and two secondary bark beetles. J. Entomol. Soc. Brit. Columbia. 1997, 94, 35–41. [Google Scholar]
- Miller, D.R.; Borden, J.H. β-phellandrene: Kairomone for pine engraver, Ips pini (Coleoptera: Scolytidae). J. Chem. Ecol. 1990, 16, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, L.M. Differences in responses to α-pinene and ethanol, and flight periods between the bark beetle predators Thanasimus femoralis and T. formicarius (Col: Cleridae). For. Ecol. Manag. 2003, 177, 301–311. [Google Scholar] [CrossRef]
- Aukema, B.H.; Dahlsten, D.L.; Raffa, K.F. Exploiting behavioral disparities among predators and prey to selectively remove pests: Maximizing the ratio of bark beetles to predators removed during semiochemically based trap-out. Biol. Control 2000, 29, 651–660. [Google Scholar] [CrossRef]
- Staeben, J.C.; Sullivan, B.T.; Nowak, J.T.; Gandhi, K.J.K. Enantiospecific responses of southern pine beetle (Dendroctonus frontalis) and its clerid predator Thanasimus dubious, to α-pinene. Chemoecology 2015, 25, 73–83. [Google Scholar] [CrossRef]
- Aukema, B.H.; Dahlsten, D.L.; Raffa, K.F. Improved population monitoring of bark beetles and predators by incorporating disparate behavioral responses to semiochemicals. Environ. Entomol. 2000, 29, 618–629. [Google Scholar] [CrossRef]
- Ross, D.W.; Daterman, G.E. Response of Dendroctonus pesudotsugae (Coleoptera: Scolytidae) and Thanasimus undatulus (Coleoptera: Cleridae) to traps with different semiochemicals. J. Econ. Entomol. 1995, 88, 106–111. [Google Scholar] [CrossRef]
- Clark, E.L.; Carroll, A.L.; Huber, D.P.W. Differences in the constitutive terpene profile of lodgepole pine across a geographical range in British Columbia, and correlation with historical attack by mountain pine beetle. Can. Entomol. 2010, 142, 557–573. [Google Scholar] [CrossRef]
- Snow, M.D.; Bard, R.R.; Olszyk, D.M.; Minster, L.M.; Hager, A.N.; Tingey, D.T. Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol. Plant. 2003, 117, 352–358. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Hofstetter, R.W.; Sullivan, B.T.; Grady, A.M.; Brownie, C. Western pine beetle populations in Arizona and California differ in composition of their aggregation pheromones. J. Chem. Ecol. 2016, 42, 404–413. [Google Scholar] [CrossRef]
- Isitt, R. Local and Geographic Variation in the Pheromone Blend of the Spruce Beetle, Dendroctonus rufipennis Kirby (Coleoptera: Curlionidae). Master’s Thesis, University of North British Columbia, Prince George, BC, Canada, 2012. [Google Scholar]
- Grosman, D.M.; Salom, S.M.; Ravlin, F.W.; Young, R.W. Geographic and gender differences in semiochemicals in emerging adult southern pine beetle (Coleoptera: Scolytidae). J. Phys. 1997, 90, 438–446. [Google Scholar] [CrossRef]
Site | State | Site Coordinates (Latitude, Longitude) |
---|---|---|
1 | WI | 45.64609, −89.69925 |
2 | WI | 46.08356, −89.10286 |
3 | WI | 46.06834, −89.05433 |
4 | WI | 45.90623, −89.32976 |
5 | WI | 46.16631, −90.90850 |
6 | MN | 47.03354, −92.56989 |
7 | MN | 47.06933, −92.61704 |
8 | MN | 47.13486, −92.61704 |
9 | MN | 46.99555, −93.13276 |
10 | MN | 46.97377, −92.99593 |
11 | MN | 47.33794, −94.08489 |
12 | MN | 47.23245, −94.63135 |
13 | MN | 46.54460, −94.30573 |
14 | MN | 44.97318, −93.32852 |
Compound | Mean Composition (%) | 95% CI |
---|---|---|
α-pinene | 39.4 | 36.7, 42.1 |
Camphene | 0.7 | 0.3, 1.2 |
Sabinene | 1.2 | 0.7, 1.9 |
β-pinene | 6.5 | 5.2, 8.0 |
Myrcene | 1.7 | 1.1, 2.5 |
∆-3-carene | 30.0 | 27.5, 32.6 |
D-limonene + β-phellandrene | 3.6 | 2.7, 4.8 |
Terpinolene | 2.4 | 1.6, 3.3 |
Unidentified Compounds | 10.0 | 8.4, 11.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althoff, E.R.; O’Loughlin, T.J.; Wakarchuk, D.A.; Aukema, K.G.; Aukema, B.H. Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend? Forests 2023, 14, 566. https://doi.org/10.3390/f14030566
Althoff ER, O’Loughlin TJ, Wakarchuk DA, Aukema KG, Aukema BH. Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend? Forests. 2023; 14(3):566. https://doi.org/10.3390/f14030566
Chicago/Turabian StyleAlthoff, Emily R., Thomas J. O’Loughlin, David A. Wakarchuk, Kelly G. Aukema, and Brian H. Aukema. 2023. "Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend?" Forests 14, no. 3: 566. https://doi.org/10.3390/f14030566
APA StyleAlthoff, E. R., O’Loughlin, T. J., Wakarchuk, D. A., Aukema, K. G., & Aukema, B. H. (2023). Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend? Forests, 14(3), 566. https://doi.org/10.3390/f14030566