Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
- (1)
- Land use data: Derived from the results of the third national land survey (the third national land survey) in Guanling County, according to the land use classification system of the third national land survey (land use status classification GB/T21010-2017) [46]; the data are divided into seven categories.
- (2)
- DEM data: Obtained from the Chinese Academy of Sciences Data Sharing Center (https://www.resdc.cn/), accessed on 17 May 2022, with a resolution of 30 m, and using ArcGIS10.8 surface analysis to extract the slope data.
- (3)
- NDVI data: Obtained from the National Ecological Science Data Center (http://www.nesdc.org.cn/), accessed on 19 February 2022, with a resolution of 30 m.
- (4)
- Rocky Desertification data: Rocky desertification data from Xiong et al. [47], and corrected by the visual interpretation of remote sensing and field survey observations.
2.3. Research Methods
2.3.1. Importance and Sensitivity Analysis of Ecosystem Services
2.3.2. Landscape Connectivity Analysis
2.3.3. Construction of Ecological Resistance Surface
2.3.4. Construction of ELSP
3. Results and Analysis
3.1. Land Use Analysis of Guanling County
3.2. Analysis of Importance and Ecological Sensitivity of Ecosystem Services
3.3. Analysis of Landscape Connectivity and Landscape Types in Guanling County
3.4. Comprehensive Resistance Surface and ES
3.5. EC Identification and ELSP Construction
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, K. Security Patterns in Landscape Planning with a Case in South China. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1995. [Google Scholar]
- Formam, R.T.T. Land Mosaics: The Ecology of Landscape and Regions; Cambridge University Press: Cambridge, UK, 1995; pp. 32–76. [Google Scholar]
- LI, H.; Yi, N.; Yao, W.J.; Wang, S.Q.; Li, Z.Y.; Yang, S.H. Shangri-La county ecological land use planning based on landscape security pattern. Acta Ecol. Sin. 2011, 37, 587–596. (In Chinese) [Google Scholar]
- Du, Y.Y.; Hu, Y.N.; Yang, Y.; Peng, J. Building ecological security patterns in southwestern mountainous areas based on ecological importance and ecological sensitivity: A case study of Dali Bai Autonomous Prefecture, Yunnan Province. Acta Ecol. Sin. 2017, 37, 8241–8253. (In Chinese) [Google Scholar]
- Li, F.; Ye, Y.P.; Song, B.W.; Wang, R.S. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Liao, J.; Zhang, H.; Wang, C.; Ye, Y.; Wang, Y. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Liang, J.; He, X.; Zeng, G.; Zhong, M.; Gao, X.; Li, X.; Li, X.; Wu, H.; Feng, C.; Xing, W.; et al. Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci. Total Environ. 2018, 626, 22–29. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.X.; Hu, Y.N.; Du, Y.Y.; Meersmans, J.; Qiu, S.J. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, Z.J. Construction and optimization strategy of ecological security pattern based on ecosystem services and landscape connectivity: A case study of Guizhou Province, China. Environ. Sci. Pollut. Res. 2023, 1–17. [Google Scholar] [CrossRef]
- Shuai, N.; Hu, Y.; Gao, M.; Guo, Z.; Bai, Y. Construction and optimization of ecological networks in karst regions based on multi-scale nesting: A case study in Guangxi Hechi, China. Ecol. Inform. 2023, 74, 101963. [Google Scholar] [CrossRef]
- Wu, Z.; Xiong, K.; Zhu, D.; Xiao, J. Revelation of coupled ecosystem quality and landscape patterns for agroforestry ecosystem services sustainability improvement in the karst desertification control. Agriculture 2023, 13, 43. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, J.; Wu, S.; Jiao, K. Mediation effect as the component to ecosystem? Establishing the chain effect framework of ecosystem services across typical karst basin in China. CATENA 2023, 221, 106761. [Google Scholar] [CrossRef]
- Beier, P.; Majkad, R.; Spencer, W.D. Forks in the road: Choices in procedures for designing wildland linkages. Conserv. Biol. 2008, 22, 836–851. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Du, Y. Constructing ecological security patterns based on ecological service importance and ecological sensitivity in Guangdong Province. Acta Ecol. Sin. 2021, 41, 1705–1715. (In Chinese) [Google Scholar] [CrossRef]
- Yao, C.Y.; An, R.; Dou, C.; Liu, Y.L. Construction and evaluation of forest ecological network in the Three Gorges Reservoir area based on MSPA and MCR models. J. Resour. Environ. Yangtze River Basin 2022, 31, 1953–1962. (In Chinese) [Google Scholar]
- Costanza, R.; Kubiszewski, l. The authorship structure of “ecosystem services” as a transdisciplinary field of scholarship. Ecosyst. Serv. 2012, 1, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wu, S.; Liu, L.; Liang, Z.; Li, S. Evaluating regional water security through a freshwater ecosystem service flow model: A case study in Beijing-Tianjin-Hebei region, China. Ecol. Indic. 2017, 81, 159–170. [Google Scholar] [CrossRef]
- Darvill, R.; Lindo, Z. The inclusion of stakeholders and cultural ecosystem services in land management trade-off decisions using an ecosystem services approach. Landsc. Ecol. 2016, 31, 533–545. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, D.; Zhou, L.; Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T. Land consolidation design based on an evaluation of ecological sensitivity. Sustainability 2018, 10, 3736. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Ersayin, K.; Tagil, S. Ecological sensitivity and risk assessment in the Kizilirmak Delta. Fresenius Environ. Bull. 2018, 26, 6508–6516. [Google Scholar]
- Gao, G.L.; Deng, Z.M.; Xiong, K.N.; Su, X.L. The Call and Hope of Karst; Guizhou Science and Technology Press: Guiyang, China, 2003. (In Chinese) [Google Scholar]
- Yuan, D.X. Global view on Karst rock desertification and integrating control measures and experiences of China. J. Grassl. Sci. 2008, 9, 19–25. (In Chinese) [Google Scholar]
- Lu, Y.R. Karst Development Mechanism and Research Directions of Developing Engineering Construction Effect. J. Earth Sci. 2016, 37, 419–432. (In Chinese) [Google Scholar] [CrossRef]
- Xiong, K.N.; LI, J.; Long, M.Z. Features of Soil and Water Loss and Key Issues in Demonstration Areas for Combating Karst Rocky Desertification. J. Geogr. 2012, 67, 878–888. (In Chinese) [Google Scholar]
- Yue, Y.; Liu, B.; Wang, K.; Li, R.; Zhang, B.; Zhang, C.; Chen, H. RETRACTED ARTICLE: Using remote sensing to quantify the fractional cover of vegetation and exposed bedrock within a complex landscape: Applications for karst rocky desertification monitoring. Environ. Monit. Assess. 2013, 185, 1025. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; De Keersmaecker, W.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing remote sensing methods for monitoring Karst rocky desertification at sub-pixel scales in a highly heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, L.; Groves, C.; Yuan, D.; Kambesis, P. Relationships between rocky desertification and spatial pattern of land use in typical karst area, Southwest China. Environ. Earth Sci. 2009, 59, 881–890. [Google Scholar] [CrossRef]
- Bai, X.-Y.; Wang, S.-J.; Xiong, K.-N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, Z.; Yuan, D.; Ma, Z.; Xie, Y. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China. Environ. Earth Sci. 2014, 72, 4483–4489. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, K.; Zhang, B.; Jiao, Q.; Liu, B.; Zhang, M. Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment. Procedia Environ. Sci. 2012, 13, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Ying, B.; Xiao, S.Z.; Xiong, K.N.; Cheng, Q.W.; Luo, J.S. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Environ. Earth Sci. 2014, 71, 631–645. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H. Temporal analysis on quantitative attribution of karst soil erosion: A case study of a peak-cluster depression basin in Southwest China. CATENA 2019, 172, 369–377. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Y.L. Multi-scale anthropogenic driving forces of karst rocky desertification in southwest China. Land Degrade. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Xiong, K.; Yu, Y.; Min, X. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Glob. Ecol. Conserv. 2020, 24, e01381. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China. Int. Soil Water Conserv. Res. 2022, 10, 217–227. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Zhong, C.J. Characteristic of rocky desertification and comprehensive improving model in karst peak-cluster depression in Guohua, Guangxi, China. Procedia Environ. Sci. 2011, 10, 2449–2452. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhu, D.; Xiong, K.; Wang, X. Dynamics of landscape ecological quality based on benefit evaluation coupled with the rocky desertification control in South China Karst. Ecol. Indic. 2022, 138, 108870. [Google Scholar] [CrossRef]
- Yao, B.; Yue, X.J.; Huang, P.; Li, Y.-H. The Qing-Long model: China provides a solution to the karst rocky desertification challenge. Acta Ecol. Sin. 2022. [Google Scholar] [CrossRef]
- Li, Y.X.; Li, J.; Chen, H.; Wang, Z.J. Landscape connectivity evaluation and temporal-spatial characteristics of Guiyang City from 2008 to 2017 based on MSPA and MCR models. J. Ecol. 2022, 41, 1240–1248. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.J.; Li, Y.B.; Li, R.L. Background, evolution and management of karst rocky desertification. J. Quat. Study 2003, 1, 657–666. (In Chinese) [Google Scholar]
- General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of China. GB/T21010-2017; Land Use Status Classification. Standards Publishing House: Beijing, China, 2017. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=224BF9DA69F053DA22AC758AAAADEEAA (accessed on 22 September 2022). (In Chinese)
- Xiong, K.N.; Yuan, J.Y.; Fang, Y.; Lan, A.J.; Chen, Q.W.; Zeng, F.Q.; Ying, B.; Zhang, W.W.; Hu, J.; Zhou, Z.F.; et al. Atlas of Comprehensive Prevention and Control of Karst Rocky Desertification in Guizhou (2006–2050); Guizhou People’s Publishing House: Guiyang, China, 2007. (In Chinese) [Google Scholar]
- Ahern, J.; Cilliers, S.; Niemelä, J. The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landsc. Urban Plan. 2014, 125, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Warsame, A.A.; Abdi, A.H. Towards sustainable crop production in Somalia: Examining the role of environmental pollution and degradation. Cogent Food Agric. 2023, 9, 2161776. [Google Scholar] [CrossRef]
- Raihan, A.; Pavel, M.I.; Muhtasim, D.A.; Farhana, S.; Faruk, O.; Paul, A. The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innov. Green Dev. 2023, 2, 100035. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Yang, T.R.; Kuang, W.H.; Liu, W.D.; Liu, A.L.; Pan, T. Optimization of ecological spatial structure of Guanzhong urban agglomeration based on ecological security pattern. J. Geogr. Res. 2017, 36, 441–452. (In Chinese) [Google Scholar]
- Taylor, P. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.D.; Fu, B.J. The ecological significance and application of landscape connectivity. J. Ecol. 1996, 15, 37–42. [Google Scholar]
- Gandini, M.L.; Lara, B.D.; Moreno, L.B.; Cañibano, M.A.; Gandini, P.A. Landscape dynamics of Paspalum quadrifarium grasslands analyzed by Morphological Spatial Pattern Analysis (MSPA). PeerJ 2018. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Yin, H.W.; Kong, F.H.; Xu, J.G. Developing ecological networks based on mspa and the least-cost path method: A case study in bazhong western new district. J. Ecol. 2015, 35, 6425–6434. (In Chinese) [Google Scholar]
- Gao, X.W.; Feng, Z.J.; Ge, J.F. Analysis of landscape security pattern in Western Mountains of Shijiazhuang. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Geo-Simulation and Virtual GIS Environments, Guangzhou, China, 28–29 June 2008; Volume 7145, p. 71451. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, W.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y. An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Su, X.; Zhou, Y.; Li, Q. Designing ecological security patterns based on the framework of ecological quality and ecological sensitivity: A case study of Jianghan Plain, China. Int. J. Environ. Res. Public Health 2021, 18, 8383. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on landscape pattern construction and ecological restoration of Jiuquan city based on ecological security evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Liu, Z.; Gan, X.; Dai, W.; Huang, Y. Construction of an ecological security pattern and the evaluation of corridor priority based on ESV and the “importance–connectivity” index: A case study of Sichuan province, China. Sustainability 2022, 14, 3985. [Google Scholar] [CrossRef]
- Wu, M.Q.; Hu, M.M.; Wang, T.; Fan, C.; Xia, B.C. Recognition of urban ecological source area based on ecological security pattern and multi—Scale landscape connectivity. Acta Ecol. Sin. 2019, 39, 4720–4731. (In Chinese) [Google Scholar] [CrossRef]
- Xiong, C.N.; Wei, H. Lan Mingjuan. Landscape connectivity of urban green space in Chongqing. Chin. J. Ecol. 2008, 5, 2237–2244. (In Chinese) [Google Scholar]
- Garcia-Lozano, C.; Varga, D.; Pintó, J.; Roig-Munar, F. Landscape connectivity and suitable habitat analysis for wolves (Canis lupus L.) in the Eastern Pyrenees. Sustainability 2020, 12, 5762. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Chen, X.; Peng, J.; Liu, Y.X.; Yang, Y.; Li, G. Construction of ecological security pattern of Yunfu City based on ‘importance-sensitivity-connectivity’ framework. Geogr. Res. 2017, 36, 471–484. (In Chinese) [Google Scholar] [CrossRef]
Value of Ecosystem Services | Land Use Type | Importance of Ecological Services |
---|---|---|
5 | Water body | Extremely important |
4 | Forestland and grassland | Highly important |
3 | Garden plot | Moderately Important |
2 | Cultivated land | Slightly important |
1 | Construction land and other land | Unimportant |
Sensitivity Assignment | NDVI | DEM/m | Slope/° | Land Use Type | Rocky Desertification |
---|---|---|---|---|---|
1 | ≤0.35 | ≤500 | ≤5 | Construction Land | Extremely strong rocky desertification |
3 | (0.35, 0.50] | (500, 800] | (5, 15] | Other land | Intense rocky desertification |
5 | (0.50, 0.65] | (800, 1100] | (15, 25] | Cultivated land | Moderate rocky desertification |
7 | (0.65, 0.75] | (1100, 1500] | (25, 35] | Grassland and Garden land | Mild rocky desertification |
9 | >0.75 | >1500 | >35 | Forestland and Water body | No rocky desertification |
Resistance Value | Distance from River/m | Distance from the Settlement/m | Distance from Road/m | Degree of Stone Desertification | Landscape Type | Elevation/m | Slope/° |
---|---|---|---|---|---|---|---|
1 | ≤500 | >1000 | ≤1000 | No rocky desertification | Forestland and Water body | ≤500 | ≤5 |
3 | (500, 1000] | (1000, 800] | (500, 1000] | Mild rocky desertification | Grassland and Garden land | (500, 800] | (5, 10] |
5 | (1000, 1500] | (800, 500] | (200, 500] | Moderate rocky desertification | Cultivated land | (800, 1100] | (10, 15] |
7 | (1500, 2000] | (200, 500] | (100, 200] | Intense rocky desertification | Other land | (1100, 1500] | (15, 25] |
9 | >2000 | ≤200 | ≤100 | Extremely strong rocky desertification | Cultivated land | >1500 | >25 |
Land Use Types | Area (km2) | Proportion (%) |
---|---|---|
Forestland | 345.48 | 23.87 |
Grassland | 246.31 | 17.02 |
Garden land | 16.38 | 1.13 |
Water body | 15.73 | 1.09 |
Cultivated land | 404.34 | 27.94 |
Construction land | 42.31 | 2.92 |
Other land | 376.50 | 26.02 |
Landscape Type | Area (km2) | Proportion of Total Area of Ecological Landscape (%) |
---|---|---|
Core | 608.61 | 65.73 |
Islet | 11.71 | 1.26 |
Perforation | 45.15 | 4.88 |
Edge | 120.06 | 12.97 |
Loop | 70.59 | 7.62 |
Bridge | 31.30 | 3.38 |
Branch | 38.53 | 4.16 |
Number of Source | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 23.556 | 4.1539 | 4.7667 | 4.765 | 8.9556 | 7.954 | 9.5467 | 43.4106 | 19.5628 |
2 | 0 | 7.0123 | 8.5573 | 4.9466 | 24.6238 | 24.6462 | 21.9493 | 6.4892 | 23.4465 | |
3 | 0 | 22.3342 | 17.3254 | 16.2479 | 32.0352 | 10.4792 | 2.2473 | 4.4374 | ||
4 | 0 | 19.6368 | 12.927 | 32.9607 | 8.1683 | 2.2863 | 3.911 | |||
5 | 0 | 10.362 | 16.8525 | 7.2889 | 2.4914 | 3.4039 | ||||
6 | 0 | 78.5538 | 168.1243 | 3.9237 | 17.3001 | |||||
7 | 0 | 30.9580 | 3.5073 | 9.6917 | ||||||
8 | 0 | 5.3442 | 39.4447 | |||||||
9 | 0 | 9.4984 | ||||||||
10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, B.; Liu, T.; Ke, L.; Xiong, K.; Li, S.; Sun, R.; Zhu, F. Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province. Forests 2023, 14, 613. https://doi.org/10.3390/f14030613
Ying B, Liu T, Ke L, Xiong K, Li S, Sun R, Zhu F. Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province. Forests. 2023; 14(3):613. https://doi.org/10.3390/f14030613
Chicago/Turabian StyleYing, Bin, Ting Liu, Li Ke, Kangning Xiong, Sensen Li, Ruonan Sun, and Feihu Zhu. 2023. "Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province" Forests 14, no. 3: 613. https://doi.org/10.3390/f14030613
APA StyleYing, B., Liu, T., Ke, L., Xiong, K., Li, S., Sun, R., & Zhu, F. (2023). Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province. Forests, 14(3), 613. https://doi.org/10.3390/f14030613