Review on Driving Factors of Ecosystem Services: Its Enlightenment for the Improvement of Forest Ecosystem Functions in Karst Desertification Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Publications Acquisition Source
2.2. Publications Screening and Statistic
3. Results and Discussion
3.1. Distribution of Documents
3.2. Co-Occurrence Network of Keywords
3.3. Main Developments and Landmark Achievement
- (1)
- Ecosystem structure determines ecosystem processes and functions
- (2)
- Forest spatial structure influences water regulation and species diversity
- (3)
- Biodiversity is a crucial driver of the nutrient cycle
- (4)
- Functional diversity promotes the maintenance of ecosystem multi-functionality
- (5)
- Plant functional traits of both aboveground and underground parts affect ESs simultaneously
3.4. A Systematic Review of ES Drivers for Forest Ecosystem Improvement in Karst Desertification
- (1)
- The optimization of stand spatial structure helps improve the quality of the ecosystem
- (2)
- Building plant functional groups based on functional characteristics and environmental conditions is conducive to improving ecological functions
- (3)
- Biodiversity conservation is the foundation for maintaining EMF
- (4)
- The combination of macro-scale landscape structure optimization and micro-scale biodiversity improvement can effectively increase the supply of ES
3.5. Key Scientific Issues to Be Solved and Prospects
- (1)
- How do ecosystem functions respond to structural changes? Research on interspecific relationships and functional differences in ecosystems with different structures can be carried out.
- (2)
- Species diversity or functional diversity contributing more to ESs; comparative studies on species and functional traits of different communities are needed.
- (3)
- The application of relationships between biodiversity and ecosystem service is insufficient. The practical application of existing research results should be strengthened.
- (4)
- Few pieces of research integrate multiple driving factors of ES change; the research on the co-influence of natural and human factors should be strengthened.
- (5)
- There is no case study on improving ES through landscape pattern optimization. Long time-series sample plot monitoring should be carried out to explore the optimal landscape pattern.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; Arge, R.D.; Groot, R.D.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.G.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are humans now overwhelming the great forces of nature? AMBIO 2007, 36, 614–621. [Google Scholar] [CrossRef] [PubMed]
- IPBESs. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBESs Secretariat: Bonn, Germany, 2009; p. 56. [Google Scholar]
- Díaz, S.; Fargione, J.E.; Chapin, F.S.; Tilman, D. Biodiversity Loss Threatens Human Well-Being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.A.; Wardle, D.; et al. Corrigendum: Biodiversity loss and its impact on humanity. Nature 2012, 489, 326. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J. Climate change and ecosystem services. Wires Clim Change 2016, 7, 537–550. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Teixeira, D.G.; Marques, S.P.; Garabini, C.T.; Cezar, R.M.; Pereira, P.A. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar]
- Brown, L.M.; Anand, M. Plant functional traits as measures of ecosystem service provision. Ecosphere 2022, 13, e3930. [Google Scholar]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef] [Green Version]
- Price, M.F.; Gratzer, G.; Duguma, L.A.; Kohler, T.; Maselli, D.; Romeo, R. Mountain Forests in a Changing World-Realizing Values, Addressing Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Y.; Yang, S.; Liu, C. Impact of Land-Use Change on Ecosystem Services in the Wuling Mountains from a Transport Development Perspective. Int. J. Environ. Res. Public Health 2023, 20, 1323. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, I.S.; Schneider, F.D.; Schaepman, M.E.; Morsdorf, F. Assessing biodiversity from space: Impact of spatial and spectral resolution on trait-based functional diversity. Remote Sens. Environ. 2022, 275, 113024. [Google Scholar] [CrossRef]
- Winfrey, B.K.; Hatt, B.E.; Ambrose, R.F. Biodiversity and functional diversity of Australian stormwater biofilter plant communities. Landsc. Urban Plan. 2018, 170, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Runting, R.K.; Bryan, B.A.; Dee, L.E.; Maseyk, F.J.F.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.P.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Chang. Biol. 2018, 32, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Bünemann, E.; Oberson, A.; Frossard, E. Phosphorus in action-Biological processes in soil phosphorus cycling. Soil Biol. 2011, 26, 371–406. [Google Scholar]
- Liu, J.J.; Huang, G.L. A review of grassland ecosystem service and human well-being in Xilingol League and Xilinhot City. Pratac. Sci. 2019, 36, 573–593. [Google Scholar]
- Li, Q.; Gao, Y.; Wang, H.B.; Wang, X.P.; Yang, Y.P. Changes in Water and Carbon in Farmland Ecosystems Due to the Combined Impact of Temperature Rise and Drought: A Review. J. Irrig. Drain. 2021, 40, 110–118. [Google Scholar]
- Moreno, J.L.; Bastida, F.; Díaz-López, M.; Li, Y.; Plaza, C. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma 2022, 407, 115536. [Google Scholar] [CrossRef]
- Li, C.Y.; He, M.Z.; Tang, L. Advances on phosphorus cycle and their driving mechanisms in desert ecosystems: A review. Acta Ecol. Sin. 2022, 12, 1–10. [Google Scholar]
- Liang, M.W.; Bai, X.; Wang, Y.S.; Miao, B.L.; Bao, G.R.; Wang, H.; Liang, C.Z. The Effect of Moderate Grazing on Carbon Cycle of the Typical Steppe in Inner Mongolia. J. Inn. Mon. Univ. 2016, 47, 278–284. [Google Scholar]
- Alonso-Sarría, F.; Martínez-Hernández, C.; Romero-Díaz, A.; Cánovas-García, F.; Gomariz-Castillo, F. Main Environmental Features Leading to Recent Land Abandonment in Murcia Region (Southeast Spain). Land Degrad. Dev. 2016, 27, 654–670. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, S.W.; Wei, B.C. Temporal and Spatial Pattern of Grassland Degradation and Its Determinants for Recent 30 Years in Xilingol. Chin. J. Grassl. 2017, 39, 86–93. [Google Scholar]
- Anwar, M.; Yang, Y.H.; Guo, Z.D.; Fang, J.Y. Grassland Aboveground Biomass in Xinjiang. Acta Sci. Nat. Univ. Pekin. 2006, 4, 521–526. [Google Scholar]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework forthe effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Lvzeng, Z.Z.; Huang, X.X.; Sun, X.N.; Wang, X.Y.; He, K.J.; Zhang, Y. Effects of disturbance on landscape pattern and meadow ecosystem services, in the Yak Park of Mt. Jade Dragon, Yunnan. Ecol. Environ. Sci. 2020, 29, 725–732. [Google Scholar]
- Wang, X.H.; Wu, Y.; Manevski, K.; Fu, M.Q.; Yin, X.G.; Chen, F. A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review. Sustainability 2021, 13, 12463. [Google Scholar] [CrossRef]
- Kazemi, H.; Klug, H.; Kamkar, B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol. Indic. 2018, 93, 1126–1135. [Google Scholar] [CrossRef]
- Guo, S.S.; Wu, C.Y.; Wang, Y.H.; Qiu, G.Q.; Zhu, D.; Niu, Q.; Qin, L. Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecol. Indic. 2022, 136, 108603. [Google Scholar] [CrossRef]
- Martin, G.; Lasch-Born, P.; Kollas, C.; Suckow, F.; Reyer, C.P.O. Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environ. Res. Lett. 2018, 12, 045012. [Google Scholar]
- Costa, M.H.; Yanagi, S.N.M.; Souza, P.J.O.P.; Ribeiro, A.; Rocha, E.J.P. Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett. 2007, 34, L07706. [Google Scholar] [CrossRef]
- Borma, L.S.; Costa, M.H.; da Rocha, H.R.; Arieira, J.; Nascimento, N.C.C.; Jaramillo-Giraldo, C.; Ambrosio, G.; Carneiro, R.G.; Venzon, M.; Neto, A.F.; et al. Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services. Rev. Geophys. 2022, 60, e2021RG000766. [Google Scholar] [CrossRef]
- Coe, M.T.; Brando, P.M.; Deegan, L.A.; Macedo, M.N.; Neill, C.; Silvério, D.V. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Trop. Conserv. Sci. 2017, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–25. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, H.; Zhang, M.; Li, X. Area Threshold Interval of Urban Forest Patches Required to Maintain the Synergy between Biodiversity Conservation and Recreational Services: Case Study in Beijing, China. Forests 2022, 13, 1848. [Google Scholar] [CrossRef]
- Takala, T.; Brockhaus, M.; Hujala, T.; Tanskanen, M.; Lehtinen, A.; Tikkanen, J.; Toppinen, A. Discursive barriers to voluntary biodiversity conservation: The case of Finnish forest owners. For. Policy Econ. 2022, 136, 102681. [Google Scholar] [CrossRef]
- Perez-Verdin, G.; Monarrez-Gonzalez, J.C.; Tecle, A.; Pompa-Garcia, M. Evaluating the Multi-Functionality of Forest Ecosystems in Northern Mexico. Forests 2018, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Lyashevska, O.; Farnsworth, K.D. How many dimensions of biodiversity do we need? Ecol. Indic. 2012, 18, 485–492. [Google Scholar] [CrossRef]
- Steur, G.; Verburg, R.W.; Wassen, M.J.; Verweij, P.A. Shedding light on relationships between plant diversity and tropical forest ecosystem services across spatial scales and plot sizes. Ecosyst. Serv. 2020, 43, 101107. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, H.; Smith, J.R.; Zhao, H.; Liu, L.; Ouyang, Z.Y. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Sci. Total Environ. 2019, 682, 583–590. [Google Scholar] [CrossRef]
- Zheng, H.; Pan, Q.; Wen, Z.; Yang, Y.Z. Relationships between plant functional traits and ecosystem services in forests: A review. Acta Ecol. Sin. 2021, 41, 7901–7912. [Google Scholar]
- Schuler, L.J.; Bugmann, H.; Snell, R.S. From monocultures to mixed-species forests: Is tree diversity key for providing ecosystem services at the landscape scale? Landsc. Ecol. 2017, 32, 1499–1516. [Google Scholar] [CrossRef]
- Benneter, A.; Forrester, D.I.; Bouriaud, O.; Dormann, C.F.; Bauhus, J. Tree species diversity does not compromise stem quality in major European forest types. For. Ecol. Manag. 2018, 422, 323–337. [Google Scholar] [CrossRef]
- Esquivel, J.; Echeverria, C.; Saldaa, A.; Fuentes, R. High functional diversity of forest ecosystems is linked to high provision of water flow regulation ecosystem service. Ecol. Indic. 2020, 115, 106433. [Google Scholar] [CrossRef]
- Xiong, K.N.; Li, J.; Long, M.Z. Features of Soil and Water Loss and Key Issues in Demonstration Areas for Combating Karst Rocky Desertification. Acta Geogr. Sin. 2012, 67, 878–888. [Google Scholar]
- Xiong, K.N.; Zhu, D.Y.; Peng, T.; Yu, L.F.; Xue, J.H.; Li, P. Study on Ecological industry technology and demonstration for Karst rocky desertification control of the Karst Plateau-Gorge. Acta Ecol. Sin. 2016, 36, 7109–7113. [Google Scholar]
- Xiong, K.N.; Li, P.; Zhou, Z.F.; An, Y.L.; Lü, T.; Lan, A.J. Remote Sensing and GIS Typical Study of Karst Rocky Desertification: Taking Guizhou Province as an Example; Geology Press: Beijing, China, 2002. [Google Scholar]
- Green, S.M.; Dungait, J.A.J.; Tu, C.L.; Buss, H.L.; Sanderson, N.; Hawkes, S.J.; Xing, K.; Yue, F.; Hussey, V.L.; Peng, J.; et al. Soil functions and ecosystem services research in the Chinese karst Critical Zone. Chem. Geol. 2019, 527, 119107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.H.; Xiong, K.N.; Qin, Y.; Min, X.Y.; Xiao, J. Evolution and determinants of ecosystem services: Insights from South China karst. Ecol. Indic. 2021, 133, 108437. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. Does landscape-scale conservation management enhance the provision of ecosystem services? Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 71–83. [Google Scholar]
- Hodder, K.H.; Newton, A.C.; Cantarello, E.; Perrella, L. Cost–benefit analysis of ecological networks assessed through spatial analysis of ecosystem services. J. Appl. Ecol. 2012, 49, 571–580. [Google Scholar]
- Laughlin, D.C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 2014, 17, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.P.; de Mello, K.; Valente, R.A. Landscape structure aiming at the biodiversity conservation of urbanized landscape. Cienc. Florest. 2020, 30, 819–834. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Wu, D.; Johansen, K.; Maron, M.; McAlpine, C.; Rhodes, J.R. Landscape structure influences urban vegetation vertical structure. J. Appl. Ecol. 2016, 53, 1477–1488. [Google Scholar] [CrossRef]
- Silveira, D.S.J.; Silva-Neto, C.M.; Castro Silva, T.; Nascimento, S.K.; Ribeiro, M.C.; Garcia, C.R. Landscape structure and local variables affect plant community diversity and structure in a Brazilian agricultural landscape. Biotropica 2022, 54, 239–250. [Google Scholar] [CrossRef]
- Rahimi, E.; Barghjelveh, S.; Dong, P.L. Estimating landscape structure effects on pollination for management of agricultural landscapes. Ecol. Process 2021, 10, 59. [Google Scholar] [CrossRef]
- Rocha-Santos, L.; Benchimol, M.; Mayfield, M.M.; Faria, D.; Pessoa, M.S.; Talora, D.C.; Mariano-Neto, E.; Cazetta, E. Functional decay in tree community within tropical fragmented landscapes: Effects of landscape-scale forest cover. PLoS ONE 2017, 12, e0175545. [Google Scholar] [CrossRef] [Green Version]
- Jacquemyn, H.; Butaye, J.; Hermy, M. Impacts of restored patch density and distance from natural forests on colonization success. Restor. Ecol. 2003, 11, 417–423. [Google Scholar] [CrossRef]
- Uroy, L.; Ernoult, A.; Mony, C. Effect of landscape connectivity on plant communities: A review of response patterns. Landsc. Ecol. 2019, 34, 203–225. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e150052. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Liu, D.Q.; Gong, J.; Ma, X.C.; Cao, E.J. Impact of landscape fragmentation on watershed soil conservation service—A case study on Bailongjiang Watershed of Gansu. Resour. Sci. 2018, 40, 1866–1877. [Google Scholar]
- Zheng, B.F.; Huang, Q.Y.; Tao, L.; Xie, Z.Y.; Ai, B.; Zhu, Y.H.; Zhu, J.Q. Landscape pattern change and its impacts on the ecosystem services value in southern Jiangxi Province. Acta Ecol. Sin. 2021, 41, 5940–5949. [Google Scholar]
- Lu, X.L.; Liu, J.L.; Ding, S.Y. Impact of agricultural landscape heterogeneity on biodiversity and ecosystem services. Acta Ecol. Sin. 2019, 39, 4602–4614. [Google Scholar]
- Lamy, T.; Liss, K.N.; Gonzalez, A.; Bennett, E.M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 2016, 11, 124017. [Google Scholar] [CrossRef]
- Hui, G.Y.; Hu, Y.B. Measuring Species Spatial Isolation in Mixed Forests. For. Res. 2001, 1, 23–27. [Google Scholar]
- Hardiman, B.S.; LaRue, E.A.; Atkins, J.W.; Fahey, R.T.; Wagner, F.W.; Gough, C.M. Spatial variation in canopy structure across forest landscapes. Forests 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Niu, J.; Zhang, L.; Xiao, Q.; McPherson, G.E.; Van Doorn, N.; Yu, X.; Xie, B.; Dymond, S.; Li, J.; et al. A study on crown interception with four dominant tree species: A direct measurement. Hydrol. Res. 2016, 47, 857–868. [Google Scholar] [CrossRef]
- Atkins, J.W.; Fahey, R.T.; Hardiman, B.H.; Gough, C.M. Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale. J. Geophys. Res. Biogeosci. 2017, 123, 1387–1405. [Google Scholar] [CrossRef]
- Dietz, J.; Hölscher, D.; Leuschner, C. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. For. Ecol. Manag. 2006, 237, 170–178. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, S.Y.; Li, J.; Zhang, X.Y.; Qiu, Q. Effect of Slope Position and Density on the Species Diversity of Understory Vegetation and Productivity of Eucalyptus Plantation. For. Environ. Sci. 2019, 35, 48–55. [Google Scholar]
- Wang, M.Z.; Bi, H.J.; Jin, S.; Liu, J.; Liu, Y.H.; Wang, Y.; Qi, J.Q.; Hao, J.T. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain. Acta Ecol. Sin. 2019, 39, 981–988. [Google Scholar]
- Wei, H.Y.; Dong, L.B.; Liu, Z.G. Spatial structure optimization simulation of main forest types in Great Xing’an Mountains, Northeast China. J. Appl. Ecol. 2019, 30, 3824–3832. [Google Scholar]
- Xiang, B.W.; Zeng, S.Q.; Gan, S.S.; Long, S.S.; Liu, X. Spatial structure optimization of Quercus in Hunan. J. Cent. South Univ. For. Technol. 2019, 39, 33–40. [Google Scholar]
- Zhang, X.; Johnston, E.R.; Barberán, A.; Ren, Y.; Lü, X.; Han, X. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Glob. Chang. Biol. 2017, 23, 4318–4332. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornara, D.A.; Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 2008, 96, 314–322. [Google Scholar] [CrossRef]
- van Ruijven, J.; Berendse, F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. USA 2005, 102, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.T.; Quero, J.L.; Gotelli, N.J.; Escudero, A.; Ochoa, V. Plant species richness and ecosystem multifunctionality in global drylands. Science 2012, 335, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.G.; Hu, J.L. Scientific connotation and ecological service function of soil microbial diversity. Acta Pedol. Sin. 2008, 5, 892–900. [Google Scholar]
- Waring, B.G. Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biol. Biochem. 2013, 64, 89–95. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Vitorino, L.C.; Bessa, L.A. Microbial Diversity: The Gap between the Estimated and the Known. Diversity 2018, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Chen, L.D.; Yang, X.R.; Zhao, F.K.; Sun, L.; Xu, S.L.; Yang, L. Community Characteristic and Functional Variability of Soil Microbes in Urban-rural Complex Ecosystem. Acta Pedol. Sin. 2021, 58, 1368–1380. [Google Scholar]
- van der, H.M.; Ba Rdgett, R.D.; Straalen, N. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Hou, J.H.; Ma, K.P. On mechanisms of species coexistence in plant communities. Chin. J. Plant Ecol. 2002, 26, 1–8. [Google Scholar]
- Lusk, C.H.; Smith, B. Life history difference and species coexistence in an old growth New Zealand rain forest. Ecology 1998, 79, 795–806. [Google Scholar] [CrossRef]
- Feng, S.Y.; Zhao, W.W.; Han, Y. Biodiversity conservation in a changing environment—Review of the fourth One Planet Summit. Acta Ecol. Sin. 2022, 42, 2050–2058. [Google Scholar]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant Species Diversity and Management of Temperate Forage and Grazing Land Ecosystems. Crop. Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef]
- Xu, W.; Ma, Z.Y.; Jing, X.; He, J.S. Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodivers. Sci. 2016, 24, 55–71. [Google Scholar] [CrossRef]
- Naeem, S.; Thompson, L.J.; Lawler, S.P.; Lawton, J.H.; Woodfin, R.M. Declining biodiversity can alter the performance of ecosystems. Nature 1994, 368, 734–737. [Google Scholar] [CrossRef]
- Bagousse-Pinguet, Y.L.; Soliveres, S.; Gross, N.; Torices, R.; Berdugo, M.; Maestre, F.T. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2019, 116, 8419–8424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.B.; Lang, X.D.; Li, S.F.; Liu, W.D.; Su, J.R. Indicator selection and driving factors of ecosystem multifunctionality: Research status and perspectives. Biodivers. Sci. 2021, 29, 1673–1686. [Google Scholar] [CrossRef]
- Dıíaz, S.; Marcelo, C. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Zirbel, C.R.; Grman, E.; Bassett, T.; Brudvig, L.A. Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity. Ecology 2019, 100, e02634. [Google Scholar] [CrossRef]
- Steudel, B.; Hallmann, C.; Lorenz, M.; Abrahamczyk, S.; Prinz, K.; Herrfurth, C.; Feussner, I.; Martini, J.W.R.; Kessler, M. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity. New Phytol. 2016, 212, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cheng, J.; Su, J.S.; Cheng, J.M. Diversity-productivity relationship of plant communities in typical grassland during the longterm grazing exclusion succession. Chin. J. Plant Ecol. 2022, 46, 176–187. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, G.D.; An, K.; Lu, C.X. A research framework of ecosystem services based on functional traits. Chin. J. Plant Ecol. 2012, 36, 353–362. [Google Scholar] [CrossRef]
- Shipley, B. Comparative plant ecology as a tool for integrating across scales. Ann. Bot. 2007, 99, 965–966. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Palacios, P.; Gattinger, A.; Bracht-Jorgensen, H.; Brussaard, L.; Carvalho, F.; Castro, H.; Clément, J.C.; De Deyn, G.; d’Hertefeldt, T.; Foulquier, A.; et al. Crop traits drive soil carbon sequestration under organic farming. J. Appl. Ecol. 2018, 55, 2496–2505. [Google Scholar] [CrossRef]
- Hanisch, M.; Schweiger, O.; Cord, A.; Volk, M.; Knapp, S. Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. J. Appl. Ecol. 2020, 57, 1535–1550. [Google Scholar] [CrossRef]
- Dennis, P.G.; Miller, A.J.; Hirsch, P.R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 2010, 72, 313–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaparro, J.M.; Badri, D.V.; Bakker, M.G.; Sugiyama, A.; Manter, D.K.; Vivanco, J.M. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 2013, 8, e55731. [Google Scholar] [CrossRef]
- Mitchell, C.E. Trophic control of grassland production and biomass by pathogens. Ecol. Lett. 2010, 6, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.R.; Gu, D.X.; Huang, Y.Q.; He, C.X.; Wei, Q.S. Research advances in hydraulic redistribution of plant roots. Chin. J. Ecol. 2021, 40, 2978–2986. [Google Scholar]
- Richards, J.H.; Caldwell, M.M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 1987, 73, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, W.W.; Liu, Y.; Jia, L.Z. Effects of plant functional traits on soil conservation: A review. Acta Ecol. Sin. 2019, 39, 3355–3364. [Google Scholar]
- Zhang, K.; Huang, K.D.; Zhao, X.J.; She, J.W.; Zheng, X.; Tang, L.Z. Effects of Pruning on Microclimate and Understory Vegetation in A Poplar Plantation. Ecol. Environ. 2019, 28, 1548–1556. [Google Scholar]
- Chen, L.; Xiong, K.N.; Tang, X.P. A Review of Forest-Grass Intercropping System. World For. Res. 2019, 32, 25–30. [Google Scholar]
- Cao, X.Y.; Li, J.P.; Feng, Y.; Hu, Y.J.; Zhang, C.C.; Fang, X.N.; Deng, C. Analysis and Evaluation of the Stand Spatial Structure of Cunninghamia lanceolata Ecological Forest. Sci. Silvae Sin. 2015, 51, 37–48. [Google Scholar]
- Yao, J.B.; Zeng, P.S.; Yuan, X.P.; Wu, J.G.; Chu, X.L.; Zhou, Z.C. Impacts of Thinning Intensities on Growth and Stand Structure of Schima superba-Sprouting Cuninghamia lanceolata Mixed Plantation. For. Res. 2017, 30, 511–517. [Google Scholar]
- Kong, L.W.; Yu, Y.H.; Xiong, K.N.; Wei, C.S.; Zhang, S.H. Leaf functional traits of Zanthoxylum planispinum var. dintanensis and their response to management measures. J. For. Environ. 2022, 42, 364–373. [Google Scholar]
- Yu, Y.H.; Zhong, X.P.; Zheng, W.; Chen, Z.X.; Wang, J.X. Species diversity, functional traits, stoichiometry and correlation of plant community in different succession stages of karst forest. Acta Ecol. Sin. 2021, 41, 2408–2417. [Google Scholar]
- Smith, T.M.; Woodward, F.I.; Shugart, H.H. Plant Function Types; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Woodward, F.I.; Cramer, W. Plant functional types and climatic change: Introduction. J. Veg. Sci. 1996, 7, 306–308. [Google Scholar] [CrossRef]
- Zang, R.G.; Zhang, Z.D. Plant functional groups and their dynamics in tropical forests: A review. Acta Ecol. Sin. 2010, 30, 3289–3296. [Google Scholar]
- Jiang, S.L.; Xiong, K.N.; Xiao, J. Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests 2022, 13, 878. [Google Scholar] [CrossRef]
- Xiong, K.N.; Chi, Y.K. The Problems in Southern China Karst Ecosystem in Southern of China and Its Countermeasures. Ecol. Econ. 2015, 31, 23–30. [Google Scholar]
- Huang, Y.F.; Shu, Y.G.; Xiao, S.Y.; Chen, M.J. Quantification of soil nutrient levels and enzyme activities in different grassl and categories in karst mountains. Acta Prataculturae Sin. 2020, 29, 93–104. [Google Scholar]
- Baker, T.R.; Swaine, M.D.; Burslem, D.F. Variation in tropical forest growth rates: Combined effects of functional group composition and resource availability. Perspect. Plant Ecol. 2003, 6, 21–36. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wu, J.; Clark, C.M.; Naeem, S.; Pan, Q.; Huang, J.; Zhang, L.; Han, X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Chang. Biol. 2010, 16, 358–372. [Google Scholar] [CrossRef]
- de Deyn, G.B.; van der, P.W.H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 2005, 20, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H. The kasrt ecosystem of southern China and its biodiversity. Trop. For. 2007, 35, 44–47. [Google Scholar]
- Yuan, C.J.; Xiong, K.N.; Rong, L.; Weng, Y.F. Research Progress on the Biodiversity during the Ecological Restoration of Karst Rocky Desertification. Earth Environ. 2021, 49, 336–345. [Google Scholar]
- Liu, F.; Wang, S.J.; Liu, Y.S.; He, T.B.; Luo, H.B.; Long, J. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environment. Acta Ecol. Sin. 2005, 3, 639–644. [Google Scholar]
- Hylander, K.; Greiser, C.; Christiansen, D.M.; Irena, A.; Koelemeijer, I.A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conserv. Biol. 2021, 36, e13847. [Google Scholar] [CrossRef]
- Lindenmayer, D.B. Integrating forest biodiversity conservation and restoration ecology principles to recover natural forest ecosystems. New For. 2018, 50, 169–181. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Dong, M.; Fu, B.; Liu, G. Scale effects of sediment retention, water yield, and net primary production: A case study of the Chinese Loess Plateau. Land Degrad Dev. 2020, 31, 1408–1421. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.J.; Zeng, H. Scale effects on ecosystem service trade-off and its influencing factors based on wavelet transform: A case study in the Pearl River Delta, China. Geogr. Res. 2022, 41, 1279–1297. [Google Scholar]
- Lu, Y.; Hua, C.; Zhou, X. A Study of Landscape Patterns in the Karst Mountainous Area Using RS and GIS. Mt. Res. 2002, 6, 727–731. [Google Scholar]
- Wang, Y.Y.; Zhou, Z.F.; Wei, X.D. Rocky Desertification Landscape Pattern on Spatio-temporal Evolution of Land Use the Response. Mt. Res. 2013, 31, 307–313. [Google Scholar]
- Han, W.Q.; Chang, Y.; Hu, Y.M.; Li, X.Z.; Bu, R.C. Research advance in landscape pattern optimization. Chin. J. Ecol. 2005, 12, 1487–1492. [Google Scholar]
- Wu, X.Q.; Cai, Y.L.; Meng, J.J. Impacts of Land Use on Soil Erosion in Karst Mountainous Area —A Case Study in Shibanqiao Catchment in Guanling county, Guizhou Province. Res. Soil Water Conserv. 2005, 4, 46–48+77. [Google Scholar]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method. Acta Geogr. Sin. 2018, 73, 1674–1686. [Google Scholar]
- Lemessa, D.; Hamback, P.A.; Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc. Ecol. 2015, 30, 167–180. [Google Scholar] [CrossRef]
- Hu, T.H.; Li, K.P.; Xiong, K.N.; Wang, J.; Yang, S.; Wang, Z.F.; Gao, A.; Yu, X. Research Progress on Water–Fertilizer Coupling and Crop Quality Improvement and Its Implication for the Karst Rock Desertification Control. Agronomy 2022, 12, 903. [Google Scholar] [CrossRef]
- Lautenbach, S.; Jungandreas, A.; Blanke, J.; Lehsten, V.; Mühlner, S.; Kühn, I.; Volk, M. Trade-offs between plant species richness and carbon storage in the context of afforestation—Examples from afforestation scenarios in the Mulde Basin, Germany. Ecol. Indic. 2017, 73, 139–155. [Google Scholar] [CrossRef]
- Chen, M.Y.; Liu, S.H.; Yu, L.H.; Feng, J.Z.; Yu, P.X.; Gao, B.J. Response of Ecosystem Service Value to Ecosystem Structure Change in Fuping Basin of the Daqinghe River. J. Nat. Resour. 2018, 33, 1376–1389. [Google Scholar]
- Zhang, Y.R.; Meng, J.J.; Zhou, T. Dynamic analysis of landscape structure and function in Erdos during 1988–2000. J. Arid. Land. Resour. Environ. 2009, 23, 49–55. [Google Scholar]
- Li, H.D.; Wu, X.W.; Xiao, Z.S. Assembly, ecosystem functions, and stability in species interaction networks. Chin. J. Plant Ecol. 2021, 45, 1049–1063. [Google Scholar] [CrossRef]
- Chen, J.H.; Gong, G.T.; Zhu, Z.F.; Mu, C.L. Landscape structure and ecological function of protection forests in Guansi river watershed. Ecol. Environ. 2010, 19, 712–717. [Google Scholar]
- Wang, J.M.; Liu, J.; Chen, X.M.; Wen, Q.Z.; Duan, Z.Y.; Lai, X.H. Comparison of Community Structures and Species Diversity in Natural Forests and Forest Plantation of Pinus yunnanensis. For. Res. 2010, 23, 515–522. [Google Scholar]
- Mc Gill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trend Ecol. Evolut. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Hertzog, L.R.; Boonyarittichaikij, R.; Dekeukeleire, D.; de Groote, S.R.E.; van Schrojenstein, L.I.; Sercu, B.K.; Smith, H.K.; de la Peña, E.; Vandegehuchte, M.L.; Bonte, D.; et al. Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality. Ecology 2019, 100, e02653. [Google Scholar] [CrossRef]
- Sylvanus, M.; Kolawolé, V.S.; Achille, A.; Romain, G.K.; Brice, S.; Seifert, T. Functional trait diversity is a stronger predictor of multifunctionality than dominance: Evidence from an Afromontane forest in South Africa. Ecol. Indic. 2020, 115, 106415. [Google Scholar]
- Yan, Y.Z.; Zhang, Q.; Alexander, B.; Liu, Q.F.; Niu, J.M. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Sci. Total Environ. 2020, 726, 138529. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Arshad, A.; Paloma, R.B.; Tommaso, J.; Akira, S.M.; Wang, S.P.; Zhang, X.K.; Li, H.; Hao, Z.Q.; Wang, X.G.; et al. Above and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. J. Ecol. 2020, 108, 2012–2024. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Feng, X.M.; Wu, X.; Fu, B.J. Research progress on the relationship between biodiversity and ecosystem multifunctionality. Acta Ecol. Sin. 2022, 42, 11–23. [Google Scholar]
- Chillo, V.; Vázquez, D.P.; Amoroso, M.M.; Bennett, E.M. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 2018, 32, 1390–1399. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.S. Biodiversity and ecosystem services in forests: Management and restoration founded on ecological theory. J. Appl. Ecol. 2017, 54, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Shi, Y.T.; Wang, S. A Review on the Driving Mechanisms of Ecosystem Services Change. J. Resour. Ecol. 2022, 13, 68–79. [Google Scholar]
- Karimi, J.D.; Corstanje, R.; Harris, J.A. Understanding the importance of landscape configuration on ecosystem service bundles at a high resolution in urban landscapes in the UK. Landsc. Ecol. 2021, 36, 2007–2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Xiong, K.; Zhang, S.; Zhang, Y.; Deng, X. Review on Driving Factors of Ecosystem Services: Its Enlightenment for the Improvement of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 582. https://doi.org/10.3390/f14030582
Kong L, Xiong K, Zhang S, Zhang Y, Deng X. Review on Driving Factors of Ecosystem Services: Its Enlightenment for the Improvement of Forest Ecosystem Functions in Karst Desertification Control. Forests. 2023; 14(3):582. https://doi.org/10.3390/f14030582
Chicago/Turabian StyleKong, Lingwei, Kangning Xiong, Shihao Zhang, Yu Zhang, and Xuehua Deng. 2023. "Review on Driving Factors of Ecosystem Services: Its Enlightenment for the Improvement of Forest Ecosystem Functions in Karst Desertification Control" Forests 14, no. 3: 582. https://doi.org/10.3390/f14030582
APA StyleKong, L., Xiong, K., Zhang, S., Zhang, Y., & Deng, X. (2023). Review on Driving Factors of Ecosystem Services: Its Enlightenment for the Improvement of Forest Ecosystem Functions in Karst Desertification Control. Forests, 14(3), 582. https://doi.org/10.3390/f14030582