Land-Use Types Regulate Se:Cd Ratios of Natural Seleniferous Soil Derived from Different Parent Materials in Subtropical Hilly Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Properties in the Area
3.2. Distribution of Se and Cd among Different Parent Materials and Land-Use Types
3.3. Effects of Soil Characteristics on Soil Se and Cd
3.4. The Se:Cd Ratio Change and Its Influencing Factors in the Area
4. Discussion
4.1. The Effects of Soil Properties on Se, Cd, and Se:Cd Ratios in Natural Seleniferous Soil
4.2. The Effects of Parent Materials on Se, Cd, and Se:Cd Ratio in Natural Seleniferous Soil
4.3. The Effects of Land-Use types on Se, Cd, and Se:Cd Ratios in Natural Seleniferous Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Shi, X.; Huang, X.; Huang, C.; Wang, H.; Yin, H.; Shao, Y.; Li, P. Linking microbial community composition to farming pattern in selenium-enriched region: Potential role of microorganisms on Se geochemistry. J. Environ. Sci. 2022, 112, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Rensing, C.; Zheng, S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. J. Hazard. Mater. 2022, 421, 126684. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Gu, M.; Li, H.; Shohag, M.J.I.; Shen, F.; Wang, X.; Wei, Y. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Sci. Total Environ. 2020, 748, 141166. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Qin, Y.; Chen, T.; Zhao, Z.; Liu, X. Microbial induced carbonate precipitation contributes to the fates of Cd and Se in Cd-contaminated seleniferous soils. J. Hazard. Mater. 2022, 423, 126977. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Wang, Z.; Chen, Q.; Yin, J.; Liu, Y.; Yin, X. Content and speciation distribution of selenium in soil and crops in Mingyue Mountain area of Yichun City, Jiangxi Province. Chin. Sci. Bull. 2022, 67, 511–519. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Wang, M.; Tran, T.A.T.; Zhou, F.; Wang, D.; Zhai, H.; Peng, Q.; Xue, M.; Du, Z.; Bañuelos, G.S.; et al. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit. Rev. Environ. Sci. Technol. 2019, 49, 443–517. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Luo, L.; Zhu, M.; Zan, S.; Guo, F.; Wang, B.; Yang, B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. Ecotoxicol. Environ. Saf. 2021, 222, 112516. [Google Scholar] [CrossRef]
- Tian, H.; Xie, S.; Carranza, E.J.M.; Bao, Z.; Zhang, H.; Wu, S.; Wei, C.; Ma, Z. Distributions of selenium and related elements in high pyrite and Se-enriched rocks from Ziyang, Central China. J. Geochem. Explor. 2020, 212, 106506. [Google Scholar] [CrossRef]
- Gong, J.; Yang, J.; Wu, H.; Fu, Y.; Gao, J.; Tang, S.; Ma, S. Distribution of soil selenium and its relationship with parent rocks in Chengmai County, Hainan Island, China. Appl. Geochem. 2022, 136, 105147. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Soto-Gómez, D.; Arias-Estévez, M.; Bååth, E.; Fernández-Calviño, D. Estimation of baseline levels of bacterial community tolerance to Cr, Ni, Pb, and Zn in unpolluted soils, a background for PICT (pollution-induced community tolerance) determination. Biol. Fertil. Soils 2022, 58, 49–61. [Google Scholar] [CrossRef]
- Lin, T.; Tang, J.; He, F.; Chen, G.; Shi, Y.; Wang, X.; Han, S.; Li, S.; Zhu, T.; Chen, L. Sexual differences in above- and belowground herbivore resistance between male and female poplars as affected by soil cadmium stress. Sci. Total Environ. 2022, 803, 150081. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J. Hazard. Mater. 2021, 402, 123546. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, S.; Wan, N.; Feng, B.; Wang, Q.; Huang, K.; Fang, Y.; Bao, Z.; Xu, F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. Environ. Sci. Pollut. Res. 2022, 30, 22772–22786. [Google Scholar] [CrossRef]
- Wu, J.; Li, R.; Lu, Y.; Bai, Z. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. J. Environ. Manag. 2021, 295, 113081. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, L.; Qi, S.; Yin, X. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils. Sci. Total Environ. 2019, 688, 1228–1235. [Google Scholar] [CrossRef]
- Guo, Y.; Mao, K.; Cao, H.; Ali, W.; Lei, D.; Teng, D.; Chang, C.; Yang, X.; Yang, Q.; Niazi, N.K.; et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environ. Pollut. 2021, 268, 115829. [Google Scholar] [CrossRef]
- Wang, D.; Xia, X.; Wu, S.; Zheng, S.; Wang, G. The essentialness of glutathione reductase GorA for biosynthesis of Se(0)-nanoparticles and GSH for CdSe quantum dot formation in Pseudomonas stutzeri TS44. J. Hazard. Mater. 2019, 366, 301–310. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, H.; Huang, F.; Feng, X. Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd. Environ. Pollut. 2022, 300, 118927. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Li, Y.; Wang, M.; Liu, N.; Kleawsampanjai, P.; Zhou, F.; Zhai, H.; Wang, M.; Dinh, Q.T.; et al. Detoxification difference of cadmium between the application of selenate and selenite in native cadmium-contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 64475–64487. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, Y.; Liu, Y.; Qin, X.; Huang, R.; Liang, X. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. Environ. Sci. Pollut. Res. 2018, 25, 31175–31182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Zhang, Y.; Huang, D.; Li, X.; Gregorich, E.; McLaughlin, N.; Zhang, X.; Chen, X.; Zhang, S.; et al. Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon. Soil Tillage Res. 2022, 218, 105307. [Google Scholar] [CrossRef]
- Zinn, Y.L.; de Faria, J.A.; de Araujo, M.A.; Skorupa, A.L.A. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. CATENA 2020, 185, 104319. [Google Scholar] [CrossRef]
- Simon, A.; Wilhelmy, M.; Klosterhuber, R.; Cocuzza, E.; Geitner, C.; Katzensteiner, K. A system for classifying subsolum geological substrates as a basis for describing soil formation. CATENA 2021, 198, 105026. [Google Scholar] [CrossRef]
- Wilson, M.J. The importance of parent material in soil classification: A review in a historical context. CATENA 2019, 182, 104131. [Google Scholar] [CrossRef]
- Matos, R.P.; Lima, V.M.P.; Windmöller, C.C.; Nascentes, C.C. Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil. J. Geochem. Explor. 2017, 172, 195–202. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhao, W.; Xia, C.; Wu, M.; Wang, Q.; Wang, Z.; Jiang, Y.; Zuza, A.V.; Tian, X. Assessment of heavy metals should be performed before the development of the selenium-rich soil: A case study in China. Environ. Res. 2022, 210, 112990. [Google Scholar] [CrossRef]
- Fang, A.; Dong, J.; An, Y. Distribution Characteristics and Pollution Assessment of Soil Heavy Metals under Different Land-Use Types in Xuzhou City, China. Sustainability 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Zhang, Z.; Wu, X.; Xiang, X.; Sun, W.; Bai, Q.; Zhou, Y. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Zhang, Z. Forest quality-based assessment of the Returning Farmland to Forest Program at the community level in SW China. For. Ecol. Manag. 2020, 461, 117938. [Google Scholar] [CrossRef]
- Gao, X.-S.; Xiao, Y.; Deng, L.-J.; Li, Q.-Q.; Wang, C.-Q.; Li, B.; Deng, O.-P.; Zeng, M. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 2019, 18, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Bao, S. (Ed.) Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chang, C.; Yin, R.; Zhang, H.; Yao, L. Bioaccumulation and health risk assessment of heavy metals in the soil–rice system in a typical seleniferous area in central China. Environ. Toxicol. Chem. 2019, 38, 1577–1584. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.-J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Li, J.; Peng, Q.; Liang, D.; Liang, S.; Chen, J.; Sun, H.; Li, S.; Lei, P. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils. Chemosphere 2016, 144, 2351–2359. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 1990, 54, 739–751. [Google Scholar] [CrossRef]
- Shao, Y.; Cai, C.; Zhang, H.; Fu, W.; Zhong, X.; Tang, S. Controlling factors of soil selenium distribution in a watershed in Se-enriched and longevity region of South China. Environ. Sci. Pollut. Res. 2018, 25, 20048–20056. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Li, H.; Wang, L.; Liao, X.; Wang, J.; Kong, C. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Sci. Total Environ. 2018, 633, 240–248. [Google Scholar] [CrossRef]
- Pan, Z.; He, S.; Li, C.; Men, W.; Yan, C.; Wang, F. Geochemical characteristics of soil selenium and evaluation of Se-rich land resources in the central area of Guiyang City, China. Acta Geochim. 2017, 36, 240–249. [Google Scholar] [CrossRef]
- Gong, J.; Yang, J.; Wu, H.; Gao, J.; Tang, S.; Ma, S. Spatial distribution and environmental impact factors of soil selenium in Hainan Island, China. Sci. Total Environ. 2022, 811, 151329. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; You, J.; Zhu, J.; Hu, H.; Gao, J.; Huang, J. Long-term green manure application improves soil K availability in red paddy soil of subtropical China. J. Soils Sediments 2021, 21, 63–72. [Google Scholar] [CrossRef]
- Gong, C.; Wang, L.; Wang, S.; Wang, D.; Lu, H.; Zhang, Z.; Jiang, L.; Yan, B.; Xiong, T.; Liu, J. Distribution Characteristics of Soil Selenium and Its Influencing Factors in Tangchang Town of Chengdu City, Sichuan Province. Rock Miner. Anal. 2022, 41, 437–450. [Google Scholar]
- Li, M.; Yang, B.; Xu, K.; Zheng, D.; Tian, J. Distribution of Se in the rocks, soil, water and crops in Enshi County, China. Appl. Geochem. 2020, 122, 104707. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, X.; Liu, R.; Liu, S.; Zuza, A.V. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China. CATENA 2021, 196, 104926. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, J.-M.; Johnson, T.M.; Wang, X.; Lin, Z.-Q.; Tan, D.; Qin, H. Selenium isotope fractionation during adsorption by Fe, Mn and Al oxides. Geochim. Cosmochim. Acta 2020, 272, 121–136. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, A.; Yang, X.; Fan, M.; Shao, S.; Wu, J.; Wu, P.; Zhang, M.; Gao, C. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecol. Indic. 2021, 122, 107233. [Google Scholar] [CrossRef]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J.; et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Q.; Wang, X.; Hu, W.; Liu, X.; Tian, K.; Fan, Y.n.; Xie, E.; Zhao, Y.; Huang, B.; et al. Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River, China. Chemosphere 2022, 291, 132768. [Google Scholar] [CrossRef]
- Xiao, K.; Tang, J.; Chen, H.; Li, D.; Liu, Y. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China. Sci. Total Environ. 2020, 708, 135201. [Google Scholar] [CrossRef]
- Tan, J.a.; Zhu, W.; Wang, W.; Li, R.; Hou, S.; Wang, D.; Yang, L. Selenium in soil and endemic diseases in China. Sci. Total Environ. 2002, 284, 227–235. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, S.; Wu, X.; Zhu, Y.; Kong, J.; Shao, T.; Tao, X. Concentrations and characteristics of selenium in soil samples from Dashan Region, a selenium-enriched area in China. Soil Sci. Plant Nutr. 2015, 61, 889–897. [Google Scholar] [CrossRef]
- Song, T.; Cui, G.; Su, X.; He, J.; Tong, S.; Liu, Y. The origin of soil selenium in a typical agricultural area in Hamatong River Basin, Sanjiang Plain, China. CATENA 2020, 185, 104355. [Google Scholar] [CrossRef]
- Xu, D.; Gao, B.; Peng, W.; Gao, L.; Wan, X.; Li, Y. Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China. Sci. Total Environ. 2019, 646, 1546–1553. [Google Scholar] [CrossRef]
- Li, R.; Xu, J.; Luo, J.; Yang, P.; Hu, Y.; Ning, W. Spatial distribution characteristics, influencing factors, and source distribution of soil cadmium in Shantou City, Guangdong Province. Ecotoxicol. Environ. Saf. 2022, 244, 114064. [Google Scholar] [CrossRef]
- Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef]
- Yao, B.M.; Wang, S.Q.; Xie, S.T.; Li, G.; Sun, G.X. Optimal soil Eh, pH for simultaneous decrease of bioavailable Cd, As in co-contaminated paddy soil under water management strategies. Sci. Total Environ. 2022, 806 Pt 3, 151342. [Google Scholar] [CrossRef]
Type | pH | SOM (%) | Total N (g/kg) | Total P (g/kg) | Total K (%) | |
---|---|---|---|---|---|---|
Parent material * | qrc | 5.75 + 0.22 | 3.17 + 1.62 | 1.63 + 0.71 | 0.65 + 0.21 | 1.55 + 0.22 |
rls | 5.68 + 0.48 | 3.27 + 1.15 | 1.41 + 0.50 | 0.65 + 0.19 | 1.91 + 0.54 | |
wacr | 5.82 + 0.33 | 3.63 + 1.15 | 1.68 + 0.52 | 0.60 + 0.30 | 2.48 + 0.29 | |
war | 6.48 + 0.95 | 4.05 + 2.01 | 1.96 + 0.80 | 0.61 + 0.20 | 1.54 + 0.54 | |
wcr | 6.58 + 0.98 | 3.14 + 1.57 | 1.55 + 0.92 | 0.59 + 0.34 | 0.97 + 0.46 | |
wq | 5.80 + 0.69 | 5.59 + 2.49 | 2.12 + 0.72 | 0.78 + 0.42 | 1.00 + 0.21 | |
wrs | 5.61 + 1.22 | 2.48 + 1.37 | 1.20 + 0.73 | 0.33 + 0.15 | 0.89 + 0.18 | |
Land use | dryland | 6.31 + 0.74 | 3.45 + 1.92 | 1.55 + 0.68 | 0.78 + 0.31 | 1.40 + 0.68 |
orchard | 5.31 + 0.91 | 1.86 + 0.88 | 1.06 + 0.36 | 0.47 + 0.25 | 1.42 + 0.58 | |
paddy field | 6.44 + 0.86 | 4.69 + 1.60 | 2.20 + 0.65 | 0.61 + 0.15 | 1.66 + 0.52 | |
forestland | 5.68 + 0.83 | 2.01 + 0.48 | 0.85 + 0.25 | 0.29 + 0.13 | 0.72 + 0.12 |
Factor | Regression Coefficient (B) | Standard Error | p | Exp(B) |
---|---|---|---|---|
Land-use type | −0.6999 | 0.3381 | 0.03847 | 0.4966 |
pH | −1.7662 | 0.5832 | 0.00246 | 0.1710 |
Total K | −1.7683 | 0.7157 | 0.01348 | 0.1706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Rong, Q.; Guo, X.; Guo, J.; Chen, Y.; Chang, Y.; Chen, J.; Zhang, Q.; Zhou, C.; Cai, H.; et al. Land-Use Types Regulate Se:Cd Ratios of Natural Seleniferous Soil Derived from Different Parent Materials in Subtropical Hilly Areas. Forests 2023, 14, 656. https://doi.org/10.3390/f14030656
Sun C, Rong Q, Guo X, Guo J, Chen Y, Chang Y, Chen J, Zhang Q, Zhou C, Cai H, et al. Land-Use Types Regulate Se:Cd Ratios of Natural Seleniferous Soil Derived from Different Parent Materials in Subtropical Hilly Areas. Forests. 2023; 14(3):656. https://doi.org/10.3390/f14030656
Chicago/Turabian StyleSun, Chunxia, Qinlei Rong, Xi Guo, Jiaxin Guo, Yi Chen, Yihua Chang, Jie Chen, Qin Zhang, Chunhuo Zhou, Haisheng Cai, and et al. 2023. "Land-Use Types Regulate Se:Cd Ratios of Natural Seleniferous Soil Derived from Different Parent Materials in Subtropical Hilly Areas" Forests 14, no. 3: 656. https://doi.org/10.3390/f14030656
APA StyleSun, C., Rong, Q., Guo, X., Guo, J., Chen, Y., Chang, Y., Chen, J., Zhang, Q., Zhou, C., Cai, H., & Zhao, X. (2023). Land-Use Types Regulate Se:Cd Ratios of Natural Seleniferous Soil Derived from Different Parent Materials in Subtropical Hilly Areas. Forests, 14(3), 656. https://doi.org/10.3390/f14030656