Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection and Conditioning
2.2. Seed Drying
2.2.1. Determination of Initial Water Content
2.2.2. Determination of Relative Water Content
2.3. Germination Test
2.4. Observation of Seed Coat Structure
2.5. Changes in Water Distribution and Water Status during Seed Drying
2.5.1. Changes in Water Distribution during Drying
2.5.2. Seed Measurement Region of Interest Signal-to-Noise Ratio Determination
2.5.3. Changes in Water Status and Content during Seed Drying
2.5.4. Establishment of NMR Detection Method for Seed Water
2.6. Data Analysis
3. Results
3.1. Changes in Water Content and Germination Rate of Quercus acutissima Seeds during Desiccation
3.2. Ultrastructure of the Seed Coat
3.3. MRI Analysis during Seed Desiccation
3.4. Division of T2 Relaxation Time and Water Status during Desiccation
3.5. Changes in T2 Inversion Spectrum during Dehydration of Q. acutissima Seeds
3.6. Dynamic Changes of Peak Area and Its Proportion during Desiccation of Q. acutissima Seeds
4. Discussion
4.1. Effect of Desiccation on Seed Germination of Q. acutissima
4.2. Water Loss Site of Q. acutissima Seed
4.3. The Changes in Water Status during Desiccation
4.4. Changes in the Water Content of Each Status during Drying
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, E.H. Predicting the storage life of seeds. Seed Sci. Technol. 1973, 1, 499–514. [Google Scholar]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H. An Intermediate Category of Seed Storage Behaviour? I. COFFEE. J. Exp. Bot. 1990, 41, 1167–1174. [Google Scholar] [CrossRef]
- Krishnan, P.; Nagarajan, S.; Dadlani, M.; Dadlani, M.; Moharir, A.V. Characterization of wheat (Triticum aestivum) and soybean (Glycine max) seeds under accelerated ageing conditions by proton nuclear magnetic spectroscopy. Seed Sci. Technol. 2003, 31, 541–550. [Google Scholar] [CrossRef]
- Pukacka, S.; Malec, M.; Ratajczak, E. ROS production and antioxidative system activity in embryonic axes of Quercus robur seeds under different desiccation rate conditions. Acta Physiol. Plant. 2011, 33, 2219–2227. [Google Scholar] [CrossRef]
- Wyse, S.V.; Dickie, J.B. Predicting the global incidence of seed desiccation sensitivity. J. Ecol. 2017, 105, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Berjak, P.; Pammenter, N.W. From Avicennia to Zizania: Seed recalcitrance in perspective. Ann. Bot. 2008, 101, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Obroucheva, N.; Sinkevich, I.; Lityagina, S. Physiological aspects of seed recalcitrance: A case study on the tree Aesculus hippocastanum. Tree Physiol. 2016, 36, 1127–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, P.; Singh, R.; Verma, A.P.S.; Joshi, D.K.; Singh, S. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochem. Biophys. Res. Commun. 2014, 444, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Su, Y.J.; Su, X.T.; Pu, S.J. The effect of super-dry storage on seed physiology and its ultrastructure. Shandong J. Anim. Sci. Vet. Med. 2013, 34, 72–73. [Google Scholar]
- Vertucci, C.W.; Leopold, A.C. The relationship between water binding and desiccation tolerance in tissues. Plant Physiol. 1987, 85, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.N.; Offord, C.A.; Cuneo, P.; Deseo, M.A. A comparative study of seed morphology in relation to desiccation tolerance and other physiological responses in 71 Eastern Australian rainforest species. Plant Species Biol. 2013, 28, 51–62. [Google Scholar] [CrossRef]
- Xia, K.; Daws, M.I.; Stuppy, W.; Zhou, Z.K.; Pritchard, H.W. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy. PLoS ONE 2012, 7, e47368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obroucheva, N.V.; Antipova, O.V. The role of water uptake in the transition of recalcitrant seeds from dormancy to germination. Russ. J. Plant Physiol. 2004, 51, 848–856. [Google Scholar] [CrossRef]
- Levitt, J. Responses of Plants to Environmental Stresses; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Hwang, S.S.; Cheng, Y.C.; Chang, C.; Lur, H.S.; Lin, T.T. Magnetic resonance imaging and analyses of tempering processes in rice kernels. J. Cereal Sci. 2009, 50, 36–42. [Google Scholar] [CrossRef]
- Jia, C.; Wang, L.; Li, R.; Liu, C.P. Experimental study on drying characteristics of wheat by low-field nuclear magnetic resonance. Dry. Technol. 2016, 35, 1258–1265. [Google Scholar] [CrossRef]
- da Silva, C.B.; Bianchini, V.D.M.; de Medeiros, A.D.; de Moraes, M.H.D.; Marassi, A.G.; Tannus, A. A novel approach for Jatropha curcas seed health analysis based on multispectral and resonance imaging techniques. Ind. Crops Prod. 2021, 161, 113186. [Google Scholar] [CrossRef]
- Ishida, N.; Naito, S.; Kano, H. Loss of moisture from harvested rice seeds on MRI. Magn. Reson. Imaging 2004, 22, 871–875. [Google Scholar] [CrossRef]
- Song, S.S.; Geng, Y.Y.; Feng, T.C.; Hu, B.K.; Liu, Y.N.; Wang, J.H.; He, J.L.; Liang, M.; Tan, H.M. Based on the analysis and imaging of low field nuclear magnetic resonance, explore the influence of chestnut moisture migration to the change of its texture in the storage process. Sci. Technol. Food Ind. 2020, 41, 44–49. [Google Scholar]
- Li, Y.T.; Obadi, M.; Shi, J.C.; Sun, J.; Chen, Z.W.; Xu, B. Determination of moisture, total lipid, and bound lipid contents in oats using low-field nuclear magnetic resonance. J. Food Compos. Anal. 2020, 87, 103401. [Google Scholar] [CrossRef]
- Jiang, X.C.; Yang, X.Q.; Fu, J.R.; He, J.X. Differences between the water status in orthodox seeds and that in recalcitrant seeds. J. Nat. Sci. Hunan Norm. Univ. 1996, 3, 54–58. [Google Scholar]
- Sun, X.; Jiang, D.; Xu, L.; Hua, T.T.; Xuan, Y. Moisture distribution and migration of Ginkgo biloba seeds during air drying process. J. Nanjing For. Univ. 2019, 43, 188–192. [Google Scholar]
- Jin, W.G.; Pei, J.J.; Wang, S.Q.; Chen, X.H.; Gao, R.C.; Tan, M.Q. Effect of continuous and intermittent drying on water mobility of fresh walnuts (Juglans regia L.): A LF-NMR study. Dry. Technol. 2022, 40, 254–264. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.F.; Zang, M.Y.; Li, M.Z.; Fang, Y.M. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus acutissima. Int. J. Mol. Sci. 2018, 19, 2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.W.; Li, Y.; Liu, C.Y.; Xia, T.; Zhang, Q.; Fang, Y.M. Phylogeography of the temperate tree species Quercus acutissima in China: Inferences from chloroplast DNA variations. Biochem. Syst. Syst. Ecol. 2015, 63, 190–197. [Google Scholar] [CrossRef]
- Hu, Y.D.; Wu, J.; Jiang, J.B.; Wang, C. Contrast Tests of Different Storage Methods of Seeds of Quercus acutissima. Prot. For. Sci. Technol. 2009, 2, 40–41. [Google Scholar]
- Gayatri, G.P.; Kumar, K.G.A.; Nair, P.S.; Deth, G.S.K.; Baiju, K.V. Dynamics of Water and Abscisic Acid During Embryogeny and Embryo Drying in the Recalcitrant Seeds of Vateria indica L. J. Plant Growth Regul. 2021, 41, 15–22. [Google Scholar] [CrossRef]
- Chandra, J.; Keshavkant, S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol. Mol. Biol. Plants 2018, 24, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Francini, A.; Galleschi, L.; Saviozzi, F.; Pinzino, C.; Izzo, R.; Sgherri, C.; Navari-Izzo, F. Enzymatic and non-enzymatic protective mechanisms in recalcitrant seeds of Araucaria bidwillii subjected to desiccation. Plant Physiol. Biochem. 2006, 44, 556–563. [Google Scholar] [CrossRef] [PubMed]
- International Seed Testing Association (ISTA). International Rules for Seed Testing. Chapter 9: Determination of Moisture Content; International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2004. [Google Scholar]
- Feng, J.; Shen, Y.B.; Shi, F.H.; Li, C.Z. Changes in Seed Germination Ability, Lipid Peroxidation and Antioxidant Enzyme Activities of Ginkgo biloba Seed during Desiccation. Forests 2017, 8, 286. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.M.; Liu, G.Q.; Liu, Y.; Hou, L.Y.; Li, G.L. Inhibitory Mechanism of Seed Germination of Quercus acutissima. Sci. Silvae Sin. 2012, 48, 164–170. [Google Scholar]
- Xia, K.; Daws, M.I.; Hay, F.R.; Zhou, Z.K.; Pritchard, H.W. A comparative study of desiccation responses of seeds of Asian Evergreen Oaks, Quercus subgenus Cyclobalanopsis and Quercus subgenus Quercus. S. Afr. J. Bot. 2012, 78, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, Y.; Qian, J.; Liu, X.; Xu, H.; Zhang, G.; Ren, J.; Wang, L.; Zhang, L.; Yu, H. Comparative Transcriptome Analysis Revealed Candidate Genes Potentially Related to Desiccation Sensitivity of Recalcitrant Quercus variabilis Seeds. Front. Plant Sci. 2021, 12, 717563. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shen, Y.B. The structural and chemical characteristics of the pericarp are important in Tilia miqueliana seed dormancy. New For. 2021, 52, 875–888. [Google Scholar] [CrossRef]
- Zang, X.; Lin, Z.; Zhang, T.; Wang, H.; Cong, S.; Song, Y.; Li, Y.; Cheng, S.; Tan, M. Non-destructive measurement of water and fat contents, water dynamics during drying and adulteration detection of intact small yellow croaker by low field NMR. J. Food Meas. Charact. 2017, 11, 1550–1558. [Google Scholar] [CrossRef]
- Williams, J.K.; Hong, M. Probing membrane protein structure using water polarization transfer solid-state NMR. J. Magnetic. Reson. 2014, 247, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, T.; Cheng, S.; Khan, I.A.; Nawab, K.; Zhang, T.; Song, Y.; Wang, S.; Nadeem, M.; Riaz, M.; Khan, M.A.U.; et al. Potential uses of LF-NMR and MRI in the study of water dynamics and quality measurement of fruits and vegetables. J. Food Process. Preserv. 2019, 43, e14202. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, M.; Yang, P.Q. Combination of LF-NMR and BP-ANN to monitor water states of typical fruits and vegetables during microwave vacuum drying. LWT-Food Sci. Technol. 2019, 116, 108548. [Google Scholar] [CrossRef]
- Goodman, R.C.; Jacobs, D.F.; Karrfalt, R.P. Evaluating desiccation sensitivity of Quercus rubra acorns using X-ray image analysis. Can. J. For. Res. 2005, 35, 2823–2831. [Google Scholar] [CrossRef]
- Joet, T.; Ourcival, J.M.; Dussert, S. Ecological significance of seed desiccation sensitivity in Quercus ilex. Ann. Bot. 2013, 111, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Leon-Lobos, P.; Ellis, R.H. Comparison of seed desiccation sensitivity amongst Castanea sativa, Quercus ilex and Q. cerris. Seed Sci. Technol. 2018, 46, 233–237. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M. A comparative study of desiccation responses of seeds of three drought-resistant Mediterranean oaks. For. Ecol. Manag. 2013, 305, 189–194. [Google Scholar] [CrossRef]
- Tuomainen, T.V.; Himanen, K.; Helenius, P.; Kettunen, M.I.; Nissi, M.J. Quantitative magnetic resonance imaging of Scots pine seeds and assessing germination potential. Can. J. For. Res. 2022, 52, 685–695. [Google Scholar] [CrossRef]
- Terskikh, V.V.; Feurtado, J.A.; Ren, C.; Abrams, S.R.; Kermode, A.R. Water uptake and oil distribution during imbibition of seeds of western white pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging. Planta 2005, 221, 17–27. [Google Scholar] [CrossRef]
- Sobrino-Vesperinas, E.; Viviani, A.B. Pericarp micromorphology and dehydration characteristics of Quercus suber L. acorns. Seed Sci. Res. 2000, 10, 401–407. [Google Scholar] [CrossRef]
- Bonner, F.T. Water Uptake and Germination of Red Oak Acorns. Bot. Gaz. 1968, 129, 83–85. [Google Scholar] [CrossRef]
- Han, B.; Zhang, P.; Guo, S.J.; Dong, X.; Li, W.Q.; Jiao, J.M. Effects of Water Loss on Ultrastructure and Physiological changes and Germination of Castanea mollissima. Seeds Genom. Appl. Biol. 2020, 40, 2785–2792. [Google Scholar]
- Sun, B.X.; Zhao, H.X.; Feng, X.Q. Changes in the water status of fresh jujubes during storage based on LF-NMR and MRI techniques. J. Chin. Inst. Food Sci. Technol. 2016, 16, 252–257. [Google Scholar]
- Wa, H.T.; Dong, R.L. On the relationship between the ratio of free water and bound water in plant leaves and the drought resistance of plants. Plant Physiol. J. 1956, 2, 50–53. [Google Scholar]
- Luo, J.Y.; Tang, M.; Qiu, Y.X.; Liu, J.L.; Wang, Q. Change of water status during olecranon peach storage by LF-NMR technique. J. Zhongkai Univ. Agric. Eng. 2019, 32, 23–27. [Google Scholar]
- Ambastha, V.; Tiwari, B.S. Cellular Water and Anhydrobiosis in Plants. J. Plant Growth Regul. 2015, 34, 665–671. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Y.J.; Wang, Y.B.; Wang, J.S. Internal water phase changes and surface moisture loss kinetics of broad bean seeds during dehydration. Sci. Technol. Food Ind. 2020, 41, 51–57. [Google Scholar]
- Khan, M.I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.U.H.; Karim, M.A. Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 2017, 117, 266–273. [Google Scholar] [CrossRef]
- Song, P.; Song, P.; Yang, H.W.; Yang, T.; Xu, J.; Wang, K.T. Detection of rice seed vigor by low-field nuclear magnetic resonance. Int. J. Agric. Biol. Eng. 2018, 11, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, S.; Tsenkova, R.; Moyankova, D.; Muncan, J.; Morita, H.; Atanassova, S.; Djilianov, D. Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis. Sci. Rep. 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Water Content (%) | T21 | T22 | T23 | |||
---|---|---|---|---|---|---|
Relaxation Range/ms | Peak Time/ms | Relaxation Range/ms | Peak Time/ms | Relaxation Range/ms | Peak Time/ms | |
38.8 | 0.34 ± 0.02 a | 0.13 ± 0.02 a | 6.15 ± 0.24 abc | 1.91 ± 0.00 a | 534.60 ± 0.48 a | 29.33 ± 1.22 a |
35.8 | 0.35 ± 0.00 a | 0.12 ± 0.01 ab | 5.58 ± 0.71 cd | 1.91 ± 0.00 a | 487.57 ± 20.36 b | 28.02 ± 1.14 ab |
32.8 | 0.35 ± 0.01 a | 0.11 ± 0.01 bc | 6.43 ± 0.27 ab | 1.87 ± 0.08 a | 475.34 ± 19.85 bc | 29.38 ± 2.04 a |
29.8 | 0.34 ± 0.00 a | 0.11 ± 0.01 bc | 6.78 ± 0.26 a | 1.83 ± 0.00 a | 444.10 ± 48.35 cd | 28.02 ± 1.14 ab |
26.8 | 0.30 ± 0.01 b | 0.11 ± 0.01 bc | 6.65 ± 0.50 ab | 1.59 ± 0.11 b | 412.61 ± 0.28 de | 28.02 ± 1.14 ab |
23.8 | 0.23 ± 0.00 c | 0.11 ± 0.01 bc | 6.41 ± 0.27 ab | 1.48 ± 0.00 c | 403.11 ± 0.28 e | 26.75 ± 1.06 b |
20.8 | 0.19 ± 0.00 d | 0.11 ± 0.01 bc | 6.00 ± 0.23 bcd | 1.29 ± 0.00 d | 376.07 ± 0.26 e | 24.39 ± 0.99 c |
17.8 | 0.19 ± 0.01 d | 0.11 ± 0.01 bc | 5.45 ± 0.22 d | 1.10 ± 0.04 e | 290.81 ± 11.79 f | 18.47 ± 0.75 d |
14.8 | 0.17 ± 0.02 d | 0.10 ± 0.00 d | 4.63 ± 0.31 e | 0.78 ± 0.03 f | 247.58 ± 17.18 g | 18.04 ± 0.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Shen, Y. Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods. Forests 2023, 14, 738. https://doi.org/10.3390/f14040738
Chen H, Shen Y. Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods. Forests. 2023; 14(4):738. https://doi.org/10.3390/f14040738
Chicago/Turabian StyleChen, Haiyan, and Yongbao Shen. 2023. "Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods" Forests 14, no. 4: 738. https://doi.org/10.3390/f14040738
APA StyleChen, H., & Shen, Y. (2023). Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods. Forests, 14(4), 738. https://doi.org/10.3390/f14040738